
SIZE AND EFFORT-BASED COMPUTATIONAL MODELS FOR
SOFTWARE COST PREDICTION

Efi Papatheocharous and Andreas S. Andreou
University of Cyprus, Dept. of Computer Science

75 Kallipoleos str., CY1678 Nicosia, Cyprus

Keywords: Artificial Neural Networks, Genetic Algorithms, Software Cost Estimation.

Abstract: Reliable and accurate software cost estimations have always been a challenge especially for people involved
in project resource management. The challenge is amplified due to the high level of complexity and
uniqueness of the software process. The majority of estimation methods proposed fail to produce successful
cost forecasting and neither resolve to explicit, measurable and concise set of factors affecting productivity.
Throughout the software cost estimation literature software size is usually proposed as one of the most
important attributes affecting effort and is used to build cost models. This paper aspires to provide size and
effort-based estimations for the required software effort of new projects based on data obtained from past
completed projects. The modelling approach utilises Artificial Neural Networks (ANN) with a random
sliding window input and output method using holdout samples and moreover, a Genetic Algorithm (GA)
undertakes to evolve the inputs and internal hidden architectures and to reduce the Mean Relative Error
(MRE). The obtained optimal ANN topologies and input and output methods for each dataset are presented,
discussed and compared with a classic MLR model.

1 INTRODUCTION

Accurate software development cost estimation has
always been a major concern especially for people
involved in project management, resource control
and schedule planning. A good and reliable estimate
could provide more efficient management over the
whole software process and guide a project to
success. The track record of IT projects shows that
often a large number fails. Most IT experts agree
that such failures occur more regularly than they
should (Charette, 2005). According to the 10th
edition of the annual CHAOS report from the
Standish Group that studied over 40,000 projects in
10 years, success rates increased to 34% and failures
declined to 15% of the projects. However, 51% of
the projects overrun time, budget and/or lack critical
features and requirements, while the average cost
apparently overruns by 43% (Software Magazine,
2004). One of the main reasons for these figures is
failure to estimate the actual effort required to
develop a software project.

The problem is further amplified due to the high
level of complexity and uniqueness of the software
process. Estimating software costs, as well as
choosing and assessing the associated cost drivers,

both remain difficult issues that are constantly at the
forefront right from the initiation of a project and
until the system is delivered. Cost estimates even for
well-planned projects are hard to make and will
probably concern project managers long before the
problem is adequately solved.

Over the years software cost estimation has
attracted considerable research attention and many
techniques have been developed to effectively
predict software costs. Nonetheless no single
solution has yet been proposed to address the
problem. Typically, the amount and complexity of
the development effort proportionally drives
software costs. However, as other factors, such as
technology shifting, team and manager skills,
quality, size etc., affect the development process it is
even more difficult to assess the actual costs.

A commonly investigated approach is to
accurately estimate some of the fundamental
characteristics related to cost, such as effort, usually
measured in person-months. However, it is preferred
to measure a condensed set of attributes and then use
them to estimate the actual effort. Software size is
commonly recognised as one of the most important
factors affecting the amount of effort required to
complete a project according to Fenton and Pfleeger

57
Papatheocharous E. and S. Andreou A. (2008).
SIZE AND EFFORT-BASED COMPUTATIONAL MODELS FOR SOFTWARE COST PREDICTION.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 57-64
DOI: 10.5220/0001708800570064
Copyright c© SciTePress

(1997). It is considered a fairly unpromising metric
to provide early estimates mainly because it is
unknown until the project terminates. Nonetheless,
many researchers investigate cost models using size
to estimate effort (e.g.,Wittig and Finnie; Dolado
2001) whereas others direct their efforts towards
defining concise methods and measures to estimate
software size from the early project phases (e.g.,
Park 2005; Albrecht 1979). The present work is
related to the former, aspiring to provide size and
effort-based estimations for the software effort
required for a new project using data from past
completed projects, even though they originate back
from the 90’s. The hypothesis is that once a robust
relationship between size and effort is affirmed by
means of a model, then this model may be used
along with size estimations to predict effort of new
projects more accurately. Thus, in this work we
attempt to study the potentials of developing a
software cost model using computational
intelligence techniques relying only on size and
effort data. The core of the model proposed consists
of Artificial Neural Networks (ANN). The ANN’s
architecture is further optimised with the use of a
Genetic Algorithm (GA), focused on evolving the
number and type of inputs, as well as the internal
hidden architecture to predict effort as precisely as
possible. The inputs used to train and test the ANN
are project size measurements (either Lines of Code
(LOC) or Function Points (FP)), and the associated
effort to predict the subsequent in series, unknown
project effort. In addition, a Multi-Linear Regression
(MLR) prediction model is presented as a
benchmark to assess the performance of the model
materialising estimations of the dependent variable
(effort) with a classic method.

