
DYNAMIC SEARCH-BASED TEST DATA GENERATION
FOCUSED ON DATA FLOW PATHS

Anastasis A. Sofokleous and Andreas S. Andreou
Department of Computer Science, University of Cyprus, 75 Kallipoleos Str., Nicosia, Cyprus

Keywords: Software Testing, Control Flow Graph, Data Flow Graph.

Abstract: Test data generation approaches produce sequences of input values until they determine a set of test cases
that can test adequately the program under testing. This paper focuses on a search-based test data generation
algorithm. It proposes a dynamic software testing framework which employs a specially designed genetic
algorithm and utilises both control flow and data flow graphs, the former as a code coverage tool, whereas
the latter for extracting data flow paths, to determine near to optimum set of test cases according to data
flow criteria. Experimental results carried out on a pool of standard benchmark programs demonstrate the
high performance and efficiency of the proposed approach, which are significantly better compared to
related search-based test data generation methods.

1 INTRODUCTION

As research focuses on software testing, studies
show that this process is one of the key-attributes for
delivery high quality end-systems within time and
cost constraints. Existing challenges in this area
involve the development of automatic software
testing methods that can test, or generate the test
data in order to test a program (McMinn, 2004).
Testing adequacy, i.e. the effectiveness of a testing
process on a program, as well as the testing
termination criterion, i.e. when the testing process
should be terminated, is determined by certain
coverage criteria. Among these the most common
are the control and data flow criteria, with the
former being currently the most widely used
(Kapfhammer, 2004).

This paper extends previous work described in

Sofokleous and Andreou (2007) where a dynamic
testing framework based on control flow graphs has
been proposed and demonstrated. In this work the
framework has been enhanced and now consists of a
program analyser and a test case generator; the
former analyses programs, creates control and data
flow graphs, and evaluates test cases in terms of
testing coverage. The test cases generator utilises a
specially designed GA to generate test cases with
respect to a coverage criterion. The GA’s fitness

function is guided by characteristics of the data flow
graph of the program under test.

The contribution of this work may be

summarised to the following.
• It proposes a new test data generation scheme

based on evolutionary computing, which is
simple, practical and fast. It integrates two
systems for analysing the program under testing
and determining the required set of test cases.

• One of the novelties of this work is the
integration of the control flow graph and data
flow graphs. The program analyser utilises a
dynamic code coverage module that determines
the executed code directly on the control flow
graph; in addition, it utilises the corresponding
data flow graph with the related criteria for
generating and evaluating test data. In this paper
we use the All_DU_Paths data flow criterion.

• The testing approach uses a novel mutation
operator for mutating composite genes.

• All these are encapsulated in a prototype proof
of concept application, with which we
performed experiments on a pool of standard
programs. Preliminary results show that this
approach outperforms other related studies
which generate test data in relation to data flow
criteria.

27
A. Sofokleous A. and S. Andreou A. (2008).
DYNAMIC SEARCH-BASED TEST DATA GENERATION FOCUSED ON DATA FLOW PATHS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - AIDSS, pages 27-35
DOI: 10.5220/0001692600270035
Copyright c© SciTePress

The rest of the paper is organised as follows.
Section 2 presents related work including open
challenges on the subject, section 3 describes the
proposed testing framework and section 4 presents
the experimental results. Section 5 concludes and
suggests some steps for future work.

2 RELATED RESEARCH

Our approach focuses on dynamic software test
cases generation, a search-based technique that uses
feedback to adapt its behaviour and determine an
adequate set of test cases according to a testing
coverage criterion. Research literature classifies
search based techniques to random, if it generates
test data randomly, or dynamic, if it considers the
results produced to adapt the testing processing
(Korel, 1996; Michael et al., 2001). Studies have
showed that random based-approaches, which are
less resource consuming compared to dynamic ones,
cannot determine efficiently the required test cases
for complex programs (Korel, 1996).

