
COMPLEX EVENT PROCESSING
FOR SENSOR BASED DATA AUDITING

Christian Lettner, Christian Hawel, Thomas Steinmaurer and Dirk Draheim
Software Competence Center Hagenberg (SCCH), Softwarepark 21, A-4232 Hagenberg, Austria

Keywords: Business Processes, Complex Event Processing, Data Auditing, Multi-tier Architecture.

Abstract: Current legislation demands organizations to responsibly manage sensitive data. To achieve compliance,
data auditing must be implemented in information systems. In this paper we propose a data auditing
architecture that creates data audit reports out of simple audit events at the technical level. We use complex
event processing (CEP) technology to obtain composed audit events out of simple audit events. In two
scenarios we show how complex audit events can be built for business processes and application users,
when one database user is shared between many application users, as found in multi-tier architectures.

1 INTRODUCTION

1.1 Data Auditing and Regulatory
Compliance

Data auditing aims to capture the activities that are
performed on data (Natan, R., 2005). Data can be
accessed, inserted, modified or deleted. According to
the requirements, data auditing can be implemented
on different levels of granularity. For data stored in
database systems an approach found very often is to
store the old value of a data field that has been
modified. In addition, the timestamp and the user
who performed the modification are stored. Starting
from this simple approach, data auditing can be
extended to be able to provide a snapshot of the data
for an arbitrary time in the past. Additionally, all
activities performed on the data are captured and
stored. Such a complete audit trail can lead to
massive data volume which is very hard to handle.
Therefore, each data auditing solution poses a trade-
off between granularity of audit data and available
of storage. Data auditing includes also read-only
operations. This is of particular importance, because
not all commercial database systems provide built-in
solutions for that.
In recent years, data auditing has gained wide
attention as new legislation demands organization to
carefully manage their sensitive data (Johnson, C.,
Agrawal, R., 2006). In the US, the Sarbanes-Oxley
Act (SOX) of 2002 regulates the requirements for

corporate financial data. Senior executives have to
take individual responsibility for the accuracy and
completeness of corporate financial reports. The
health care system in the US is regulated by the
Health Insurance Portability and Accountability Act
(HIPAA) of 1996. In the EU, the European Union
Privacy Directive of 1998 regulates the management
of sensitive privacy data in general.
To ensure regulatory compliance, organizations
must run appropriate information systems. One core
requirement for these systems is data auditing. The
systems must be able to keep track of read-only and
modification operations to sensitive data. Also, these
activities must be assigned to unambiguous business
users in charge. Most organizations use multiple
information systems to perform their daily business.
It’s very likely that sensitive data is scattered across
different applications and databases. Isolated data
audits on single databases are not sufficient for
compliance. To get a complete picture of all
activities on sensitive data, an enterprise-wide data
auditing solution across data management systems is
mandatory.

1.2 Data Auditing Requirements

Several requirements on data auditing solutions can
be derived based on these regulatory frameworks:

 Enterprise-wide solution. Organizations use
many different applications to operate their
business. An enterprise-wide solution for data
auditing is needed to get a complete overview

485
Lettner C., Hawel C., Steinmaurer T. and Draheim D. (2008).
COMPLEX EVENT PROCESSING FOR SENSOR BASED DATA AUDITING.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 485-491
DOI: 10.5220/0001707004850491
Copyright c© SciTePress

of the activities performed on the data from
different applications and databases.

 Audit of data manipulation operations.
Especially for sensitive data, data audit
solutions must be able to keep track of any
data changes in a thorough change log.

 Audit of read-only operations. Another
common requirement is to provide an audit
trail of all business users who have accessed
certain data entities.

 Unambiguous application user identification.
For meaningful data audits, the application
user who performed an operation must be
identified unambiguously. This is especially
challenging for data audits performed within
the database management system, when
multiple application users share the same
database user.

 Audit of privileged user and separation of
duties. Privileged users are able to perform
more operations and may have different
access patterns on data entities than business
users, e.g. a system administrator is able to
connect to a database through a development
tool, actually bypassing the business
application used by business users and issue
ad hoc queries. The audit system must provide
a mechanism to audit such activities
performed by system administrators. Further,
the data audit system must not be run by the
system administrator, to achieve separation of
duties.

