EFFICIENT NEIGHBOURHOOD ESTIMATION FOR

RECOMMENDATION MAKING

Li-Tung Weng, Yue Xu, Yuefeng Li and Richi Nayak

Faculty of Information Technology, Queensland University of Technology, 4001 Queensland, Australia

Keywords:

Abstract:

Recommender System, Neighbourhood Formation, Taxonomic Information.

Recommender systems produce personalized product recommendations during a live customer interaction,
and they have achieved widespread success in e-commerce nowadays. For many recommender systems,
especially the collaborative filtering based ones, neighbourhood formation is an essential algorithm
component. Because in order for collaborative-filtering based recommender to make a recommendation, it is
required to form a set of users sharing similar interests to the target user. “Best-k-neighbours” is a popular
neighbourhood formation technique commonly used by recommender systems, however as tremendous
growth of customers and products in recent years, the computation efficiency become one of the key
challenges for recommender systems. Forming neighbourhood by going through all neighbours in the
dataset is not desirable for large datasets containing million items and users. In this paper, we presented a
novel neighbourhood estimation method which is both memory and computation efficient. Moreover, the
proposed technique also leverages the common “fixed-n-neighbours” problem for standard ‘“best-k-
neighbours” techniques, therefore allows better recommendation quality for recommenders. We combined
the proposed technique with a taxonomy-driven product recommender, and in our experiment, both time

efficiency and recommendation quality of the recommender are improved.

1 INTRODUCTION

Recommender systems are designed to benefit
humans’ information extracting experiences by
giving information recommendations according to
their information needs. User based collaborative
filtering is the most fundamental and widely applied
recommendation technique(Schafer et al., 2000), it
generates recommendations based on finding items
that are commonly preferred by the neighbourhoods
of the target users. Specifically, a target user’s
neighbourhood is a set of users sharing similar
preferences to the target user(Awerbuch et al.,
2005). Neighbourhood formation in collaborative
filtering techniques requires comparing the target
users’ preferences to the preferences of all users in
the dataset, and such preference comparison process
can become a major computation efficiency
bottleneck for recommenders. For large datasets,
neighbourhood formation process requires a large
amount of I/O to retrieve user profiles, and each user
profile may be represented by a very high dimension
vector, hence the similarity computation between the
vectors can be very expensive.

12

Weng L., Xu Y., Li Y. and Nayak R. (2008).

Our main contribution in this paper is a novel
neighbourhood estimation method called “relative
distance filtering” (RDF), it is based on pre-
computing a small set of relative distances between
users, and using the pre-computed distances to
eliminate most unnecessary similarity comparisons
between users. The proposed RDF method is also
capable of dynamic handling frequent data update;
whenever the user preferences in the dataset are
added, deleted or modified, the pre-computed
structure cache can also be efficiently updated.

Part of our research is to develop a novel
collaborative filtering based recommender that
utilizes the item taxonomy information for its user
preference representation. Our work is based on a
well-known taxonomy recommender, namely
taxonomy product recommender (TPR), proposed by
Ziegler (Ziegler et al., 2004) which utilizes the
taxonomy information of the products to solve the
data sparsity and cold-start problems. TPR
outperforms standard collaborative filtering systems
with respect to the recommendation accuracy when
producing recommendations for sites with data
sparsity. However, the time efficiency of TPR drops

EFFICIENT NEIGHBOURHOOD ESTIMATION FOR RECOMMENDATION MAKING.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - SAIC, pages 12-19

DOI: 10.5220/0001695000120019
Copyright © SciTePress

EFFICIENT NEIGHBOURHOOD ESTIMATION FOR RECOMMENDATION MAKING

significantly when dealing with huge number of
users, because the user preferences in TPR are
represented by high dimensional vectors. We
applied the proposed RDF technique to the TPR and
the experiment results show that by utilizing the
proposed technique, both the accuracy and
efficiency of TPR are significantly improved.