The most popular dynamic-based approaches
utilise genetic algorithms for generating test cases,
e.g. see Michael et al. (2001) and Michael and
McGraw (1998). To evaluate the efficiency of the
generated results, and guide the algorithm during
searching, researchers and practitioners use testing
coverage criteria, the most popular of which are
Control Flow and Data Flow based criteria
(Kapfhammer, 2004; Zhu et al., 1997). Thus,
dynamic testing systems repeat a testing cycle of
three main steps: (i) generate n test cases, (ii) utilise
a coverage tool to evaluate each test case with
respect to a coverage criterion and (iii) use the
results to guide the next iteration. The use of a
control flow criterion, e.g. statement or edge, implies
analysis of the program’s structure, e.g. branches
and loops, whereas for a data flow criterion, e.g. all-
edges and all-uses, it is necessary to examine the
data part of the program, e.g. variable to value
bounding relation and variable usage within the
program. Examples of control flow criteria may be
found in Andrews et al. (2006) and Zhao (2003).
This paper focuses on test data generation using data
flow criteria. The most relevant research studies
explore the definition and usage of data flow
coverage criteria which yield testing results
comparable to those of control flow criteria, in terms
of testing adequacy.

Laski and Corel (1983) propose a strategy that
uses the definition – use chain of a variable in order
to guide the program testing. This approach defines
two different criteria, which are both based on the
observation that on any given node there might be
uses of z variables, z>1, on which definition is made
on previous z nodes. A definition at node-i is
considered to be live at a node-j, if there are no
redefinitions of this variable between node-i and
node-j. The first criterion requires that each use of
the variable in nodes where the definition is “live” is
tested at least once. The second criterion requires
that each elementary data context of every
instruction is tested at least once. The elementary
data context of an instruction k is defined as the set
of definitions D(k) for the variables of k, such that
there exists a path from the beginning of the
program to k, where the definitions D(k) are live
when the path reaches k. The authors also propose
the modified version where each ordered elementary
data context is tested at least once. A detailed
presentation of the criteria can be found in Laski and
Korel (1983), while improved definitions are given
in Clarke et al. (1989).

Ntafos also proposed a method for selecting
paths, namely k-dr interactions (Ntafos, 1984;
Ntafos, 1981). Interactions between different
variables are captured in terms of alternating
definitions and uses, called k-dr interactions.
Variable x1 is defined at node n1 and then used in
node n2. At node n2, variable x2 is defined and then
used in node n3, where a third variable is defined.
This sequence of definitions and uses can be noted

as []m

m

m

m

x
n

x
n

x
n

x
n

x
n

x
n

x
n

x
n udududud ,,...,,,,,, 3

13

3

3

2

2

2

2

1

1

1

1
.

Note that between each definition and use for a
variable, the path is def-clear. Such a sequence of k-
1 du-pairs, k>1, is called k-dr (definition/reach)
(Ntafos, 1984). For the latter, it is necessary to test
dr interactions of specific length.

Rapps and Weyuker’s idea for path selection
criteria is clearly derived from the set of criteria
defined for control flow graphs and were originally
defined in Rapps and Weyuker (1982). Starting by
redefining all-paths, all-edges and all-nodes criteria,
they extend the set of criteria by defining all-defs,
all-uses, all-c-uses/some-p-uses, all-p-uses/some-c-
uses, all-p-uses and finally All-DU-Paths. The all-c-
uses criterion was added later on in the list of the
aforementioned criteria (Frankl and Weyuker, 1988).
The whole set is based on the definitions and uses of

ICEIS 2008 - International Conference on Enterprise Information Systems

28

the variable but uses are distinguished in c-uses and
p-uses. The first term is used to define a use in a
computation (at the right hand side of an
assignment) and the second to define the use of the
variable as a predicate in a Boolean calculation. The
criteria are analytically presented in Clarke et al.,
(1989) and Rapps and Weyuker (1982). Rapps and
Weyuker (1985) provide the “hierarchy” of the
criteria with a robust proof. Data flow criteria were
examined by different research teams from time to
time, aiming at defining a partial order between all
criteria or revealing their weaknesses and strengths,
e.g. see Clarke et al. (1989) and Ntafos (1988)).