 Affected sensitive data entity. Some regulations
require it to identify the entities affected by
the activities performed on the data, e.g. the
customer, whose address has been updated
must be identified.

Other requirements basically stem from
organizational or technical needs:

 Platform independency. If an organization uses
different platforms for their applications, the
audit solution should be able to run on all of
them.

 Transparent to new application releases. New
application releases should not break the audit
solution. Only minor changes to the audit
solutions should be necessary.

 Audit at the level of business processes.
Significant data audit trails must be at the
business process level. The audit entry
‘Employee X has changed the address of
Customer Y’ is much more meaningful than a
series of Select and Update statements.

 No impact on application performance. The
influence on application performance should
be kept as low as possible.

 Tools to analyze and manage audit data. The
audit solution must provide appropriate tools
to analyze the audit data. If auditing is
performed at high granularity, tools that
manage the huge amount of audit data must be
provided as well.

 Selective data auditing. It should be possible to
enable/disable data audits on certain data
entities.

1.3 Complex Event Processing (CEP)

Compared to the every day usage of ‘event’ as
‘something that happens’, in CEP an event is an
object (Luckham, D., 2005). The event object
describes the activity and is possibly related to other
event objects. The three most common and
important relationships between events are:

 Time. Time is a relationship that orders events.
For example event A happened before event B.

 Cause. If event A had to happen in order for
event B to happen, then A caused B.

 Aggregation. If event A consists of events B1,
B2, B3, …, then A is an aggregation of all the
events Bi. Conversely, the events Bi, are
members of A. Aggregation is an abstraction
relationship.

Complex event processing employs techniques as
detection of complex event patterns for many
events, event correlation, event abstraction and
event hierarchies. Typical application domains of
CEP are financial trading systems where a lot of
events must be processed at very high speed.

1.4 Related Work

(Agrawal, R., Bayardo, R., Faloutsos, C., Kiernan,
J., Srikant, R., 2004) presents an auditing framework
for queries on sensitive data entities. The sensitive
data entities must be specified using audit
expressions. The queries and audit expressions are
combined and transformed to an audit query, which
will be executing against a backlog database
(represents the state of the database when the query
was executed). The audit query evaluates all data
rows processed by the original query and determines
whether the query has accessed sensitive data
specified by the audit expression. The advantage of
this approach is that queries are also audited if the
information disclosed by the query is not part of the
output. As the pool of suspicious queries identified
by the auditing framework can become very large, in

ICEIS 2008 - International Conference on Enterprise Information Systems

486

(Agrawal, R., Evfimievski, A., Velu, R., 2007) an
approach to rank suspicious queries is presented.
Three different measures are provided to measure
proximity there. (Motwani, R., Nabar, S., Thomas,
D.) extends this work and provides a formal
foundation to audit a batch of SQL queries.

(Chen, S., Jeng, J., Chang, H., 2006) uses CEP
for business performance management. The focus is
on an extension to the Zurich Correlation Engine to
allow structural events in XML format to be
processed as well. (Lee, W., Fan, W., 2001) employs
data mining algorithms for intrusion detection
systems. Data mining is used to react to different
attack patterns. For data auditing, the access pattern
is always the same, thus eliminating the need for
data mining algorithms.

The proposed data auditing architecture in this
paper is also suitable for the business activity
monitoring approach presented in (Mangisengi, O.,
Pichler, M., Auer, D., Draheim, D., Rumetshofer,
H., 2007).

The remainder of this paper is organized as
follows: Section 2 proposes an architecture for an
enterprise-wide audit solution. It presents a
categorization of locations – so called audit hotspots
– where audits can be performed. A technical
introduction to auditing based on complex event
processing based on a simple example is provided in
Section 3. Section 4 describes two audit scenarios
for the proposed auditing architecture. Finally, a
conclusion and future work are presented in
Section 5.