The rest of the paper is organised as follows:
Section 2 presents a brief overview of relative
research on size-based software cost estimation and
especially focuses on machine learning techniques.
Section 3 provides a description of the datasets and
performance metrics used in the experiments
following in Section 4. Section 4 includes the
application of an ANN cost estimation model and
describes an investigation of further improvements
of the model proposing a hybrid algorithm to
construct the optimal input and output method and
architecture for the datasets. In addition, this section
presents a comparison of the results to a classic
MLR model. Section 5, concludes with the findings
of this work, discusses a few limitations and
suggests future research steps.

2 RELATED WORK

Several techniques have been investigated for
software cost estimation, especially data-driven
artificial intelligence techniques, such as neural
networks, evolutionary computing, regression trees,
rule-based induction etc. as they present several
advantages over other, classic approaches like
regression. Most of the studies performed
investigate, among other issues, the identification
and realisation of the most important factors that
influence software costs. This section focuses on
related work mainly of size-based cost estimation
models.

To begin with, most size-based models consider
either the number of lines written for a project
(called lines of code (LOC) or thousands of lines of
code (KLOC)) used in models such as COCOMO
(Boehm et al., 1997), or the number of function
points (FP) used in models such as Albrecht’s
Function Point Analysis (FPA) (Albrecht and
Gaffney, 1983). Many research studies investigate
the potential of developing software cost prediction
systems using different approaches, datasets, factors,
etc. Review articles like the ones of Briand and
Wieczorek (2001), Jorgensen and Shepperd (2007),
include a detailed description of such studies. We
will attempt to highlight some of the most important
relevant studies: in Wittig and Finnie (1997) effort
estimation was assessed using backpropagation
ANN on the Desharnais and ASMA datasets, mainly
using system size to determine the latter’s
relationship with effort. The approach yielded
promising prediction results indicating that the
model required a more systematic development
approach to establish the topology and parameter
settings and obtain better results. In Dolado (2001)
the cost estimation equation of the relationship
between size and effort was investigated using
Genetic Programming evolving tree structures,
representing several classical equations, like the
linear, power, quadratic, etc. The approach reached
to moderately good levels of prediction accuracy
results by using solely the size attribute and
indicated that further improvements can be achieved.

In summary, the literature thus far, has showed
many research attempts focusing on measuring
effort and size as the key variables. In addition,
many studies indicate ANN models as promising
estimators, or that they perform at least as well as
other approaches. Subsequently, we firstly aim to
examine the potentials of ANNs in software cost
modeling and secondly to investigate the possibility
of providing further improvements for such a model.
Our goal is to inspect: (i) whether a suitable ANN

ICEIS 2008 - International Conference on Enterprise Information Systems

58

model, in terms of input parameters, may be built;
(ii) whether we can achieve sufficient estimates of
software development effort using only size or
function based metrics on different datasets of
empirical cost samples; (iii) whether a hybrid
computational model, which consists of a
combination of ANN and GA, may contribute to
devising the ideal ANN architecture and set of
inputs that meet some evaluation criteria. Our
strategy is to exploit the benefits of computational
intelligence and provide a near to optimal effort
predictor for impending new projects.

3 DATASETS AND
PERFORMANCE METRICS

A variety of historical software cost data samples
from various datasets containing empirical cost
samples were employed to provide a strong
comparative basis with results reported in other
studies. Also, in this section, the performance
metrics used to assess the ANN’s precision accuracy
are described.