2 RELATED WORK

Neighbourhood formation is a process required by
most collaborative filtering based recommenders to
find users with similar interests to the target user.
Sarwar (Sarwar et al., 2002) proposed an efficient
neighbourhood selection method by pre-computing
users into clusters. However, clustering is an
expensive process and can only be done offline.
Datasets keep changing over time. Therefore the
overall quality of the result neighbourhood based on
existing clusters will degrade until the next
clustering update. Moreover, clustering based
neighbourhood selection favours target users nearby
cluster centres, and for other users located at
surrounding cluster edges the quality of their result
neighbourhoods are usually poor because their
actual neighbours are very likely in other clusters
(Sarwar et al., 2002). There are also several
neighbourhood formation algorithms developed
specifically for high dimensional data, such as
RTree (Manolopoulos et al., 2005), kd-Tree
(Bentley, 1990), etc. The basic idea behind these
algorithms is to index these high dimensional data
into a search tree structure, and within each level,
the children nodes subdivides the cluster their parent
node holds into finer clusters and each tree node
holds one of the cluster spaces. The search
efficiency of these algorithms is very impressive,
because the search space are quadratically reduced
in each tree level (i.e. O(logN)). However, they
suffer from similar problems to cluster based
neighbourhood search, which is “loss of precision”.
In fact, these algorithms usually produce worse
result than clustering based method. Moreover,
because the internal tree structures for indexing the
data are fairly complex, therefore these algorithms
are usually memory intensive and slow in
initialization. The proposed RDF technique is not as
good as these tree-structure based methods in terms
of computation efficiency, however it is still more
efficient than cluster based search method. In terms
of accuracy, the proposed method produces much
better result than these tree-structure based methods
because it does not constrain neighbourhood search

within local clusters. The internal structure of the
proposed RDF technique can be updated
dynamically in real time and requires only very
small amount of physical memory.

3 TAXONOMY PRODUCT
RECOMMENDER

An overview of taxonomy-driven product
recommender (TPR) proposed by Ziegler (Ziegler et
al., 2005, Ziegler et al., 2004) is given in this
section.

3.1 Item Taxonomy Model

We envision a world with a finite set of users
U={u,uy, ..,u,} and a finite set of items
T ={ty,t,, ..., t,}. For each user u; € U, he or she
is associated with a set of corresponding implicit
ratings R;, whereR; € T. Unlike explicit ratings in
which users are asked to supply their perceptions to
items explicitly in a numeric scale, implicit ratings
such as transaction histories, browsing histories, etc.,
are more common and obtainable for e-commerce
sites and communities.

In standard collaborative filtering
recommenders, user profiles are represented by m-
dimensional vectors, where m = |T| and each
dimension represents an explicit item rating.
However, for many systems, m can be very large
and the number of ratings made by each user can be
very small. This problem is often addressed as cold
start problem or data sparsity problem.

Data sparsity problem is relieved with TPR,
because instead of using the product-rating vectors
with |T| dimensionalities as user profiles, TPR uses
taxonomy vectors with k dimensionalities, where k
is the number of topics in the product taxonomy
space. Specifically, we denote the taxonomy vector
for u; as v; = (vi, v, ..., vX), and each dimension of
V; indicates the degree of u; ’s interest to the
corresponding topic. The taxonomy vector in TPR
has three advantages over standard product rating
vector. Firstly, for most e-commerce sites k is much
smaller than |T|, and therefore it can yield better
computational performances. Secondly, because the
taxonomy vector records the wuser taxonomy
preferences instead of item preference, and different
items can share their descriptors entirely or partially,
thus, even for users with no common item interests,
their profiles can still be correlated. Thirdly, the
construction of the taxonomy vector can be done

13

ICEIS 2008 - International Conference on Enterprise Information Systems

with only implicit ratings, and therefore it
effectively solved the data sparsity problem.

3.2 Recommendation Generation

In this paper, the distances between user taxonomy
vectors are computed by Euclidean distance,
specifically:

dist(u;,u;) = Yl (vk ~ 17}‘)2 (D)
Based on the distance measure, target user u; ‘s
neighbourhood clique(u;) can be formed by
selecting n users from u; € U\{u;} with shortest
distances to u;. By extracting the items implicitly
rated by the neighbourhood, a candidate item list is
formed for u;’s personalized recommendation list,
formally:
B; = U{R;|u; € clique(u;)}\R; (2)
The items in the candidate list B; need to be
ranked according to their closeness to the target
user’s personal interest. The ranking equation to
weight u;’s possible interest towards ty’s shown
below:

dist(ui,u(tk)) qujEAi(tk) dist(ui,uj)
14i (il

.where A;(t) = {u; € clique(u;)|tx € R;}.

In equation (3), the computed score is negated
because the proximity measure is distance based (i.e.
small value indicates strong similarity), thus, by
negating the result score we allow larger weight
values of w;(ty) indicating higher item interests.

u(ty) creates a dummy user for item ty, so the
proximity of the taxonomy vectors between u; and
tx can be measured. The conversion process simply
creates a user ug with Rg = {ty}.