2 DATA AUDITING
ARCHITECTURE

We use a sensor based data auditing architecture.
Sensors are lightweight agents whose task is to listen
on simple audit events, for example a query sent to a
database management system. The sensors are
scattered across the enterprise and communicate
detected audit events to one central audit event
processing system. After the events are processed,
the audit trail is forwarded to the central reporting
system.
Usually, it is very likely that different applications to
be audited require different types of sensors. For
example you could think of a sensor for the file
server to get access information to files that contain
sensitive information. We call the location at which,
a sensor is installed an audit hotspot. Figure 1 shows
a categorization of possible audit hotspots for an
information system that implements a three-tier
architecture:

 Audit hotspot 1. Auditing is implemented
within the client application. This is the only
approach where the data can be audited that
actually has been seen by the user, e.g., in a
GUI driven application an audit event is only
created when the user actually switches to the
area containing sensitive information. The
main disadvantage of this approach is that it
requires to be implemented for each client
application type, so it is not a generic solution.

 Audit hotspot 1. Auditing is implemented
within the client application. This is the only
approach where the data can be audited that
actually has been seen by the user, e.g., in a
GUI driven application an audit event is only
created when the user actually switches to the
area containing sensitive information. The
main disadvantage of this approach is that it
requires to be implemented for each client
application type, so it is not a generic solution.

 Audit hotspot 2a. Traffic between the client and
the server is scanned at the network level. This
generic solution provides an audit solution for
all client applications communicating to the
application server. It is non-intrusive, which
means, there is no influence on application
performance. The challenge in this approach
comes with the analysis and interpretation of
the audit data. Direct access to data, bypassing
the application, will not be audited (for
example: privileged users that use a
development tool).

 Audit hotspot 2b. Communication between the
client and the server is intercepted by the
sensor that is implemented as a proxy
application. This approach is similar to the
previous one, except that the whole client
server communication runs through the
sensor. This allows the sensor to react on
malicious activities on data. It is much like a
data firewall for intrusion detection systems
and is able to enforce privacy policies.

 Audit hotspot 3a. Auditing is implemented
within the application server. Built-in features
of the application server are used. This
approach represents a generic solution for all
client applications using the application
server. On the other side, generic built-in
auditing features of the application server may
not provide the required audit granularity.
 Audit hotspot 3b. Services are extended to

perform the audit. This intrusive approach
requires that all services have the auditing

COMPLEX EVENT PROCESSING FOR SENSOR BASED DATA AUDITING

487

Figure 1: Audit-hotspot in a three-tier architecture.

functionality implemented. On the other side,
all data sent to and from the client is available.

 Audit hotspot 3c. Communication between the
server and the database is scanned at the
network level. This approach is very similar to
audit hotspot 2a which scans the
communication between the client and the
application server. The difference is in the
recorded audit event types. In this approach,
only the SQL statements issued by the
application server are audited. This makes it
even more difficult to interpret and analyze
the detected audit event. We utilize complex
event processing technology to perform this
task. A disadvantage of this approach is that
data cached by the application server that is
sent to the client will not be audited. On the
other hand, this approach is also non-intrusive
and provides a generic solution. It even audits
activities on data that bypasses the application
server. If there is the requirement to audit
privileged users that use development tools
and are able to issue ad hoc queries, then

performing auditing at this audit hotspot is one
way.

 Audit hotspot 4. Auditing is implemented
within the database management system. This
approach provides similar audit information as
audit hotspot 3c. Built-in database features can
be used to setup and maintain an audit
mechanism, with low additional costs. On the
other hand, it is an intrusive approach and
influences application performance at the
server. To implement audits of read-only
operations, this feature must be explicitly
supported by the database management
system.

Choosing the appropriate audit hotspot in a given
scenario mainly depends on the audit information
available at a particular audit hotspot. Sometimes it
is reasonable to extend the application in a way, to
make the required information available, e.g., in a
connection pooling environment, the data access
layer could be enriched with application user
information). Often, a combination of audit hotspots
will be necessary to leverage an enterprise-wide

ICEIS 2008 - International Conference on Enterprise Information Systems

488

auditing solution.
In our architecture, data audit events created at the
audit hotspots are communicated to one central
event processing system. The event processing
system must be able to detect patterns within the
audit event stream. The next section shows a simple
example on how this can be accomplished using
complex event processing technology. Then, the
results from the event processing system are stored
in a data warehouse for further analysis.

