
AN APPROACH FOR SCHEMA VERSIONING IN
MULTI-TEMPORAL XML DATABASES

Zouhaier Brahmia and Rafik Bouaziz
Faculty of Economic Sciences and Management, University of Sfax, Road of the Aerodrome, Sfax, Tunisia

Keywords: Temporal databases, XML databases, Schema versioning, XML Schema.

Abstract: Schema evolution keeps only the current data and the schema version after applying schema changes. On
the contrary, schema versioning creates new schema versions and preserves old schema versions and their
corresponding data. These two techniques have been investigated widely, both in the context of static and
temporal databases. With the growing interest in XML and temporal XML data as well as the mechanisms
for holding such data, the XML context within which data items are formatted also becomes an issue.
Whereas much research work has recently focused on the problem of schema evolution in XML databases,
less attention has been devoted to schema versioning in such databases. In this paper, we propose an
approach for schema versioning in multi-temporal XML databases. This approach is based on the XML
Schema language for describing XML schema, and is database consistency-preserving.

1 INTRODUCTION

XML (W3C, 2006a) is an emergent standard for web
documents. It is being used in a wide range of
applications and among a wide array of
communities. In database context, XML is also a
new database model for semi-structured data.

XML provides an excellent support for
temporally grouped data models, which have long
been advocated as the most natural and effective
representations of temporal information (Clifford et
al, 1995).

Since change is a fundamental aspect of
persistent information and data-centric systems, both
the data and the structure (schema) of XML
documents tend to change over time for a multitude
of reasons, including to reflect a change in the real
world, a change in the user’s requirements, mistakes
in the initial design or to allow the expansion of the
application scope over time. While XML schema
changes are inevitable during the life of an XML
database, most of the current XML DBMS
unfortunately do not provide enough support for
these changes and do not support schema evolution
or schema versioning. So, XML database developers
try to solve the problem of schema evolution in an
ad hoc manner. Note that schema evolution is
partially supported by some relational database
systems, such as Oracle and Microsoft SQL Server,

and also by some object-oriented database systems,
such as Orion and TIGUKAT (Ozsu et al, 1995).

Schema versioning has been previously studied
in the context of temporal databases (Roddick,
1995). But an XML schema is a grammar
specification, unlike a relational database schema, so
new techniques are required. Though various XML
schema languages have been proposed in the
literature and in the commercial area (Lee & Chu,
2000), there are neither model schema changes nor
provision for versioning.

Schema versioning and its consequences on
instances have also been thoroughly investigated in
object-oriented databases (e.g. (Galante et al, 2005)).
Though object-oriented schema bring some
similarities with XML Schema, there are
fundamental differences that prevent to smoothly
adapt techniques developed in that context to XML
Schema.

Moreover, whereas several previous works have
dealt with schema evolution in XML databases
(Coox, 2003; Guerrini et al, 2005; Wang & Zaniolo,
2005), few works were done on schema versioning
in such environment (Costello & Utzinger, 2006;
W3C, 2006b). Besides, whereas most previous
works about XML schema versioning use the DTD
schema language (W3C, 2006a) which has limited
capabilities compared to other schema languages
(Lee & Chu, 2000), few works have used the XML

290
Brahmia Z. and Bouaziz R. (2008).
AN APPROACH FOR SCHEMA VERSIONING IN MULTI-TEMPORAL XML DATABASES.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 290-297
DOI: 10.5220/0001707702900297
Copyright c© SciTePress

Schema language (W3C, 2001) which is a powerful
schema language backed by the W3C and supports
the major features available in other XML schema
languages. For these reasons, we propose in this
paper an approach for schema versioning in multi-
temporal XML databases, using the XML Schema
language.

The rest of the paper is organized as follows.
Section 2 presents our approach for schema
versioning in multi-temporal XML databases
(chosen XML schema language; schema change
operations; schema change propagation; XML data
management and querying; implementation). Section
3 is devoted to a brief review of related works.
Conclusions can finally be found in Section 4.

2 PRESENTATION OF THE
PROPOSED APPROACH

A general description of our approach is depicted in
figure 1.

The designer defines, modifies and deletes XML
Schema of objects of the real world. These XML
schema can evolve over time through many
versions. Figure 1 shows the translation from the
XML Schema version number i of an object o to the
XML Schema version number i+1 of the same
object o. After this translation, the version number i
becomes a past version and the version number i+1
becomes the current XML Schema version of the
object o.