Finally, after the candidate item weights are
computed, the top m items with highest weight
values are recommended to the target user.

wi(t) = =1 X () (3)

4 PROPOSED APPROACH

In this paper, we identified two aspects in TPR that
can be improved.

Firstly, even though the product rating vectors
are compressed into taxonomy vectors with smaller
numbers of dimensionalities, however, for datasets
with a large amount of users and extensive
taxonomy structures, the neighbourhood formation
will become one of the computation efficiency
bottlenecks in TPR, because it requires an extensive
amount of I/O to retrieve user profiles (i.e.

14

taxonomy vectors) from the database, and the
proximity computation (i.e. equation (1)) for high
dimensional vectors is expensive as well.

Next, in Ziegler’s TPR implementation (Ziegler
et al., 2004), the “best-n-neighbours” is applied as
the neighbourhood selection method since “best-n-
neighbours” performs better than “correlation-
threshold” for sparse dataset (Ziegler et al., 2004).
However, because the value of n is pre-specified in
“best-n-neighbours”, it means that the resulting
neighbourhoods will be biased for users with true
neighbours of less than n (Li et al., 2003). This issue
is particularly sensible for users with unusual tastes,
as it is likely that a portion of their neighbourhoods
formed by “best-n-neighbours” might contain
neighbours that are dissimilar to them. For example,
if a user has distinct tastes, then he or she might only
share similar tastes with only 2 other users, the
recommendation result for this user might be biased
if a neighbourhood with 20 users are used.

In this paper, we propose a novel neighbourhood
estimation method which is both memory and
computation efficient. By substituting the proposed
technique with the standard “best-n-neighbours” in
TPR, the following two improvements are achieved:
® The computation efficiency of TPR is greatly

improved.
® The recommendation quality of TPR is also

improved as the impact of the ‘fixed n

neighbours” problem has been reduced. That is,

the proposed technique can help TPR locate the
true neighbours for a given target user (the
number of true neighbours might be smaller than

n), therefore the recommendation quality can be

improved as only these truly closed neighbours

of the target user can be included into the
computation.

4.1 Relative Distance Filtering

Forming neighbourhood for a given user u; € U
with standard “best-n-neighbours” technique
involves computing the distances between u; and all
other users and selecting the top n neighbours with
shortest distances to u; . However, unless the
distances between all users can be pre-computed
offline or the number of users in the dataset is small,
forming neighbourhood dynamically can be an
expensive operation.

Clearly, for the standard neighbourhood
formation technique described above, there is a
significant amount of overhead in computing
distances for users that are obviously far away (i.e.,
dissimilar users). The performance of the

EFFICIENT NEIGHBOURHOOD ESTIMATION FOR RECOMMENDATION MAKING

neighbourhood formation can be drastically
improved if we exclude most of these very
dissimilar users from the detailed distance
computation. In the proposed RDF method, this
exclusion or filtering process is achieved with a
simple geometrical implication: if two points are
very close to each other in a space, then their
distances to a given randomly selected point in the
space should be similar.

In Figure 1, a user set U is projected onto a two-
dimensional plane where each user is depicted as a
dot on the plane. In the figure, u; is the target user,
and the dots embraced by small circles are the top 15
neighbours of u; . The RDF method starts by
randomly selecting a reference user u, in the user
set, and then u,’s distances to all other users are
computed and sorted (u, and u, are also reference
users).

Figure 1: Projected user profiles.

Based on the triangle inequality theme, it is easy
to observe that all u;’s neighbours have similar
distances to u, . This means, in the process of
forming u; ’s neighbourhood, we only need to
compute distances between u; and the users in set
Ug which is defined as:

where @; is an abbreviated denotation for
dist(ug, u;).

In equation (4), |@; — @;| is the difference of the
distances from u; to u, and u; to u,. According to
Modus tolens inference rule, i.e., if the consequent
of an implication is false, the antecedent of the
implication must be false, from the geometrical
implication mentioned above, if |a; — a;| is large,
then u; and w; are not close to each other. 9 is a
distance threshold. If |@; — @;|is larger than 9, the
user u; €U can be excluded from the u; ’s
neighbourhood. If ¥ is set to a larger value, the

distance threshold is relaxed, thus more users can be
included in the neighbourhood. In this case, the
performance will be decreased because more users
will be included in the actual distance computations.
In our experiment, 9 is set to the one tenth of the
distance between the reference user and its furthest
neighbour u; € U.