3 SIMPLE EXAMPLE FOR DATA
AUDITING USING CEP

In this section we present a simple example how
complex event processing can be used for data
auditing. Based on a sensor that scans the
communication between the application and
database server (audit hotspot 3c), simple Select and
Update statements are audited. Using complex event
processing, a change log for the attribute holiday of
the table emp will be generated. Every time the
attribute holiday of an employee is changed, a single
complex audit event will be generated. Figure 2
shows how the events are processed.
The first statement executes a Select on table emp
for the employee ‘Smith’. The tuple (12, Smith, 25)
will be returned. Two statements later, an Update on
the attribute holiday is performed for the same
employee (id = 12). All the statements make use of
parameterized queries. Due to the fact that this two
statements happen within a defined time span (here
at most 2 seconds), the statements will be correlated
by the event engine, which generates a new complex

event for the change. The change event is composed
of the attributes time, employee name, old/new value
of attribute holiday, where:

 the time equals the execution time of the
Update statement,

 the employee name and the old value of holiday
are received from the result tuple of the Select
statement, and

 the new value of holiday is received from the
Update statement.

The example has been implemented for an Oracle 9i
database using Esper (Esper, 2007) as the event
processing engine. A network based SQL sensor
(audit hotspot 3c) monitors the SQL statements
which are sent to the database server and forwards
them to the central event processing engine. The
sensor is able to decode the TNS protocol used by
Oracle clients to communicate with the database
server. The connection information, SQL statements,
bind variables and result sets are extracted by the
sensor. The event engine then correlates the
incoming events and displays the detected change
events. The correlation algorithm must be specified
using EQL (Event Query Language) in Esper. Figure
3 shows the used EQL statement.

insert into SEL(emp_id, emp_name,
emp_holiday)

select
 rsRow[0].col[0] as emp_id,
 rsRow[0].col[1] as emp_name,
 rsRow[0].col[2] as emp_holiday
from SqlNetworkSensorEvent
where sqlType = 'SELECT'
 and isObjectUsed('EMP')

insert into UPD(new_holiday, emp_id,

transactionTime)

Figure 2: Event processing for change log.

COMPLEX EVENT PROCESSING FOR SENSOR BASED DATA AUDITING

489

select
 bindvariable[0] as new_holiday,
 bindvariable[1] as emp_id,
 transactionTime
from SqlNetworkSensorEvent
where sqlType = 'UPDATE'
 and isObjectUsed('EMP')

select
 B.transactionTime,
 A.emp_name
 ||': Holiday changed from '
 || A.emp_holiday
 ||' to '
 ||B.new_holiday
 ||' days.'
from pattern [
 every A=SEL -> B=UPD
 (A.emp_id = B.emp_id)
 where timer:within(2 sec)
]

Figure 3: EQL for change history log.

As the SQL statements processed by the event
engine must comply with some conventions (for
example, the Select clause must start with the
attributes id, name and holiday of the table emp),
this solution is most effective if the change is
performed through an application, which always
uses the same fragments of SQL statements.
Changes initiated via ad hoc queries, will probably
not be detected with this approach. But in this case it
is straight forward to generate an alert event that
notifies the data auditing officer that such an action
has been performed. The generated change events
can be seen in Figure 4.

4 DATA AUDIT SCENARIOS
USING CEP

In this section, two scenarios are presented how the
introduced auditing solution can be used in business
applications.

4.1 Business Process Recognition

The sensor introduced in Section 3 (audit hotspot 3c)
scans the communication between the application
server and the database. All SQL statements sent to
the database are audited. Very often, business
functions can cause a flood of SQL statements to be
sent to the database server. In general, these SQL
statements are meaningless to data audit officers. It
is desirable to map the flood of SQL statements to a
few meaningful business functions understood by all
groups of users.
Using an auditing solution with CEP, business
processes can be derived out of the meaningless
sequence of audited SQL statements. The event
engine is able to detect a pattern of SQL statements
that are unique for certain business processes.
Extending the event engine by new patterns of SQL
statements is required to detect new business
processes.