This paper proposes a framework that uses
genetic algorithms for searching the input space and
determining a set of test cases for a program under
testing. The genetic algorithm encodes the test
inputs as genes and evolves test cases targeting
specific paths. The paths are extracted according to a
data flow graph criterion, the All-DU-Paths. Thus,
by generating test data for each extracted path, the
framework can achieve testing coverage according
to the All-DU-Paths data flow graph criterion. This
criterion will form the basis of the computational
intelligent part of the testing framework and more
specifically it will guide our genetic algorithm to
evolve appropriate test data so as to achieve the
highest possible coverage. This guidance is
embedded in the fitness function of the algorithm as
will be explained later on. In addition, in this paper
we propose the use of intra-mutation genetic
operator to mutate internally a gene, if it encodes a
collection of items (e.g. an array) or an object.

3 THE TESTING FRAMEWORK

Our testing framework consists of a program
analysis system, which analyses the code of a
program under test and creates the control flow and
data flow graphs, and a test case generation system
that generates test cases using the program analysis
system and based on each generation’s feedback.
The design and usage of the two systems are
explained in greater detail in the next sections.

3.1 The Program Analysis System

The program analysis system consists mainly of the
static and dynamic analysis sub-systems; the former
performs non-runtime analysis, i.e. without
executing the program under study, while the latter
simulates runtime behaviour, i.e. it simulates the

execution of a program based on a pair of input
values.

The static module parses Java code, e.g. a class,
and creates code representations, such as control
flow and data flow graphs. Currently, this module
first parses the program under test, then uses a
module to visit each block of the program and build
the control flow graphs, a graph for each method. A
control flow graph uses nodes and edges to represent
the statement and the flow of the program code,
respectively. However, a control flow graph captures
only the flow of a method and each call to another
method is shown as a call to a black-box, i.e. it takes
input and provides output, which can be expanded
upon request to another control flow graph. Then,
each control flow graph is used to build its
respective data flow graph, which presents the data
flow and statements using nodes and edges,
respectively.

The dynamic analysis sub-system is mainly
responsible for the runtime evaluation of the
program code. Currently, this sub-system employs a
dynamic code coverage module, which, compared to
other code coverage tools, is able to determine the
code coverage directly on the control flow graph, i.e.
without using the program code. Specifically, using
a pair of input values it can simulate the execution of
the program under testing; thus, by evaluating the
expressions of each vertex and following the
directed edges, it can determine the executed code.
The executed code is illustrated graphically on the
control flow graph. In addition to the executed code,
by selecting a path, the code coverage can determine
how close a test case is, to executing this path. This
allows the testing process to perform focused
searching as we will see later on.

The program analysis system advertises its
functionality through an API, which can be used by
other systems, such as the test case generation
system. Such systems can utilise the program
analysis system to obtain program information (e.g.
variables types and usage, scope of variables),
determine part of the code on a code representation
(e.g. the control flow or data flow graphs), determine
the coverage for a pair of input values, etc. In this
paper, the test case generation system utilises the
control flow-based code coverage module alongside
with the data flow graph in order to assess the
testing coverage of the program under test with
respect to the All-DU-Paths.

DYNAMIC SEARCH-BASED TEST DATA GENERATION FOCUSED ON DATA FLOW PATHS

29

3.2 The Test Cases Generation System

The test data generation system houses a specially
designed genetic algorithm, which, with the aid of
the program analysis system, can determine a near to
optimum set of test cases based on a certain
coverage criterion.

Initially, the program analysis system analyses
the program under testing: it parses the program,
determines the units of testing, for each of which it
creates a control flow graph and a data flow graph
(Sofokleous and Andreou, 2007; Sofokleous et al.,
2006). Focusing on each testing unit, the test data
generation system uses the data flow graph to extract
the All-DU-Paths, each representing a target to be
tested. Then, the algorithm visits the Ith target path
denoted as IP , initially I=1, and initiates the genetic
algorithm (GA); the GA aims to produce a test case
that can exercise each node in path IP .

