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Abstract: Recommender systems produce personalized product recommendations during a live customer interaction, 
and they have achieved widespread success in e-commerce nowadays. For many recommender systems, 
especially the collaborative filtering based ones, neighbourhood formation is an essential algorithm 
component. Because in order for collaborative-filtering based recommender to make a recommendation, it is 
required to form a set of users sharing similar interests to the target user. “Best-k-neighbours” is a popular 
neighbourhood formation technique commonly used by recommender systems, however as tremendous 
growth of customers and products in recent years, the computation efficiency become one of the key 
challenges for recommender systems. Forming neighbourhood by going through all neighbours in the 
dataset is not desirable for large datasets containing million items and users. In this paper, we presented a 
novel neighbourhood estimation method which is both memory and computation efficient. Moreover, the 
proposed technique also leverages the common “fixed-n-neighbours” problem for standard “best-k-
neighbours” techniques, therefore allows better recommendation quality for recommenders. We combined 
the proposed technique with a taxonomy-driven product recommender, and in our experiment, both time 
efficiency and recommendation quality of the recommender are improved. 

1 INTRODUCTION 

Recommender systems are designed to benefit 
humans’ information extracting experiences by 
giving information recommendations according to 
their information needs. User based collaborative 
filtering is the most fundamental and widely applied 
recommendation technique(Schafer et al., 2000), it 
generates recommendations based on finding items 
that are commonly preferred by the neighbourhoods 
of the target users. Specifically, a target user’s 
neighbourhood is a set of users sharing similar 
preferences to the target user(Awerbuch et al., 
2005). Neighbourhood formation in collaborative 
filtering techniques requires comparing the target 
users’ preferences to the preferences of all users in 
the dataset, and such preference comparison process 
can become a major computation efficiency 
bottleneck for recommenders. For large datasets, 
neighbourhood formation process requires a large 
amount of I/O to retrieve user profiles, and each user 
profile may be represented by a very high dimension 
vector, hence the similarity computation between the 
vectors can be very expensive. 

Our main contribution in this paper is a novel 
neighbourhood estimation method called “relative 
distance filtering” (RDF), it is based on pre-
computing a small set of relative distances between 
users, and using the pre-computed distances to 
eliminate most unnecessary similarity comparisons 
between users. The proposed RDF method is also 
capable of dynamic handling frequent data update; 
whenever the user preferences in the dataset are 
added, deleted or modified, the pre-computed 
structure cache can also be efficiently updated.  

Part of our research is to develop a novel 
collaborative filtering based recommender that 
utilizes the item taxonomy information for its user 
preference representation. Our work is based on a 
well-known taxonomy recommender, namely 
taxonomy product recommender (TPR), proposed by 
Ziegler (Ziegler et al., 2004) which utilizes the 
taxonomy information of the products to solve the 
data sparsity and cold-start problems. TPR 
outperforms standard collaborative filtering systems 
with respect to the recommendation accuracy when 
producing recommendations for sites with data 
sparsity. However, the time efficiency of TPR drops 
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significantly when dealing with huge number of 
users, because the user preferences in TPR are 
represented by high dimensional vectors.  We 
applied the proposed RDF technique to the TPR and 
the experiment results show that by utilizing the 
proposed technique, both the accuracy and 
efficiency of TPR are significantly improved. 

2 RELATED WORK 

Neighbourhood formation is a process required by 
most collaborative filtering based recommenders to 
find users with similar interests to the target user. 
Sarwar (Sarwar et al., 2002) proposed an efficient 
neighbourhood selection method by pre-computing 
users into clusters. However, clustering is an 
expensive process and can only be done offline. 
Datasets keep changing over time. Therefore the 
overall quality of the result neighbourhood based on 
existing clusters will degrade until the next 
clustering update. Moreover, clustering based 
neighbourhood selection favours target users nearby 
cluster centres, and for other users located at 
surrounding cluster edges the quality of their result 
neighbourhoods are usually poor because their 
actual neighbours are very likely in other clusters 
(Sarwar et al., 2002). There are also several 
neighbourhood formation algorithms developed 
specifically for high dimensional data, such as 
RTree (Manolopoulos et al., 2005), kd-Tree 
(Bentley, 1990), etc. The basic idea behind these 
algorithms is to index these high dimensional data 
into a search tree structure, and within each level, 
the children nodes subdivides the cluster their parent 
node holds into finer clusters and each tree node 
holds one of the cluster spaces. The search 
efficiency of these algorithms is very impressive, 
because the search space are quadratically reduced 
in each tree level (i.e. O(logN)). However, they 
suffer from similar problems to cluster based 
neighbourhood search, which is “loss of precision”. 
In fact, these algorithms usually produce worse 
result than clustering based method. Moreover, 
because the internal tree structures for indexing the 
data are fairly complex, therefore these algorithms 
are usually memory intensive and slow in 
initialization. The proposed RDF technique is not as 
good as these tree-structure based methods in terms 
of computation efficiency, however it is still more 
efficient than cluster based search method. In terms 
of accuracy, the proposed method produces much 
better result than these tree-structure based methods 
because it does not constrain neighbourhood search 