Users must define documents which are valid to
a specified XML Schema version (a past version or
the current version). By default, users must use the
current XML Schema version of an object to define
and to modify documents which are valid to this
XML Schema version. But a user can specify that
he/she wants to define an XML document of an
object according to a past XML Schema version of

this object. The changes of an XML document must
be done within the same XML Schema version of
this document, i.e. this document must be valid to its
schema even after modification.

2.1 Chosen XML Schema Formalism:
XML Schema

Although there are many schema languages (DTD,
XML Schema, XDR, DSD, SOX, Schematron,
DCD, DDML, RELAX, Assertion Grammars, etc.)
(Lee & Chu, 2000), the two mostly widely-used
schema languages are currently DTD and XML
Schema.

We choose XML Schema (and not DTD) for the
following reasons:

 it includes more powerful features for defining
the structure and content of an XML
document than DTD (it has more than 44
built-in data types available, over only 10 data
types for DTD language; it supports different
keys like primary key and referenced key as
opposed to only ID and IDREF support in
DTD, etc.);

 it supports the major features available in
other XML schema languages;

 it is backed by the W3C.

The XML Schema language is also referred to as
XML Schema Definition (XSD).

2.2 Basic Principles

Our research is based on the following basic
principles:

 The considered XML environment is multi-
version and temporal: each object of the real
world (e.g. Student, Course, Teacher and
Degree, in an academic system) can have
many XML Schema versions since an XML

Figure 1: General description of our approach.

XML
document

XML
Schema version
 n° i of object o

XML
document’

XML Schema
version n° i+1 of

object o

Data
change

Schema change

XML Schema
designer

XML
document Creation, Modification

and Deletion

 valid to valid to valid to

XML
document’’

valid to

User

Data
change

Creation, Modification
 and Deletion

AN APPROACH FOR SCHEMA VERSIONING IN MULTI-TEMPORAL XML DATABASES

291

Schema of an object is considered as a logical
entity that evolves over time through various
versions; and each XML Schema version has a
temporal format (snapshot, transaction-time,
valid-time or bitemporal). An XML document
which is valid to an XML Schema version
must have the same temporal format of its
schema.

 Extensional XML data (or XML documents)
are multi-temporal (De Castro et al, 1997): we
consider an XML database in which
documents of different temporal formats
coexist. A temporal XML document records
the entire history of an object rather than just
its current state.

 XML schema versioning is temporal: any
XML schema version has a temporal interval
[version start time – version end time]. The
version end time remains unknown until the
definition of a new XML Schema version;
during this period, it is set to the special
symbol ‘UC’ that means ‘until changed’.

 XML schema versioning is individual: each
object has its own XML Schema versions
which are managed independently from XML
Schema versions of any other object.

 For each object of the real world, we have
always one current XML schema version and
zero, one or several past XML schema
version(s). When a new XML schema version
is defined for an object, this version becomes
the only current version for this object and the
previous XML Schema version becomes a
past version.

 XML Schema versions of an object are
numbered in an increasing order (e.g.,
Employee_V1.xsd, Employee_V2.xsd,
Employee_V3.xsd, etc.). The current XML
schema version has always the biggest
number.

 An XML Schema version can be derived from
a previous one: XML database administrator
can use old schema versions to define new
ones.

 The new XML Schema version must be
different from the last one (difference in
structure and/or difference in format);
otherwise it cannot be accepted. We must not
have two successive schema versions which
are identical. If we suppose that a schema
version V2 is identical to V1, what is the
utility of V2 in that case? V2 is not necessary;
the DBMS must refuse it and continue
considering V1 as the current XML schema

version until having a new schema version
which modifies V1.

2.3 Schema Change Operations for
XML Schema

In this section, we propose a set of basic schema
change operations that can be applied to any XML
schema expressed by XML Schema language. We
also provide examples of their use. These operations
provide schema versioning facilities and are
consistency-preserving: they ensure that all existing
XML Schemas and their underlying XML
documents are kept without any modification.

An XML Schema of an object is simply an XML
document which is a set of XML elements. Each
element can be composed of several sub-elements
and each element or sub-element is characterized by
a set of attributes. Thus, schema change operations
can deal with XML Schema elements (or XML
Schema sub-elements) and/or attributes of XML
Schema elements (or XML Schema sub-elements).