3.1 Datasets Description

The following datasets were chosen to test the
approach describing historical project data:
COCOMO`81 (COC`81), Kemerer`87 (KEM`87), a
combination of COCOMO`81 and Kemerer`87
(COKEM`87), Albrecht and Gaffney`83
(ALGAF`83) and finally Desharnais`89 (DESH`89).

The COC`81 (Boehm, 1981) dataset contains
information about 63 software projects from
different applications. Each project is described by
the following 17 cost attributes: reliability, database
size, complexity, required reusability,
documentation, execution time constraint, main
storage constraint, platform volatility, analyst
capability, programmer capability, applications
experience, platform experience, language & tool
experience, personnel continuity, use of software
tools, multi-site development and required schedule.

The second dataset, named KEM`87 (Kemerer,
1987) contains 15 software project records gathered
by a single organisation in the USA which constitute
business applications written mainly in COBOL.
The attributes of the dataset are: the actual project’s
effort measured in man-months, the duration, the
KLOC, the unadjusted and the adjusted FP’s count.
Also, a combination of the two previous datasets
was created, namely COKEM`87, to experiment
with a larger but more heterogeneous dataset.

The third dataset ALGAF`83 (Albrecht and
Gaffney, 1983) contains information about 24
projects developed by the IBM DP service
organisation. The datasets’ characteristics
correspond to the actual project effort, the KLOC,
the number of inputs, the number of outputs, the
number of master files, the number of inquiries and
the FP’s count.

The fourth dataset, DESH`89 (Desharnais, 1989),
includes observations for more than 80 systems
developed by a Canadian Software Development
House at the end of 1980. The basic characteristics
of the dataset account for the following: the project
name, the development effort measured in hours, the
team’s experience and the project manager’s
experience measured in years, the number of
transactions processed, the number of entities, the
unadjusted and adjusted FP, the development
environment and the year of completion.

From the datasets the project size and effort were
chosen because they were the common attributes
existing in all datasets and furthermore, they are the
main factors reported in literature to affect the most
productivity and cost (Sommerville, 2007).

3.2 Performance Metrics

The performance of the predictions was evaluated
using a combination of three common error metrics,
namely the Mean Relative Error (MRE), the
Correlation Coefficient (CC) and the Normalized
Root Mean Squared Error (NRMSE) together with a
devised Sign prediction (Sign) metric. These error
metrics were employed to validate the model’s
forecasting ability considering the difference
between the actual and the predicted cost samples
and their ascendant or descendant progression in
relation to the actual values.

The MRE, given in equation (1), shows the
prediction error focusing on the sample being
predicted.)(ixact

is the actual effort and)(ix pred
 the

predicted effort of the thi project.

 ∑
=

−
=

n

i act

predact

ix
ixix

n
nMRE

1)(
)()(1)((1)

The CC between the actual and predicted series,
described by equation (2), measures the ability of the
predicted samples to follow the upwards or
downwards of the original series as it evolves in the
sample prediction sequence. An absolute CC value
equal or near 1 is interpreted as a perfect follow up
of the original series by the forecasted one. A
negative CC sign indicates that the forecasting series

SIZE AND EFFORT-BASED COMPUTATIONAL MODELS FOR SOFTWARE COST PREDICTION

59

follows the same direction of the original with
negative mirroring, that is, with a rotation about the
time-axis.

() ()[]

() () ⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−

−−−
=

∑∑

∑

==

=

n

i
npredpred

n

i
nactact

n

i
npredprednactact

xixxix

xixxix
nCC

1

2
,

1

2
,

1
,,

)()(

)()(
)(

(2)

The NRMSE assesses the quality of predictions
and is calculated using the Root Mean Squared
Error (RMSE) as follows:

[]∑
=

−=
n

i
actpred ixix

n
nRMSE

1

2)()(1)((3)

[]
2

1
)(1

)()()(

∑
=

Δ
−

==
n

i
nact xix

n

nRMSEnRMSEnNRMSE
σ (4)