within local clusters. The internal structure of the 
proposed RDF technique can be updated 
dynamically in real time and requires only very 
small amount of physical memory. 

3 TAXONOMY PRODUCT 
RECOMMENDER 

An overview of taxonomy-driven product 
recommender (TPR) proposed by Ziegler (Ziegler et 
al., 2005, Ziegler et al., 2004) is given in this 
section.   

3.1 Item Taxonomy Model 

We envision a world with a finite set of users 
ܷ ൌ ሼݑଵ, ,ଶݑ … , ௡ሽݑ  and a finite set of items 
ܶ ൌ ሼݐଵ, ,ଶݐ … , ௜ݑ ௠ሽ. For each userݐ א ܷ, he or she 
is associated with a set of corresponding implicit 
ratings ܴ௜ , whereܴ௜ ك ܶ. Unlike explicit ratings in 
which users are asked to supply their perceptions to 
items explicitly in a numeric scale, implicit ratings 
such as transaction histories, browsing histories, etc., 
are more common and obtainable for e-commerce 
sites and communities.  

In standard collaborative filtering 
recommenders, user profiles are represented by ݉-
dimensional vectors, where ݉ ൌ |ܶ|  and each 
dimension represents an explicit item rating. 
However, for many systems, ݉  can be very large 
and the number of ratings made by each user can be 
very small. This problem is often addressed as cold 
start problem or data sparsity problem. 

Data sparsity problem is relieved with TPR, 
because instead of using the product-rating vectors 
with |ܶ| dimensionalities as user profiles, TPR uses 
taxonomy vectors with ݇ dimensionalities, where ݇ 
is the number of topics in the product taxonomy 
space. Specifically, we denote the taxonomy vector 
for ݑ௜ as vሬԦ୧ ൌ ሺv୧ଵ, v୧ଶ, … , v୧୩ሻ, and each dimension of 
vሬԦ୧  indicates the degree of ݑ௜ ’s interest to the 
corresponding topic. The taxonomy vector in TPR 
has three advantages over standard product rating 
vector. Firstly, for most e-commerce sites ݇ is much 
smaller than |ܶ| , and therefore it can yield better 
computational performances. Secondly, because the 
taxonomy vector records the user taxonomy 
preferences instead of item preference, and different 
items can share their descriptors entirely or partially, 
thus, even for users with no common item interests, 
their profiles can still be correlated. Thirdly, the 
construction of the taxonomy vector can be done 
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with only implicit ratings, and therefore it 
effectively solved the data sparsity problem. 

3.2 Recommendation Generation 

In this paper, the distances between user taxonomy 
vectors are computed by Euclidean distance, 
specifically: 

,௜ݑ൫ݐݏ݅݀ ௝൯ݑ ൌ ට∑ ൫ݒ௜௞ െ ௝௞൯ݒ
ଶ|஼|

௞ୀ଴      (1) 
Based on the distance measure, target user u୧ ‘s 

neighbourhood cliqueሺu୧ሻ  can be formed by 
selecting n  users from u୨ א U\ሼu୧ሽ  with shortest 
distances to u୧ . By extracting the items implicitly 
rated by the neighbourhood, a candidate item list is 
formed for u୧ ’s personalized recommendation list, 
formally: 

௜ܤ  ൌ ሼڂ ௝ܴ|ݑ௝ א ௜ሻሽݑሺ݁ݑݍ݈݅ܿ \ܴ௜    (2) 
The items in the candidate list B୧  need to be 

ranked according to their closeness to the target 
user’s personal interest. The ranking equation to 
weight u୧ ’s possible interest towards t୩ ’s shown 
below:  

௞ሻݐ௜ሺݓ ൌ െ1 ൈ ሺ
ௗ௜௦௧ሺ௨೔,௨ሺ௧ೖሻሻൈ∑ ௗ௜௦௧൫௨೔,௨ೕ൯ೠೕאಲ೔൫೟ೖ൯

|஺೔ሺ௧ೖሻ|
ሻ (3) 

,where A୧ሺt୩ሻ ൌ ሼu୨ א cliqueሺu୧ሻ|t୩ א R୨ሽ.  
In equation (3), the computed score is negated 

because the proximity measure is distance based (i.e. 
small value indicates strong similarity), thus, by 
negating the result score we allow larger weight 
values of w୧ሺt୩ሻ indicating higher item interests. 

uሺt୩ሻ creates a dummy user for item t୩, so the 
proximity of the taxonomy vectors between u୧  and 
t୩ can be measured. The conversion process simply 
creates a user u஘ with R஘ ൌ ሼt୩ሽ.  