To further optimize the neighborhood
estimation, we can select more reference users (for
example u, and u.) into the estimation process to
obtain more estimated searching spaces (i.e. U} and
Ug). With multiple estimated searching spaces, the
final estimated searching space can be drastically
reduced by intersecting these spaces
(i.e. USNUENUS). Tt can be observed in Figure 2
that, the intersected searching space is much smaller
than the entire set, and most importantly, it covers u;
‘s most close users. Only the users in the
intersection area need to be checked for determine
u; ‘s neighbourhood. The actual I/O and distance
computations only need to be conducted within the
intersected space, thus the efficiency is greatly
improved.

estimated neighborhood
*+ ..searching space

FEIRERCE
ey VT L
v A

Figure 2: Estimated searching space with three reference
users.

4.2 Reference User Selection

The reference user selection is important for RDF. In
order to optimize the performance of TPR, the final
estimated searching space (i.e.U§NUJNUS) needs to
be as small as possible for any given target users. In
order to achieve it, the distances between the
reference users need to be as far as possible. It is
because if the reference users are close to each other,
the ring borders of their search spaces will result
large overlap (since they all have similar centres and
radiuses). Moreover, the number of reference users
should be kept small (we only use 3 reference users
for all our experiments), because when the number
of reference users increases, the time required for the

15

ICEIS 2008 - International Conference on Enterprise Information Systems

offline reference user initialization and the memory
required for caching the sorted distances increase
too.

In our implementation, the reference users are
initialized with a simple two-pass technique. The
first reference user u, is chosen randomly, and we
compute its distances to all other users in U. Next,
with the computed distances we can obtain the
second reference user u; such that u, =
arg maXy ey, dist (Ug, ;). Finally, we again find
the furthest neighbour u, for u,and u, such that
Ue = arg maXy ey, dist (ua,uj) + dist(ub,uj) ,
and set u, as the third reference user. With this
method, it is ensured that the initialization process is
kept simple and efficient, and the result reference
users are also very distant from each other.

4.3 Proposed RDF Implementation

This section describes in detail the implementation
of the proposed RDF method discussed in sections
4.1 and 4.2. With the proposed implementation, the
power of RDF is maximized.

First of all, it is important to note that the
distances between users and reference users are not
meant to be computed online, because the
computation efficiency of this process is more
expensive than the one by one search. Instead, these
distances are computed, structured and indexed
offline into a data structure called RDF searching
cache, and the searching cache will be loaded into
the memory in the initialization stage of the online
recommendation process. This pre-computed
searching cache is shared by all neighbourhood
formation processes. The detailed structure is
depicted in Figure 3.

In the searching cache, each user is associated
with a data structure called “user node”. For any
user u; € U, n; denotes u;’s user node. A user node
basically stores two types of information for a user:

1. User ID: Instead of fitting the entire user
profiles or the user taxonomy vector into
memory, only the user id is required to be
stored in the cache. The user ids are used to
identify and retrieve the actual user profiles in
the database.

2. Distances to the Reference Users: The
distances from the user node’s corresponding
user to the reference users are stored in a
vector. In our implementation, we have only
three reference users u, , u, and u., and
therefore the distance vector for user node 7;

is (@, Ej, Cj). We denote the distance vector of

16

njas 4; = (/1]‘-1,/1]1”,/1]?) where Af" corresponds to

a;, AJI-’ corresponds to E]- and A; corresponds to
Cj respectively.

In order to efficiently retrieve the estimated
searching space as described in equation (4), a
binary tree structure is used to index and sort the
user nodes. The index keys used for each user node
are the distance between the user and the reference
users, that is, the index keys for n; are A7, A}’ and ;.
With the three different index keys, the user nodes
can be efficiently sorted with different index key
settings, that is, the user nodes can be sorted by any
one of the three index keys.

user nodes are sorted and indexed based on
the distances between the corresponding user
user ids [
1)

vectors and 7

14 (24

“a b 4

@—{ 032 | 222 | 122]

040 | 192 | 055 |
@—{ 052 | 492 | 045 |

user node

Distances between users and
reference users

Figure 3: Structure for the RDF searching cache.

Because the user nodes are stored in this binary
tree structure, the computation efficiency for
equation (4) is optimized to O(logN) , where
N = |U|. Note, this estimated user space retrieval
process is very efficient, not only because the whole
computation can be done within a small amount of
memory (thus no database I/O is required), it is also
because each index key lookup involves only a
comparison of two double values. Finally, because
distances between the target users and the reference
users are needed during the neighbourhood
formation process, the user profiles for the reference
users are required to be stored in the cache. The
memory requirement for the reference user profiles
is trivial, because there are only three reference
users.