GAs have been widely used as optimization
techniques. By maintaining and evolving a
population of candidate solutions, GAs may
determine a near to optimal solution. The evolution
takes place through generations by mimicking
natural evolution, that is, through crossover and
mutation of each generation’s population. The
fitness of each individual solution is calculated using
special designed functions which capture the
optimization constraint of each problem. GAs are
used when the search input is huge and therefore
evaluating each solution one by one is not feasible.
Thus, instead of evaluating every solution in the
search space, GAs’ design allows the direction to the
optimal solution by only evaluating samples of the
solution space. A value reflects how close an
individual solution is to the optimum one; another
advantage of GAs is that they allow evaluating the
solution with respect to the rest of the population,
i.e. the value assigned to each solution depends on
its content and on what are the rest of the solutions
in the set. This paper uses GAs to address the
problem of generating test cases, a problem that
encounters similar challenges to the aforementioned.
For example, in our case the search space, which is
the domain of the input space, is huge and therefore
GA can assist in evaluating only a sample of the
domain space and directing the search to a near to
optimal solution.

In this paper, a GA chromosome describes a test
case and a gene encodes an input parameter of the
testing unit. For example, if a method has three input

parameters, say x, y and z, then each chromosome
will have three genes, where each gene will encode
one of these parameters. The design of the
chromosome is illustrated in figure 1. A gene, which
is implemented as a data structure, includes the type
of the input variable and the initial value (input
value). In addition, each chromosome’s fitness value
reflects the value of the test case it offers, which is
described in the following paragraphs.

Figure 1: The Chromosome Design.

The fitness function is expressed as follows:

 ()(,) #K I exec jf C P nodes dist node= + (1)

where kC is a chromosome that contains the

KTC test case, # execnodes is the number of

exercised nodes with respect to KTC , and

() 0jdist node = if KTC exercises every node of

IP , otherwise ()0 1jdist node< < if using KTC

cannot pass jnode and hence this value describes

how close KTC is to pass jnode . Part of our
encoding scheme resembles the one reported in
Michael et al. (2001); the authors of this study
evaluate their chromosomes using the distance
approach but only using the control flow graph. Our
main differentiation, however, is that the searching
and evaluation takes into account not only the
control flow graph but also each path of the data
flow graph. This way the search of a test case for a
target path is more focused as it targets the nodes of
a path and hence it is not biased by the
chromosomes that can exercise nodes of other paths.

To evaluate chromosome kC , GA passes its

content, i.e. test case KTC , to the coverage module.
The coverage module, which runs dynamically on
the control flow graph, determines the executed
control flow nodes, say CFGN . Suppose the data

flow path IP is the target path, then # execnodes is

the number of IP nodes which have been executed
on the control flow graph, i.e.

ICEIS 2008 - International Conference on Enterprise Information Systems

30

CFG# Nexec Inodes P= I . If IP consists of n

nodes, n>1, and # execnodes n< , it means that

KTC covered only partially the path and that there is
one or more predicate conditions at another node,
e.g. at jnode , that prohibits the execution flow from

traversing from jnode to some of its successor
nodes. Thus, to direct the search towards the right
test case that can satisfy jnode ’s condition(s), we

add an extra value, i.e. ()jdist node , the of which

role is twofold: (i) to show how good KTC is
compared to the rest of the chromosomes that failed
at node jnode , and (ii) to show how close KTC is

for successfully traversing jnode . For example,

x y> is the condition of jnode that has to be
evaluated to false then

() - ,
0, j

x y if x y
dist node

if x y
>⎧

= ⎨ ≤⎩
 (2)

Thus, the distance is progressively reduced as x
approaches y , and becomes equal to zero if its value
becomes equal or lower than y as it evaluates the
condition ()x y> to the desired value.

At each generation, the population is evolved by
repeating a cycle of evaluating the population,
selecting a pool of solutions (with respect to the
evaluation results), and applying genetic operations,
such as the mutation and crossover, on the selected
pool of solutions. The crossover operation selects
two chromosomes and swaps internal parts cut at a
selected crossover point and produces offspring
chromosomes. Offspring chromosomes are added to
the list of chromosomes that pass to the next
generation. Likewise, mutation operation mutates a
gene: if a chromosome is selected for mutation, then
the algorithm selects one or more genes to be
replaced with new genes. A common mutation
operation generates a new gene as a clone of the
selected gene with new random values. In this paper,
for primitive types, such as integer and float, the
mutation operation generates the new values using a
stepwise approach, e.g. the new value of a variable
is (min ,max)x random V V± , where x is the
current value and (min ,max)random V V

returns a number in the range defined by a minimum
and a maximum value specific for that variable .
The algorithm uses a crossover and mutation
probability that define the likelihood that a
chromosome is selected for crossover and mutation,
respectively, and a mutation step probability which
swaps between small mutation steps (e.g.
min 2V = , max 2V =) and large steps (e.g.
minV = ∞ , maxV = ∞).