Translation from the current XML Schema
version of an object to a new XML Schema version
of this object is achieved by applying a set of
schema change operations.

Below, we present an example to illustrate
changes in XML Schema. Figure 2 depicts the first
version of an XML Schema for the object Hotel (in a
system of hotel management), called Guide_V1.xsd,
and Figure 3 shows a sample XML document valid
to this XML Schema version. The first sample
document is used for running examples hence forth.
<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns:xsd=http://www.w3.org/2000/10/XMLSchema>
 <xsd:element name="Guide">
 <xsd:complexTtype>
 <xsd:sequence>
 <xsd:element name="Hotel" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="Address">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Number" type="xsd:short"/>
 <xsd:element name="Street" type=”xsd:string”/>
 <xsd:element name="Town" type=”xsd:string”/>
 <xsd:element name="Postcode" type=”xsd:string”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Room" type="xsd:short"/>
 <xsd:element name="Phone" type="xsd:string"/>
 <xsd:element name="Fax" type="xsd:string" minOccurs=”0”/>
 </xsd:sequence>
 <xsd:attribute name=”Category” type="xsd:string" use=”required”/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name=”Country” type="xsd:string" use=”required”/>
 <xsd:attribute name=”Continent” type="xsd:string" use=”required”/>
 <xsd:attribute name=”Version” type="xsd:short" use=”required”/>

ICEIS 2008 - International Conference on Enterprise Information Systems

292

<xsd:attribute name=”Version_Start_Time” type="xsd:date"
use=”required”/>

 <xsd:attribute name=”Version_End_Time” type="xsd:date"
use=”required”/>

<xsd:attribute name=”Format” type="xsd:string" use=”required”
fixed=”Snapshot”/>

</xsd:complexType>
 </xsd:element>
</xsd:schema>

Figure 2: Guide_V1.xsd.

<?xml version=”1.0” encoding=”UTF-8”?>
<Guide Country=”Tunisia” Continent=” Africa” Version=”1”
 Version_Start_Time=”2007-01-31” Version_Start_Time=”2007-01-31”
 Format=”Snapshot”>

<Hotel Category=”****”>
<Name>Kantawi Club</Name>
<Address>

< Number>12</Number>
<Street>Flowers</Street>
<Town>Sousse</Town>
<Postcode>3063</Postcode>

</Address>
<Room>1200</Room>
<Phone>+216 73 234 123</Phone>
<Fax>+216 73 534 123</Fax>

</Hotel>
 </Guide>

Figure 3: An XML document valid to Guide_V1.xsd.

2.3.1 Notations

When dealing with the schema change operations,
we will use the notation presented in Table 1.

Table 1: Notation of the schema change operations.

Expression Description
SVi,o The XML Schema version number i of

the object o
ei,o The element e of SVi,o
Ei,o The set of elements of SVi,o;

Ei,o = {ei,o}
ai,o The attribute a of ei,o
Att(ei,o) The set of attributes of the element ei,o;

Att(ei,o) = {ai,o}

2.3.2 Schema Change Operation
Specification

We distinguish six main schema change operations:
 Addition, Deletion and Modification of an

XML Schema element;
 Addition, Deletion and Modification of an

attribute of an XML Schema element.

We assume that the following schema change
operations are applied to SVi,o and produce SVi+1,o as
output.

For the illustrative examples, suppose that we
translate from Guide_V1.xsd to Guide_V2.xsd by
applying a set of schema change operations.

Addition of a new XML Schema Element “e”.
This operation cannot be performed if there is an
existing element with the same name of e in the
current XML Schema version. Such an operation
can be formalized as follows:

AddElem(SVi,o,e) SVi+1,o such that
Ei+1,o = Ei,o ∪ {e}

Example 1: Result of the operation “Addition of the
element homepage”.

Before addition:
Guide_V1.xsd

After addition:
Guide_V2.xsd

……
<xsd:element name="Fax"
type="xsd:string"
minOccurs=”0”/>
</xsd:sequence>
……

……
<xsd:element
name="Fax"
type="xsd:string"
minOccurs=”0”/>
<xsd:element
name="homepage"
type="xsd:string"
minOccurrs="0"
maxOccurrs="1"/>
</xsd:sequence>
……

Deletion of an XML Schema Element “e”. The
element e must already exist in the current XML
Schema version, otherwise this operation fails. Such
an operation can be formalized as follows:

DelElem(SVi,o,e) SVi+1,o such that
Ei+1,o = Ei,o / {e}

Example 2: Result of the operation “Deletion of the
element Fax”.