If NRMSE=0 then predictions are perfect; if
NRMSE=1 the prediction is no better than taking

predx equal to the mean value of n samples.
The Sign Predictor (Sign(p)) metric assesses if

there is a positive or a negative transition of the
actual and predicted effort trace in the projects used
only during the evaluation of the models on
unknown test data. With this measure we are not
interested in the exact values, but only if the
tendency of the previous to the next value is similar;
meaning if the actual effort value rises and if the
predicted value rises too in relation to their previous
value, then the tendency is identical. This is
expressed in equations (5) and (6).

n

z
pSign

n

i
i∑

== 1)((5)

.
0))(*)((

0
1 11

otherwise
xxxxif

zwhere
act
t

act
t

pred
t

pred
t

i
>−−

⎩
⎨
⎧

= ++ (6)

4 EXPERIMENTAL APPROACH

In this section we provide the detailed experimental
approach and the results yielded by the models
developed: (i) An ANN approach, with varying
input and output method (a random timestamp was
given to the data samples which were inputted using
a sliding-window technique); (ii) A Hybrid model,
coupling ANN with a GA to reach to a near to
optimal input output method and internal
architecture; (iii) A classic MLR model, which will
then be used for later comparisons.

4.1 An ANN-Model Approach

The following section presents the ANN model
which investigates the relationship between software
size (expressed in LOC or FP) and effort, by
conducting a series of experiments. We are
concerned with inspecting the predictive ability of
the ANN according to the architecture utilised and
the input output method (volume and chronological
order of the data fed to the model) per dataset used.

4.1.1 Model Description

The core architecture of the ANN was a feedforward
MLP (Figure 1) linking each input neuron with three
hidden layers, consisting of parallel slabs activated
by a different function (i.e., i-h1- h2 - h3 – o, where i
is the input vector h1, h2, h3 are the internal hidden
layers and o is the output). Variations of this
architecture were employed regarding the number of
inputs and the number of neurons in the internal
hidden layers, whereas the difference between the
actual and the predicted effort is manifested at the
output layer (forecasting deviation).

Figure 1: A Feed-forward MLP Neural Network.

Firstly, the ANN were trained in a supervised
manner, using the backpropagation algorithm. Also,
we utilised a technique to filter the data and reserve
holdout samples, namely training, validation and
testing subsets. The extraction was made randomly
using 70% of the data samples for training, 20% for
validation and 10% for testing. With
backpropagation the inputs propagate through the
ANN resulting in an output according to the initial
weights. The predicting behaviour of the ANN is
characterised by the difference among the predicted
and the desired output. Then, the difference is
propagated in a backward manner adjusting the
necessary weights of the internal neurons, so that the
predicted value is moved closer to the actual one in
the subsequent iteration. The training set is utilised
during the learning process, the validation set is used
to ensure that no overfitting occurs in the final result

ICEIS 2008 - International Conference on Enterprise Information Systems

60

and that the network is able to generalise the
knowledge gained. The testing set is an independent
dataset, i.e., does not participate during the learning
process and measures how well the network
performs with unknown data. During training the
inputs are presented to the network in patterns
(inputs/output) and corrections are made on the
weights of the network according to the overall error
in the output and the contribution of each node to
this error.

4.1.2 Results

The experiments conducted constituted an empirical
investigation mainly regarding the number of inputs
and internal neurons forming the layers of the ANN.
In these experiments several ANN parameters were
kept constant as some preliminary experiments
previously conducted implied that varying the type
of the activation function in each layer had no
significant effect on the forecasting quality. More
specifically, we employed the following functions:
for i the linear [-1,1], h1 the Gaussian, h2 the tanh, h3
the Gaussian complement and for o the logistic
function. Also, the learning rate, the momentum, the
initial weights and the amount of iterations were set
to 0.1, 0.1, 0.3 and 10,000 respectively.

In addition, the randomly generated subsets were
given a specific chronological order (ti) and for each
repetition of the procedure a sliding window
technique was used to extract an input vector and
supply it to the ANN model. The window-sliding
size i varied, with i=1…5. Practically, this is
expressed in Table 1, covering the following Input
Output Methods (IOM):

(1-2) using the lines of code or the function points
of i projects we estimate the effort of the i-th
project;

(3-4) using lines of code or function points with
effort of the i-th project we estimate the effort
required for the next project (i+1)-th in the
series sequence;

(5-6) using lines of code or function points of the i-
th and (i+1)-th projects and effort of the i-th
project we estimate the effort required for the
(i+1)-th project.