EFFICIENT NEIGHBOURHOOD ESTIMATION FOR RECOMMENDATION MAKING

Given that the RDF searching cache is properly
initialized, the detailed RDF procedure is described
below:

RDF Algorithm

1) Letuy; be the target user, n be the pre-specified
number of neighbours for u;.

2) Use the indexed tree structure to locate the
minimal user nodes set within the given
boundary:

=il el,(x; —9) <A} < (x;+9)}

where u, € {ug, up,u.} which achieves
minimal search space. Note, the actual
implementation of u, ’s computation can be
very efficient. By utilizing the pre-computed
searching cache, the estimation of user nodes
size does not involve looping through the user
nodes one by one.

3) Based on step 2, u, is the primary index key
used to sort and retrieve ;, and it is one of u,,
upandu,. The rest two index keys (also in
{uq, up, u.}) are denoted as u,, and u,.

4) We refine the searching space &; by using
reference users u, and u, . This process is
similar to finding the intersected space
USNUENUS as described in section 4.2

FOR 7, € &; DO
IF/l% <@y -9 or/l,lg > +9)or
A< (Z;—9) oAz > (z; +9)
THEN

remove 1], from &;
END IF
END FOR

5) Do the standard ‘“best- n-neighbours” search
against the estimated searching space ¢;, and
return the result neighbourhood for u;.

S EXPERIMENTS

This section presents empirical results obtained from
our experiment.

5.1 Experiment Setup

The dataset used in this experiment is the “Book-
Crossing” dataset (http://www.informatik.uni-
freiburg.de/~cziegler/BX/), which contains 278,858
users providing 1,149,780 ratings about 271,379
books. Because the TPR uses only implicit user
ratings, therefore we further removed all explicit

user ratings from the dataset and kept the remaining
716,109 implicit ratings for the experiment.

The goal of our experiment in this paper is to
compare the recommendation performance and
computation efficiency between standard TPR
(Ziegler et al.,, 2004) and the RDF-based TPR
proposed in this paper.

The k-folding technique is applied (where k is
set to 5 in our setting) for the recommendation
performance evaluation. With k -folding, every
user u;’s implicit rating list R; is divided into 5
equal size portions. With these portions, one of them
is selected as u;’s training set R, and the rest 4
portions are combined into a test set T = R;\R}".
Totally we have five combinations (Rf,T/") ,
1<x<5 for user u;. In the experiment, the
recommenders will use the training set R to
learn w;’s interest, and the recommendation list ij
generated for u; will then be evaluated according to
T7* . Moreover, the size for the neighbourhood
formation is set to 20 and the number of items
within each recommendation list is set to 20 too.

For the computation efficiency evaluation, we
implemented four different versions of TPRs, each
of them is equipped with different neighbourhood
formation algorithms. The four TPR versions are:
® Standard TPR: the neighbourhood formation

method is based on comparing the target user to

all users in the dataset.

® RDF based TPR: the proposed RDF method is
used to find the neighbourhood.

® RTree based TPR: the RTree (Manolopoulos et
al., 2005) is used to find the neighbourhood.

RTree is a tree structure based neighbourhood

formation method, and it has been widely applied

in many applications.

® Random TPR: this TPR forms its
neighbourhood with randomly chosen users. It is
used as the baseline for the recommendation
quality evaluation.

The average time required by standard, RTree
based and the RDF based TPRs to make a
recommendation will be compared. We
incrementally increase the number of users in the
dataset (from 1000, 2000, 3000 until 14000), and
observe how the computation times are affected by
the increments.

In this paper, the precision and recall metric is
used for the evaluation of TPR, and its formulas are
listed below:

Recall = 100 X (IT* n P¥|/IT*]) ()
Precision = 100 X (|T* n P*|/|P*]) (6)

17

ICEIS 2008 - International Conference on Enterprise Information Systems

5.2 Result Analysis

Figure 4 shows the performance comparison
between the standard TPR and the proposed RDF
based TPR using the precision and recall metrics.
The horizontal axis for both precision and recall
charts indicates the minimum number of ratings in
the user’s profile (i.e.|R;|). Therefore larger x-
coordinates imply that fewer users are considered for
the evaluation. It can be observed that the proposed
RDF based TPR outperformed standard TPR for
both recall and precision. The result confirms that
when the dissimilar users are removed from the
neighbourhood, the quality of the result
recommendations become better. RTree based TPR
performs much worse than both the RDF based TPR
and the standard TPR, as it is unable to accurately
allocate neighbours for target users.