Before deletion:
Guide_V1.xsd

After deletion:
Guide_V2.xsd

……
<xsd:element name="Phone"
type="xsd:string"/>
<xsd:element name="Fax"
type="xsd:string"
minOccurs=”0”/>
</xsd:sequence>
……

……
<xsd:element
name="Phone"
type="xsd:string"/>
</xsd:sequence>
……

Modification of an XML Schema Element “e”.
The element e must exist in the current XML
schema version, otherwise this operation cannot be
realized. This operation can be one of the following
operations: Addition of a new sub-element s to e,
Deletion of a sub-element s of e, Renaming e,
Modification of type of element e, etc. It can be
formalized as follows:

AN APPROACH FOR SCHEMA VERSIONING IN MULTI-TEMPORAL XML DATABASES

293

ModifElem(SVi,o,e) SVi+1,o such that
Ei+1,o = Ei,o / {ei,o} ∪ {ei+1,o}

Example 3: Result of the operation “Modification of the
element Postcode”.

Before modification:
Guide_V1.xsd

After modification:
Guide_V2.xsd

……
<xsd:element
name="Town"
type=”xsd:string”/>
<xsd:element
name="Postcode"
type=”xsd:string”/>
</xsd:sequence>
……

……
<xsd:element
name="Town"
type=”xsd:string”/>
<xsd:element
name="Zip code"
type=”xsd:string”/>
</xsd:sequence>
……

Addition of an Attribute “a” to an XML Schema
Element “e”. This operation cannot be achieved if
there is an existing attribute of e with the same name
of a, in the current XML Schema version. It can be
formalized as follows:

AddAtt(SVi,o,e,a) SVi+1,o such that Ei+1,o = Ei,o /
{ei,o} ∪ {ei+1,o} ∧ [Att(ei+1,o)=Att(ei,o) ∪ {ai+1,o}]

Example 4: Result of the operation “Addition of the
attribute Id to the element Hotel”.

Before addition:
Guide_V1.xsd

After addition:
Guide_V2.xsd

……
</xsd:sequence>
<xsd:attribute
name=”Category”
type="xsd:string"
use=”required”/>
</xsd:complexType>
……

……
</xsd:sequence>
<xsd:attribute
name=”Id”
type="xsd:byte"
use=”required”/>
<xsd:attribute
name=”Category”
type="xsd:string"
use=”required”/>
</xsd:complexType>
……

Deletion of an Attribute “a” of an XML Schema
Element “e”. This operation cannot be performed if
there is no existing attribute of e with the same name
of a, in the current XML Schema version. Its
formalization is as follows:

DelAtt(SVi,o,e,a) SVi+1,o such that Ei+1,o = Ei,o /
{ei,o} ∪ {ei+1,o} ∧ [Att(ei+1,o)=Att(ei,o) / {ai,o}]

Example 5: Result of the operation “Deletion of the
attribute Continent of the element Guide”.

Before deletion:
Guide_V1.xsd

After deletion:
Guide_V2.xsd

……
<xsd:attribute

……
<xsd:attribute

name=”Country”
type="xsd:string"
use=”required”/>
<xsd:attribute
name=”Continent”
type="xsd:string"
use=”required”/>
<xsd:attribute
name=”Version”
type="xsd:short"
use=”required”/>
……

name=”Country”
type="xsd:string"
use=”required”/>
<xsd:attribute
name=”Version”
type="xsd:short"
use=”required”/>
……

Modification of an Attribute “a” of an XML
Schema Element “e”. This operation cannot be
performed if there is no existing attribute of e with
the same name of a, in the current XML Schema
version. This operation can modify any attribute a of
e (like its name or its type). It can be formalized as
follows:

ModifAtt(SVi,o,e,a) SVi+1,o such that Ei+1,o = Ei,o /
{ei,o} ∪ {ei+1,o} ∧ [Att(ei+1,o)=Att(ei,o) / {ai,o} ∪

{ai+1,o}]

Example 6: Result of the operation “Modification of the
attributes Version_Start_Time and Version_End_Time of
the element Guide”.