Each input method may vary the number of past
samples per variable from 1 to 5 (i index).

Table 1: Sliding window technique to determine the ANN
input and output data supply method. (*where i=1…5).

Input
Output
Method

Inputs* Output*

IOM-1 LOC(ti) EFF(ti)
IOM-2 FP(ti) EFF(ti)
IOM-3 LOC(ti), EFF(ti) EFF(ti+1)
IOM-4 FP(ti), EFF(ti) EFF(ti+1)
IOM-5 LOC(ti), LOC(ti+1), EFF(ti) EFF(ti+1)
IOM-6 FP(ti), FP(ti+1), EFF(ti) EFF(ti+1)

The best results obtained utilising the ANN
model and various datasets are summarised in Table
2. The first column refers to the dataset used, the
second column to the input and output method
(IOM) with which i data inputs are fed to the model,
the third column refers to the ANN topology and the
rest of the columns refer to the error metrics during
the training and testing phase. The last two columns
indicate the number of predicted projects that have
the same sign tendency, in the sequence of the effort
samples and the total percentage of the successful
tendencies during testing. The figures in Table 2
show that an ANN model deploying a mixture of
architectures and input, output methods yields
various accuracy levels. More specifically, the
DESH`89 dataset achieves high prediction accuracy,
with lowest MRE equal to 0.05 and CC equal to 1.0.
The KEM`87 dataset also performs adequately well
with relatively low error figures. The worst
prediction performance is obtained with ALGAF`83
and COKEM`87 datasets. These failures may be
attributed to too few projects involved in the
prediction in the first case, and to the creation of a
heterogeneous dataset in the latter case. Finally, as
the results suggest, the COC`81 and KEM`87
datasets achieve adequately fit predictions and thus,
we may claim that the method is able to approximate
the actual development cost. Another observation is
that the majority of the best yielded results employ a
large number of internal neurons. Therefore, further
investigation is needed with respect to different
ANN topologies and IOM for the various datasets.
To this end we resorted to using a hybrid scheme,
combining ANN with GA, the latter attempting to
evolve the near to optimal network topology and
input/output schema that yields accurate predictions
and has reasonably small size (i.e., number of
neurons) so as to avoid overfitting.

4.2 A Hybrid Model Approach

The rationale behind this attempt was that the
performance of ANN highly depends on the size,
structure and connectivity of the network and results

SIZE AND EFFORT-BASED COMPUTATIONAL MODELS FOR SOFTWARE COST PREDICTION

61

Table 2: Best Experimental Results obtained with the ANN-model.

DATASET
INPUT

OUTPUT
METHOD

ANN
ARCHITECTURE

TRAINING PHASE TESTING PHASE
Sign(p) Sign(p)

% MRE CC NRMSE MRE CC NRMSE

COC`81 IOM-5 3-15-15-15-1 0.929 0.709 0.716 0.551 0.407 0.952 5/10 50.00
COC`81 IOM-1 2-9-9-9-1 0.871 0.696 0.718 0.525 0.447 0.963 7/12 58.33
KEM`87 IOM-1 1-15-15-15-1 0.494 0.759 0.774 0.256 0.878 0.830 2/3 66.67
KEM`87 IOM-5 5-20-20-20-1 0.759 0.939 0.384 0.232 0.988 0.503 2/2 100.00

COKEM`87 IOM-3 8-20-20-20-1 5.038 0.626 0.781 0.951 0.432 0.948 3/8 37.50
COKEM`87 IOM-3 4-3-3-3-1 5.052 0.610 0.796 0.768 0.257 1.177 4/8 50.00
ALGAF`83 IOM-6 5-3-3-3-1 0.371 0.873 0.527 1.142 0.817 0.649 3/4 75.00
ALGAF`83 IOM-2 2-20-20-20-1 0.335 0.975 0.231 1.640 0.936 0.415 2/4 50.00
DESH`89 IOM-4 4-9-9-9-1 0.298 0.935 0.355 0.481 0.970 0.247 17/20 85.00
DESH`89 IOM-4 6-9-9-9-1 0.031 0.999 0.042 0.051 1.000 0.032 20/20 100.00

may be further improved if the right parameters are
found. Therefore, we applied a GA to investigate
whether we can find the ideal network settings by
means of a cycle of generations including candidate
solutions that are pruned by the criterion ‘survival of
the fittest’, meaning the best performing ANN.