ji]

0

M E

RS R

Precizion

—+— ROF bazed TFR

wl — PR i

.......... Random TPR
RTree based TPR

1] 10 0 30 40 50
hfnimum Required Rating £ User

5

w0 ————— RODF based TPR i
— PR
=l o AN . Random TPR T

RTree bazed TPR
20 E

Recall
S
!

o 0 1] a0 40 50
hinimum Required Rating £ User

Figure 4: Recommendation precision and recall.

18

The efficiency evaluation is shown in Figure 5. It
can be seen from Figure 5 that, the time efficiency
for standard TPR drops drastically when the number
of users in the dataset increases. For dataset with
15000 users, the system needs about 14 seconds to
produce a recommendation for a user, and it is not
acceptable for most commercial systems. By
comparison, the RDF based TPR is much efficient,
and it only needs less than 4 seconds to produce a
recommendation for dataset with 15000 users. The
RTree based TPR greatly outperforms the proposed
method when the number of users in the dataset is
under 8000. However, as the number of users
increases in the dataset, the differences between
RDF and RTree based TPR becomes smaller, and
RDF starts outperforms RTree when the number of
users in the dataset is over 9000. This is because
RTree is only efficient when the tree level is small.
However, as the tree level increases (i.e. when
number of users increases) RTree’s performance
drops drastically because the chance for high
dimensional vector comparison increases
quadratically in accordance to the number of tree
level. The proposed RDF method outperforms RTree
method because its indexing strategy is single value
based, and it reduces the possibility for the high
dimensional vector correlation computation.

15

— % ROF based TPR o oy
< - -TPR 'D
=t RTree bazed TPR .
10 S 1
2 K}
I [.
§ e
“ @]
sl - i
3
R Iy
Fi
0

] 2000 10000 12000 14000

nio. of users in dataset

2000 4000

Figure 5: Average recommendation time.

6 CONCLUSIONS

In this paper, we presented a novel neighbourhood
estimation method for recommenders, namely RDF.
By embedding RDF with a TPR based
recommender, not only the computation efficiency
of the system is improved, the recommendation
quality is also improved. The RDF method is
different from the clustering based neighbourhood

EFFICIENT NEIGHBOURHOOD ESTIMATION FOR RECOMMENDATION MAKING

formation methods that use offline computed
clusters as the neighbourhoods. Instead, our method
forms neighbourhood for any given target users
dynamically from scratch (thus is more accurate than
cluster based approaches) in an efficient manner. In
our experiment, it is shown that the proposed
method improves both recommendation quality and
computation efficiency for the standard TPR
recommender.

REFERENCES

awerbuch, B., Patt-Shamir, B., Peleg, D. & Tuttle, M.
(2005) Improved recommendation systems.
Proceedings of 16th Annual ACM-SIAM symposium
on Discrete algorithms. Vancouver, British Columbia.

Bentley, J. L. (1990) K-d Trees for Semidynamic Point
Sets. 6th Annual Symposium on Computational
Geometry Berkley, California, United States, ACM
Press.

Li, B, Yu, S. & Lu, Q. (2003) An Improved k-Nearest
Neighbor Algorithm for Text Categorization.
Proceedings of the 20th International Conference on
Computer Processing of Oriental Languages.
Shenyang, China.

Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A. N.
& Theodoridis, Y. (2005) R-Trees: Theory and
Applications, Springer.

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2002)
Recommender systems for large-scale e-commerce:
Scalable neighborhood formation using clustering.
Proceedings of 5th International Conference on
Computer and Information Technology.

Schafer, J. B., Konstan, J. A. & Riedl, J. (2000) E-
Commerce Recommendation Applications. Journal of
Data Mining and Knowledge Discovery, 5, 115-152.

Ziegler, C.-N., Lausen, G. & Schmidt-Thieme, L. (2004)
Taxonomy-driven Computation of Product
Recommendations International — Conference on
Information and Knowledge Management
Washington D.C., USA

Ziegler, C.-N., Mcnee, S. M., Konstan, J. A. & Lausen, G.
(2005) Improving Recommendation Lists Through
Topic Diversification. Proceedings of 14th
International World Wide Web Conference. Chiba,
Japan.

19