Before modification:
Guide_V1.xsd

After modification:
Guide_V2.xsd

……
<xsd:attribute
name=”Version_Start_Ti
me” type="xsd:date"
use=”required”/>
<xsd:attribute
name=”Version_End_Ti
me”
type="xsd:date"
use=”required”/>
……

……
<xsd:attribute
name=”Version_Start_
Time”
type="xsd:dateTime"
use=”required”/>
<xsd:attribute
name=”Version_End_
Time”
type="xsd:dateTime"
use=”required”/>
……

2.4 Schema Change Propagation

In order to avoid problems, like data loss,
modification of semantics and essentially document
revalidation (Raghavachari & Shmueli, 2004;
Guerrini et al, 2005), and to preserve the complete
history of XML Schema and data changes, creation
of a new XML schema version must not affect old
XML schema versions and their underlying XML
documents. Old XML documents continue to be
considered as valid for their XML Schema and must
not be revalidated. But new XML documents should
be valid for the new schema version. In our
approach, when a new XML Schema version is

ICEIS 2008 - International Conference on Enterprise Information Systems

294

created, there is neither conversion of previous XML
schema nor revalidation of previous XML
documents. Only the version end time attribute of
the previous XML Schema version, which is set to
‘UC’, will be changed to the instant that precedes
the start time of the new version.

Thus, schema changes do not affect the
underlying data.

Example: Suppose we have an XML Schema
version Vi (i > 0) used during its temporal interval [ti
– UC[. When we apply to Vi, at an instant tj (j > i),
one or more schema change operations (addition of
an element, for example), a new XML schema
version Vi+1 will be created by the XML DBMS with
a temporal interval equal to [tj – UC[. The old XML
schema version Vi will be kept with a temporal
interval equal to [ti – (tj -1)]. All documents which
are valid relatively to Vi will also be kept without
any modification.

2.5 XML Data Management

In our context, XML documents are multi-version
and temporal. XML data management includes
XML document creation, modification and deletion.
XML document modification includes XML element
addition, modification and deletion. In an XML
document of snapshot or valid-time format, XML
element modification and deletion operations are
destructive. However, these operations are not
destructive in an XML document of transaction-time
or bitemporal format. The definition of each
operation is presented below.

Addition of an Element. This operation inserts a
new element into the corresponding position in the
XML document. If this XML document is of
transaction-time or a bitemporal format, then the
system sets the transaction start time attribute of this
new element to the current time and the transaction
end time attribute to the special symbol ‘UC’. In the
case of a valid-time or a bitemporal document, the
validity start time and validity end time attributes of
the new element are defined by the user. The
validity end time attribute can be set by the user to
the special symbol ‘now’ that represents the ever-
increasing current element.

Modification of an Element. This operation
appends a new element with the same name
immediately after the original element. If the
corresponding XML document is of transaction-time
or a bitemporal format, then the system sets the
transaction start time attribute of this new element to
the current time and the transaction end time

attribute to ‘UC’; it also sets the transaction end time
attribute of the original element to the current time.

Each previous XML document, which is valid to
a previous XML schema version, must be modified
according to its schema version.

After modification of an XML document, this
latter must be valid to its original XML Schema, else
the modification is canceled and the document is
kept in its initial state (i.e. before modification).

Deletion of an Element. This operation changes the
state attribute of this element to ‘d’ that means
‘deleted’. This attribute can be set to ‘v’ (default
value) for ‘valid’ or ‘e’ for ‘erroneous’.

For each object of the real world, new XML
documents are created and modified according to the
current XML schema version of this object; they
must be valid to this version.

Thus, XML data (or document) change
operations (element addition, modification or
deletion) have no effect on the corresponding XML
Schema. Modification of an XML document cannot
lead to a new XML Schema; it has to leave the
modified document valid with regard to its XML
Schema.

2.6 XML Data Querying

In a multi-version environment, we can have multi-
schema queries (i.e., queries in which several
schema versions qualify for the temporal selection
conditions). To answer these queries, the XML
DBMS will use all selected schema versions (multi-
schema answer).

XQuery (W3C, 2007) is a powerful query
language which provides an effective support for
(complex) temporal queries (e.g. slicing queries,
historical queries and temporal join queries) at the
logical level (Wang & Zaniolo, 2005).

In order to support temporal multi-schema
queries, XQuery will need new operators like the
Allen operators (Allen, 1983) (i.e. before, after,
meets, overlaps, etc.) and new functions in order to
specify schema versions in XML queries (e.g.
first_verion(), last_version(), version_applied_at(a
particular time t), versions_applied_during(a
particular time interval), etc.).