4.2.1 Model Description

The first task for producing the hybrid model was to
determine a type of encoding so as to express the
potential solutions (binary string representing the
ANN architecture, including inputs). The space of
all feasible solutions (the set of solutions among
which the desired solution resides) was called the
search space. Each point in the search space
represents one possible solution. Each possible
solution was “marked” by its fitness value, which in
our case was expressed in equation (7), minimizing
both the MRE and the size of the network.

sizeMRE
fitness

++
=

1
1 (7)

The GA looks for the best solution among a
number of possible solutions represented by one
point in the search space. Searching for a solution is
then equal to looking for some extreme value
(minimum or maximum) in the search space. The
GA developed included three types of operators:
selection (roulette wheel), crossover (with rate equal
to 0.25) and mutation (with rate equal to 0.01).
Selection chooses members from the population of
chromosomes proportionally to their fitness; and
also elitism was used to ensure that the best member
of each population was always selected for the new
population. Crossover adapts the genotype of two
parents by exchanging parts of them and creates a
new chromosome with a new genotype. Crossover
was performed by selecting a random gene along the
length of the chromosomes and swapping all the
genes after that point. Finally, the mutation operator

simply changes a specific gene of a selected
individual in order to create a new chromosome with
a different genotype.

4.2.2 Results

This section presents and discusses the results
obtained using the Hybrid model on the various
available datasets. The best ANN architectures
yielded are displayed in the third column of Table 3
with the various error figures obtained both during
the training and the testing phase.

The main observation is that for some of the
datasets the hybrid model optimised the ANN
prediction accuracy (i.e., ALGAF`83), whereas for
other datasets it performs adequately well in terms
of generalisation (i.e., DESH`89). More specifically,
the experiments show that the MRE is significantly
lowered during testing in almost all the datasets,
with KEM`87 being the only exception. The CC
improves or remains at the same levels in most of
the cases, whereas NRMSE deteriorates. The error
figures show that in most of the cases the yielded
architectures are consistent in that they improve the
respective estimations, even though the training
phase errors suggest that the ANN’s learning ability
is reduced. Another observation is that we cannot
suggest with confidence that this approach
universally improves the performance levels as the
yielded results are not consistent among the datasets,
even though the hybrid models manage to
generalise. It seems that while in some cases the
ANNs presented high learning success (e.g.,
DESH`89, ALGAF`83, KEM`87) in other cases
learning was quite poor (e.g., COC`81) as indicated
in the training phases. The results indicate that the
approach may be further improved, so that to
improve the learning ability of the ANNs and obtain
even better predictions.

ICEIS 2008 - International Conference on Enterprise Information Systems

62

Table 3: Hybrid model (coupling ANN and GA) results.

DATASET INPUT OUTPUT
METHOD

YIELDED ANN
ARCHITECTURE

TRAINING PHASE TESTING PHASE
MRE CC NRMSE MRE CC NRMSE

COC`81 IOM-1 3-25-2-9-1 4.290 0.801 0.595 0.431 0.838 0.549
COC`81 IOM-3 2-16-21-18-1 6.356 0.736 0.668 1.967 0.942 0.556
COC`81 IOM-5 7-0-9-14-1 7.086 0.995 0.095 0.981 0.708 0.725
KEM`87 IOM-1 2-20-14-2-1 6.6445Ε-005 1.000 1.8165Ε-005 0.572 -0.552 1.521
KEM`87 IOM-3 2-11-4-5-1 4.5565Ε-006 1.000 1.735Ε-006 0.474 -0.500 1.593
KEM`87 IOM-5 5-6-19-6-1 3.4593Ε-006 1.000 7.0407Ε-007 0.572 -0.551 1.521