4.2 Application User Identification

In multi-tier architectures, application users
authentificate them self against the application
server and not against the database management
system. Different client transactions use the same
database user or connection. The latter is called
connection pooling. As a consequence, if the
communication between the application and the
database server is audited, the application user is not
available to the auditing solution. But unambiguous
application user identification is a core requirement
in many regulations.
Figure 5 shows an example architecture of such a
system. Clients logon to the application server with
the application user. Every time the client performs a
business task, the required authorization is verified
to a central security database. If the verification
succeeds, the client is allowed to perform its
business tasks. SQL statements forming a business
task are sent to the business database using the same
connection.

Figure 4: GUI for change event log.

ICEIS 2008 - International Conference on Enterprise Information Systems

490

Figure 5: Connection pooling in a multi-tier environment.

To find the application user for a particular business
process, security and business requests to the
respective databases must be correlated. If there is
currently only one application user authorized to
perform a certain business task, the application user
can be uniquely assigned to this task. If there are
more application users authorized for the same task
at the same time, at least a pool of candidate
application users for this business task can be
identified. Of course, this approach is only feasible
if the pool of candidates is not getting too big for a
certain application. On the other hand it is a non-
intrusive approach to get application users in charge.

5 CONCLUSION AND FUTURE
WORK

Complex event processing technology is used to
support data auditing. In addition, a categorization of
audit hotspots is presented. Beside custom
applications, we will evaluate our approach on
systems running SAP or Oracle Applications as
well. Other interesting application areas beside data
auditing in this context are: data firewalls,
measuring quality of service and business process
reengineering. Especially, we believe that the area of
business process reengineering enables further
opportunities for very interesting research.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge by the Austrian
government, the state of Upper Austria, and the
Johannes Kepler University Linz in the framework
of the Kplus Competence Center Program.

REFERENCES

Agrawal, R., Bayardo, R., Faloutsos, C., Kiernan, J.,
Srikant, R., 2004. Auditing Compliance with a
Hippocratic Database, in Proceedings of the 20th
VLDB Conference, Toronto, Canada.

Agrawal, R., Evfimievski, A., Velu, R., 2007. Auditing
Disclosure by Relevance Ranking, SIGMOD’07, June
12-14, 2007, Beijing, China.

Chen, S., Jeng, J., Chang, H., 2006. Complex Event
Processing using Simple Rule-based Event
Correlation Engines for Business Performance
Management, in Proceedings of the 8th IEEE
International Conference on E-Commerce Technology
and the 3rd IEEE International Conference on
Enterprise Computing, E-Commerce, and E-Services
(CEC/EEE’06), San Francisco, CA, USA.

Esper, 2007. http://esper.codehaus.org/index.html.
Johnson, C., Agrawal, R., 2006. Intersections of Law and

Technology in Balancing Privacy Rights with Free
Information Flow, 4th IASTED International
Conference on Law and Technology, Oct. 2006,
Cambridge, MA, USA.

Lee, W., Fan, W., 2001. Mining System Audit Data:
Opportunities and Challenges, in SIGMOD Record,
Vol. 30, No. 4.

Luckham, D., 2005. The Power of Events, Addison-
Wesley, Boston.

Mangisengi, O., Pichler, M., Auer, D., Draheim, D.,
Rumetshofer, H., 2007. Active warehouse: data
management for business activity monitoring, in
Proceedings of the 9th International conference on
Enterprise Information Systems (ICEIS 2007),
Funchal, Madeira, Portugal.

Motwani, R., Nabar, S., Thomas, D., 2007. Auditing a
Batch of SQL Queries, in Proceedings of the 21th
International Conference on Data Engineering (ICDE),
Istanbul, Turkey.

Natan, R., 2005. Implementing Database Security and
Auditing, Elsevier Digital Press, Burlington, MA,
USA.

COMPLEX EVENT PROCESSING FOR SENSOR BASED DATA AUDITING

491