Finally, after the candidate item weights are 
computed, the top m  items with highest weight 
values are recommended to the target user. 

4 PROPOSED APPROACH 

In this paper, we identified two aspects in TPR that 
can be improved.  

Firstly, even though the product rating vectors 
are compressed into taxonomy vectors with smaller 
numbers of dimensionalities, however, for datasets 
with a large amount of users and extensive 
taxonomy structures, the neighbourhood formation 
will become one of the computation efficiency 
bottlenecks in TPR, because it requires an extensive 
amount of I/O to retrieve user profiles (i.e. 

taxonomy vectors) from the database, and the 
proximity computation (i.e. equation (1)) for high 
dimensional vectors is expensive as well. 

Next, in Ziegler’s TPR implementation (Ziegler 
et al., 2004), the “best-n-neighbours” is applied as 
the neighbourhood selection method since “best-n-
neighbours” performs better than “correlation-
threshold” for sparse dataset (Ziegler et al., 2004).  
However, because the value of ݊ is pre-specified in 
“best-n-neighbours”, it means that the resulting 
neighbourhoods will be biased for users with true 
neighbours of less than ݊ (Li et al., 2003). This issue 
is particularly sensible for users with unusual tastes, 
as it is likely that a portion of their neighbourhoods 
formed by “best-n-neighbours” might contain 
neighbours that are dissimilar to them. For example, 
if a user has distinct tastes, then he or she might only 
share similar tastes with only 2 other users, the 
recommendation result for this user might be biased 
if a neighbourhood with 20 users are used. 

In this paper, we propose a novel neighbourhood 
estimation method which is both memory and 
computation efficient.  By substituting the proposed 
technique with the standard “best-n-neighbours” in 
TPR, the following two improvements are achieved: 

 The computation efficiency of TPR is greatly 
improved. 

 The recommendation quality of TPR is also 
improved as the impact of the “fixed ݊ 
neighbours” problem has been reduced. That is, 
the proposed technique can help TPR locate the 
true neighbours for a given target user (the 
number of true neighbours might be smaller than 
݊), therefore the recommendation quality can be 
improved as only these truly closed neighbours 
of the target user can be included into the 
computation.  

4.1 Relative Distance Filtering 

Forming neighbourhood for a given user ݑ௜ א ܷ 
with standard “best-n-neighbours” technique 
involves computing the distances between ݑ௜ and all 
other users and selecting the top ݊ neighbours with 
shortest distances to ݑ௜ . However, unless the 
distances between all users can be pre-computed 
offline or the number of users in the dataset is small, 
forming neighbourhood dynamically can be an 
expensive operation. 

Clearly, for the standard neighbourhood 
formation technique described above, there is a 
significant amount of overhead in computing 
distances for users that are obviously far away (i.e., 
dissimilar users). The performance of the 
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Given that the RDF searching cache is properly 
initialized, the detailed RDF procedure is described 
below: 

RDF Algorithm 

1) Let ݑ௜ be the target user, n be the pre-specified 
number of neighbours for ݑ௜. 

2) Use the indexed tree structure to locate the 
minimal user nodes set within the given 
boundary:  

௜ߦ  ൌ ሼߟ௝|ݑ௝ א ܷ, ሺݔҧ௜ െ ሻߴ ൏ ௝௫ߣ ൏ ሺݔҧ௜ ൅  ሻሽߴ

where ݑ௫ א ሼݑ௔, ,௕ݑ ௖ሽݑ  which achieves 
minimal search space. Note, the actual 
implementation of ݑ௫ ’s computation can be 
very efficient. By utilizing the pre-computed 
searching cache, the estimation of user nodes 
size does not involve looping through the user 
nodes one by one. 