XQuery is Turing-complete and natively
extensible (Kepser, 2004). Thus, additional
constructs needed for temporal multi-schema queries
can be defined in XQuery itself, without having to
depend on difficult-to-obtain extensions by standard
committees.

AN APPROACH FOR SCHEMA VERSIONING IN MULTI-TEMPORAL XML DATABASES

295

Figure 4: The overall system architecture.

2.7 Implementation

To verify the feasibility of our approach, we
implement the ideas presented in this paper in a
functioning prototype system for schema versioning
in multi-temporal XML databases, called
Sysvermutex. This system is developed on top of an
open source native XML DBMS, eXist (http://exist-
db.org/), by using Java, within a stratum approach.
The overall architecture is depicted in figure 4. The
dashed rectangle indicates the boundary of the
stratum. This stratum consists of the three
components shown as Schema Change Processor,
XML Data Management Processor and Multi-
Schema Temporal Query Processor modules.

3 RELATED WORK

Schema evolution had been previously investigated
for schemas expressed by DTDs in (Su et al, 2001),
where a set of evolution operators is proposed and
discussed in detail. DTD evolution has also been
investigated in (Bertino et al, 2002): the focus was
on dynamically adapting the schema to the structure
of most documents stored in an XML data source.
An axiomatic model of an XML database schema is
suggested in (Coox, 2003) that automatically
maintains the integrity of the XML database when
basic changes are made to its schema. A framework
for schema evolution of relational database-based
systems with XML “interface” is presented in
(Simanovsky, 2004).

Schema evolution and schema versioning had
also been studied for schema expressed by XML
Schema in (Guerrini et al, 2005), (Dyreson et al,

2006) and (Joshi, 2007). In (Guerrini et al, 2005),
the authors have proposed a set of evolution
primitives and analyzed the impact of such
primitives on the validity of XML documents known
to be valid for the original schema. In (Dyreson et al,
2006), the authors show how schema versioning can
be integrated with support for time-varying
documents in a fashion consistent and upwardly-
compatible with XML, XML Schema, and
conventional XML validators. In (Joshi, 2007), the
authors show that by utilizing schema-constant
periods and cross-wall validation, it is possible to
realize a comprehensive system for representing and
validating data- and schema-versioned XML
documents, while remaining fully compatible with
the XML standards.

Moreover, in order to minimize impact to
existing instance documents and applications as new
versions of XML Schema are created and to
facilitate system evolution, the authors of (Costello
& Utzinger, 2006) made eight recommendations
concerning design of XML Schema, instance
documents and applications. A description of use
cases where XML Schema are being versioned is
presented in (W3C, 2006b). These use cases
describe the desired behaviour from XML Schema
processors when they encounter the different
versions of schema and the instances defined by
them.

Finally, it is shown in (Wang & Zaniolo, 2005)
that XML views combined with XML query
languages (like XQuery) can provide surprisingly
effective solutions to the problem of representing
and querying both the evolution of database contents
and the evolution of database schema.

XML DBMS eXist

Schema Change
Processor

Multi-Schema
Temporal Query

Processor

Temporal
XML Query

XQuery

Query

Schema change
operation(s)

New XML
Schema
version

XML database (XML Document versions, Index,
XML Schema versions, etc.)

XML Data
Management Processor

XML Data
management
operation(s)

New XML document
or updated document

ICEIS 2008 - International Conference on Enterprise Information Systems

296

4 CONCLUSIONS

This paper presents a new approach for schema
versioning in multi-temporal XML databases.

This approach is based on XML Schema which
is a powerful XML schema language that overcomes
the limitations of DTDs (used in most works
concerning schema evolution or versioning).

Moreover, our approach treats XML Schema
changes as a versioning process instead of a simple
evolution. It also ensures the consistency of the
XML database since:

 when a new XML Schema version is defined,
it does not convert previous XML Schema
versions and does not revalidate previous
XML documents which are valid to their
XML Schema versions;

 XML document change operations do not
affect the corresponding XML Schema;

 after modification of an XML document, this
latter is still valid to its XML Schema.

The prototype implementation of the proposed
approach will serve as a testbed for experimental
evaluation.

Currently, we are working on XML data change
operations in a temporal multi-version environment
and on extensions needed by XQuery to support
temporal multi-schema queries.