ALGAF`83 IOM-2 6-20-6-11-1 8.4427Ε-006 1.000 1.3176Ε-005 0.083 0.141 1.109
ALGAF`83 IOM-4 6-3-7-3-1 0.004 1.000 0.004 0.113 0.061 1.075
ALGAF`83 IOM-6 1-0-2-5-1 0.000 1.000 0.000 0.083 0.141 1.109
DESH`89 IOM-2 3-28-12-14-1 1.332 0.651 0.776 0.047 0.663 0.777
DESH`89 IOM-4 2-17-5-25-1 0.657 0.872 0.486 0.042 0.782 0.717
DESH`89 IOM-6 3-2-26-3-1 0.914 0.657 0.747 0.124 0.374 0.890

4.3 Comparison to a Classic
Regression-based Approach

In this section we present the results obtained from a
simple Multi-Linear Regression (MLR) model so as
to provide some comparative assessment of the
models proposed thus far. The MLR model will
assess how well the regression line approximates the
real effort and it is built with the leave-one-out
sampling testing technique. The assumption for this
model is that the dependent variable (effort) is
linearly related with the independent variable(s)
(size and/or next effort).

4.3.1 Model Description

The MLR model is built by employing the yielded b
coefficients from each of the IOM specified earlier
with the leave-one-out technique, both during
training and testing. According to equation (8) the
model produces the slope of a line that best fits the
data and then, during the testing phase we estimate
the value of the dependent variable using the sliding-
window. We assessed the values of the predicted and
actual effort calculated from the coefficients
influencing the independent variables of size and
effort in the regression equation with the
performance metrics.

exbxbby nn +⋅++⋅+= ...110 (8)

4.3.2 Results

The MLR approach was tested only on the largest
datasets, namely COC`81 and DESH`89 which
yielded the best predictions with the ANN and thus a
comparison to the ANN models will become
feasible. The results of the MLR indicate average
performance for both datasets with precision
accuracy lower than the accuracy of both the

approaches proposed in this work (simple and hybrid
ANN). With the COC`81 dataset the yielded results
were MRE 3.017, CC 0.647 and NRMSE 0.798 for
the training, and 10.097, 0.011 and 3.029 for the
testing phase. With the DESH`89 dataset MRE was
equal to 1.035, CC 0.093, NRMSE 0.985 during
training and 1.57, 0.112 and 1.032 respectively
during testing. The main problem of the MLR
method yielding mediocre results may be attributed
mainly to the method’s dependence on the
distribution and normality of the data points used
and its inability to approximate unknown functions,
as opposed to the ability demonstrated by the ANN
and GA.

5 CONCLUSIONS

In the present work we attempted to study the
potentials of developing a software cost model using
computational intelligence techniques relying only
on size and effort project data. The core of the model
proposed consists of Artificial Neural Networks
(ANN) trained and tested using project size metrics
(Lines of Code, or, Function Points) and Effort,
aiming to predict the next project effort in the series
sequence as accurately as possible. Separate training
and testing subsets were used and serial sampling
with a sliding window propagated through the data
to extract the projects fed to the models. Commonly,
it is recognized that the yielded performance of an
ANN model mainly depends on the architecture and
parameter settings, and usually empirical rules are
used to determine these settings. The problem was
thus reduced to finding the ideal ANN architecture
for formulating a reliable prediction model. The first
experimental results indicated mediocre to high
prediction success according to the dataset used. In
addition, it became evident that there was need for

SIZE AND EFFORT-BASED COMPUTATIONAL MODELS FOR SOFTWARE COST PREDICTION

63

more extensive exploration of solutions in the search
space of various topologies and input methods as the
results obtained by the simple ANN model did not
converge to a general solution. Therefore, in order to
select a more suitable ANN architecture, we resorted
to using Evolutionary Algorithms. More specifically,
a Hybrid model was introduced consisting of ANN
and Genetic Algorithms (GA). The latter evolved a
population of networks to select the optimal
architecture and inputs that provided the most
accurate software cost predictions. In addition, a
classic MLR model was utilised as benchmark so as
to perform comparison of the results.