3) Based on step 2, ݑ௫  is the primary index key 
used to sort and retrieve ߦ௜, and it is one of ݑ௔, 
௕ݑ andݑ௖ . The rest two index keys (also in ሼݑ௔, ,௕ݑ  .௭ݑ ௬ andݑ ௖ሽ) are denoted asݑ

4) We refine the searching space ߦ௜  by using 
reference users ݑ௬  and ݑ௭ . This process is 
similar to finding the intersected space 
ܷఏ௔ܷځఏ௕ܷځఏ௖ as described in section 4.2 

FOR ߟ௫ א ௜ߦ  DO 
IF ߣ௫

௬ ൏ ሺݕത௜ െ ௫ߣ ሻ orߴ
௬ ൐ ሺݕത௜ ൅  ሻ orߴ

௫௭ߣ     ൏ ሺݖҧ௜ െ ௫௭ߣ ሻ orߴ ൐ ሺݖҧ௜ ൅  ሻߴ
                  THEN   

remove  ߟ௫ from ߦ௜ 
                  END IF  
      END FOR 

5) Do the standard “best- n -neighbours” search 
against the estimated searching space ߦ௜ , and 
return the result neighbourhood for ݑ௜. 

5 EXPERIMENTS 

This section presents empirical results obtained from 
our experiment.  

5.1 Experiment Setup 

The dataset used in this experiment is the “Book-
Crossing” dataset (http://www.informatik.uni-
freiburg.de/~cziegler/BX/), which contains 278,858 
users providing 1,149,780 ratings about 271,379 
books. Because the TPR uses only implicit user 
ratings, therefore we further removed all explicit 

user ratings from the dataset and kept the remaining 
716,109 implicit ratings for the experiment.  

The goal of our experiment in this paper is to 
compare the recommendation performance and 
computation efficiency between standard TPR 
(Ziegler et al., 2004)  and the RDF-based TPR 
proposed in this paper. 

The k-folding technique is applied (where k is 
set to 5 in our setting) for the recommendation 
performance evaluation. With k -folding, every 
user  u୨ ’s implicit rating list  R୨  is divided into 5 
equal size portions. With these portions, one of them 
is selected as  u୨ ’s training set ௝ܴ

௫ , and the rest 4 
portions are combined into a test set ௝ܶ

௫ ൌ ௝ܴ\ ௝ܴ
௫ . 

Totally we have five combinations ሺ ௝ܴ
௫, ௝ܶ

௫ሻ , 
1 ൑ ݔ ൑ 5  for user  ݑ௝ . In the experiment, the 
recommenders will use the training set ௝ܴ

௫  to 
learn ݑ௝’s interest, and the recommendation list ௝ܲ

௫ 
generated for  ݑ௝ will then be evaluated according to 
௝ܶ
௫ . Moreover, the size for the neighbourhood 

formation is set to 20  and the number of items 
within each recommendation list is set to 20 too.  

For the computation efficiency evaluation, we 
implemented four different versions of TPRs, each 
of them is equipped with different neighbourhood 
formation algorithms. The four TPR versions are: 

 Standard TPR: the neighbourhood formation 
method is based on comparing the target user to 
all users in the dataset.   

 RDF based TPR:  the proposed RDF method is 
used to find the neighbourhood.  

 RTree based TPR: the RTree (Manolopoulos et 
al., 2005) is used to find the neighbourhood. 
RTree is a tree structure based neighbourhood 
formation method, and it has been widely applied 
in many applications.      

 Random TPR: this TPR forms its 
neighbourhood with randomly chosen users. It is 
used as the baseline for the recommendation 
quality evaluation. 
The average time required by standard, RTree 

based and the RDF based TPRs to make a 
recommendation will be compared. We 
incrementally increase the number of users in the 
dataset (from 1000, 2000, 3000 until 14000), and 
observe how the computation times are affected by 
the increments.  

In this paper, the precision and recall metric is 
used for the evaluation of TPR, and its formulas are 
listed below: 

ܴ݈݈݁ܿܽ ൌ 100 ൈ ሺ| ௝ܶ
௫ ת ௝ܲ

௫|/| ௝ܶ
௫|ሻ        (5) 

݊݋݅ݏ݅ܿ݁ݎܲ ൌ 100 ൈ ሺ| ௝ܶ
௫ ת ௝ܲ

௫|/| ௝ܲ
௫|ሻ     (6) 
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formation methods that use offline computed 
clusters as the neighbourhoods. Instead, our method 
forms neighbourhood for any given target users 
dynamically from scratch (thus is more accurate than 
cluster based approaches) in an efficient manner. In 
our experiment, it is shown that the proposed 
method improves both recommendation quality and 
computation efficiency for the standard TPR 
recommender.  
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