REFERENCES

Allen, J.F., 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM, 26(11), p.832-
843.

Bertino, E., Guerrini, G., Mesiti, M. & Tosetto, L., 2002.
Evolving a Set of DTDs according to a Dynamic Set
of XML Documents. In EDBT Workshops 2002, 8th
International Conference on Extending Database
Technology 2002 Workshops. Springer.

Clifford, J., Croker, A., Grandi, F. & Tuzhilin, A., 1995.
On Temporal Grouping. In Temporal Databases 1995,
International Workshop on Temporal Databases 1995.
Springer.

Coox, S.V., 2003. Axiomatization of the Evolution of
XML Database Schema. Programming and Computer
Software, 29(3), p.1-7.

Costello, R. L. & Utzinger, M., 2006. Impact of XML
Schema Versioning on System Design.
www.xfront.com/SchemaVersioning.html

De Castro, C., Grandi, F. & Scalas, M.R., 1997. Schema
versioning for multitemporal relational databases.
Information Systems, 22(5), p.249-290.

Dyreson, C., Snodgrass, R. T., Currim, F., Currim, S. &
Joshi, S., 2006. Validating Quicksand: Schema

Versioning in τXSchema. In ICDE Workshops 2006,
22nd International Conference on Data Engineering
Workshops. IEEE Computer Society.

Galante, R.M., Dos Santos, C.S., Edelweiss, N. &
Moreira, A.F., 2005. Temporal and versioning model
for schema evolution in object-oriented databases.
Data and Knowledge Engineering, 53(2), p.99-128.

Guerrini, G., Mesiti, M. & Rossi, D., 2005. Impact of
XML Schema Evolution on Valid Documents. In
WIDM’05, 7th ACM International Workshop on Web
Information and Data Management. ACM.

Joshi, S., 2007. τXSchema - Support for Data- and
Schema-Versioned XML Documents. Technical
Report TR-89, TimeCenter. http://www.cs.auc.dk/
TimeCenter/

Kepser, S., 2004. A Simple Proof for the Turing-
Completeness of XSLT and XQuery. In EML2004,
Extreme Markup Languages 2004 Conference.
IDEAlliance.

Lee, D. & Chu, W.W., 2000. Comparative Analysis of Six
XML Schema Languages. ACM SIGMOD Record,
29(3), p.76-87.

Ozsu, M.T., Peters, R.J., Szafron, D., Irani, B., Lipka, A.
& Munõz, A., 1995. TIGUKAT: a uniform behavioral
objectbase management system. The VLDB Journal,
4(3), p.445-492.

Raghavachari, M. & Shmueli, O., 2004. Efficient
Schema-Based Revalidation of XML. In EDBT 2004,
9th International Conference on Extending Database
Technology. Springer.

Roddick, J., 1995. A survey of schema versioning issues
for database systems. Information and Software
Technology, 37(7), p.383-393.

Simanovsky, A., 2004. Evolution of Schema of XML-
documents Stored in a Relational Database. In
DB&IS’2004, 6th International Baltic Conference on
Database and Information Systems. Springer-Verlag.

Su, H., Kramer, D., Chen, L., Claypool, K. T. &
Rundensteiner, E. A., 2001. XEM: Managing the
evolution of XML documents. In RIDE-DM’01, 11th
International Workshop on Research Issues in Data
Engineering: Document Management for Data
Intensive Business and Scientific Applications. IEEE
Computer Society.

Wang, F. & Zaniolo, C., 2005. An XML-Based Approach
to Publishing and Querying the History of Databases.
World Wide Web, 8(3), p.233-259.

W3C, 2001. XML Schema Part 0: Primer. W3C
Recommendation. http://www.w3.org/TR/2001/REC-
xmlschema-0-20010502/

W3C, 2006a. Extensible Markup Language (XML) 1.0
(4th edition). W3C Recommendation.
http://www.w3.org/TR/2006/REC-xml-20060816.

W3C, 2006b. XML Schema Versioning Use Cases. W3C
Working Draft. http://www.w3.org/XML/2005/xsd-
versioning-use-cases/2006-01-31.html.

W3C, 2007. XQuery 1.0: An XML Query Language. W3C
Recommendation. http://www.w3.org/TR/2007/REC-
xquery-20070123/

AN APPROACH FOR SCHEMA VERSIONING IN MULTI-TEMPORAL XML DATABASES

297