Although the results of this work are at a
preliminary stage it became evident that the ANN
approach combined with a GA yields better
estimates than the MLR model and that the
technique is very promising. The main limitation of
this method, as well as any other size-based
approach, is that size estimates must be known in
advance to provide accurate enough effort
estimations, and, in addition, there is a large
discrepancy between the actual and estimated size,
especially when the estimation is made in the early
project phases. Finally, the lack of a satisfactory
volume of homogeneous data as well as of definition
and measurement rules for size units such as LOC
and FP result in uncertainty to the estimation
process. The software size is also affected by other
factors that are not investigated by the models, such
as programming language and platform, and in this
work we emphasised only on coding effort which
accounts for only a percentage of the total effort in
software development. Another important limitation
with the technologies used is that the ANNs are
considered “black boxes” and the GA requires
extensive space search which is very time-
consuming. Therefore, future research steps will
concentrate on ways to improve performance;
examples of which may be: (i) study of other factors
affecting development effort and their
interdependencies, (ii) further adjustment of the
ANN and GA parameter settings, such as
modification of the fitness function, (iii)
improvement of the efficiency of the algorithms by
testing more homogeneous or clustered data and,
(iv) improvement of the quality of the data and use
more recent datasets to achieve better convergence.

REFERENCES

Albrecht, A.J., 1979. Measuring Application Development
Productivity, Proceedings of the Joint SHARE,

GUIDE, and IBM Application Developments
Symposium, pp.83-92.

Albrecht, A.J. and Gaffney J.R., 1983. Software Function
Source Lines of Code, and Development Effort
Prediction: A Software Science Validation, IEEE
Transactions on Software Engineering, 9(6), pp. 639-
648.

Boehm, B.W., 1981. Software Engineering Economics.
Prentice Hall.

Boehm, B.W., Abts, C., Clark, B., and Devnani-Chulani.
S., 1997. COCOMO II Model Definition Manual. The
University of Southern California.

Briand L. C. and Wieczorek I., 2001. Resource Modeling
in Software Engineering, Encyclopedia of Software
Engineering 2.

Burgess, C. J. and Leftley M., 2001. Can Genetic
Programming Improve Software Effort Estimation? A
Comparative Evaluation, Information and Software
Technology, 43 (14), Elsevier, Amsterdam, pp. 863-
873.

Charette, R. N., 2005. Why software fails, Spectrum IEEE
42 (9), pp. 42-29.

Desharnais, J. M., 1988. Analyse Statistique de la
Productivite des Projects de Development en
Informatique a Partir de la Technique de Points de
Fonction. MSc. Thesis, Montréal (Université du
Québec).

Dolado, J. J., 2001. On the Problem of the Software Cost
Function, Information and Software Technology, 43
(1), Elsevier, pp. 61-72.

Fenton, N.E. and Pfleeger, S.L., 1997. Software Metrics: A
Rigorous and Practical Approach. International
Thomson Computer Press.

Haykin, S., 1999. Neural Networks: A Comprehensive
Foundation, Prentice Hall.

Jorgensen, M., and Shepperd M., 2007. A Systematic
Review of Software Development Cost Estimation
Studies. Software Engineering, IEEE Transactions on
Software Engineering, 33(1), pp. 33-53.

Kemerer, C. F., 1987. An Empirical Validation of
Software Cost Estimation Models, CACM, 30(5), pp.
416-429.

Park, R., 1996. Software size measurement: a framework
for counting source statements, CMU/SEI-TR-020.
Available:http://www.sei.cmu.edu/pub/documents/92.r
eports/pdf/tr20.92.pdf, Accessed Nov, 2007.

Software Magazine, 2004. Standish: Project success rates
improved over 10 years.
Available:http://www.softwaremag.com/L.cfm?Doc=n
ewsletter/2004-01-15/Standish, Accessed Nov, 2007.

Sommerville, I., 2007. Software Engineering, Addison-
Wesley.

Wittig, G. and Finnie G., 1997. Estimating software
development effort with connectionist model.
Information and Software Technology, 39, pp.469-
476.

ICEIS 2008 - International Conference on Enterprise Information Systems

64