As discussed above, a gene is an input variable
while a chromosome is a set of genes and therefore
it encodes a complete test case. A parameter can be
of a primitive type, such as integer or float, an array
or an object. Most of the test case generation
approaches use input variables of either primitive
types (integers or/and floats) or of arrays of
primitive types (array of integers/floats). Thus,
usually a gene encodes a primitive type, and in some
cases, an array. However, program flow in the latter
case depends not only on the values of the array but
also on its size. A conventional mutation operator
replaces the entire array with a new one; in this
paper we propose a new type of mutation operator,
which can act internally on composite genes. Thus,
instead of only mutating the entire gene, the new
operator may select and mutate one or more internal
elements of the gene (see figure 2). For example, if a
gene encodes an array of integers, then the mutation
can either mutate the whole gene, which implies a
new array (size and values of the array may vary), or
mutate only a specific value of the array, which
leaves the size of the array and the rest of the values

Figure 2: Inner Mutation for composite Genes.

DYNAMIC SEARCH-BASED TEST DATA GENERATION FOCUSED ON DATA FLOW PATHS

31

unchanged. For this operation we use the mutation-
switch probability rate which determines if the
mutation will mutate the entire gene or part of the
gene, while for the latter we use an additional
probability to determine the part of the gene to be
mutated.

Figure 3 shows the proof of concept prototype
application, which consists of the program analysis
system, the test case generation system and a
graphical user interface with which a user can set the
configuration parameters and interact with the
control flow and data flow graphs. Initially, the user
activates the program analysis system for a program
under testing; then the user can switch between the
control flow graph and the data flow graph.
Selecting to generate test cases, a pop-up dialog
requests the parameters pertinent to the testing
process; this includes the selection of a testing
coverage criterion (e.g. control flow or data flow
criteria) and the definition of the population size, the
probabilities of the operators (mutation rate,
crossover rate, the mutation step rate, the rate for
switching between inner and outer mutation, etc).
Also the selection operator (tournament or Roulette
Wheel) is defined here, along with the maximum
number of generations. Then, the algorithm
generates test cases until it either achieves full
coverage according to the All-DU-Paths criterion or
reaches the maximum number of generations. The
selected test cases are presented in a grid, whereas
selecting a test case from the grid, triggers the
graphical depiction of executed nodes (it does so by
using a different colour) on the control flow graph.

Figure 3: Prototype Application.

4 EXPERIMENTAL RESULTS

We evaluated the performance of the proposed
framework on a pool of standard programs, which
have been also used as benchmarks by other testing
methods, most of which utilise on control flow graph
criteria, e.g. see Michael et al. (2001). This pool of
programs includes the Binary Search, the Bubble
Sort, the Insertion Sort, the Quadratic formula
solving, the Triangle Classification and the factorial
program. Based on the best results of a preliminary
empirical investigation, we set the GA’s population
size equal to 100 chromosomes, the probabilities of
crossover between 0.40 and 0.50, of mutation
between 0.05 and 0.15, of switch-mutation step
switching to 0.50, and the maximum generation
number to 2000. The Roulette Wheel was defined as
the selection operator and also the feature of elitism
was activated, that is, the algorithm always passes
the best chromosome unchangeable to the next
generation.

Basically the testing system invokes a new GA for
each path extracted according to the All-DU-Paths
data flow criterion. Thus, the algorithm terminates
when all GAs terminate, where a GA terminates
either when it determines a solution for its objective
(i.e. a test case that can cover the target path) or
when it reaches the maximum number for
generations. Table 1 compares the coverage ability
of four testing generation algorithms applied on 6
standard programs. The algorithms are: the random,
the gradient decent, a standard genetic algorithm
which calculates the fitness function as a function of
the executed nodes on the complete control flow
graph and our approach as described in this paper.
The results show that our approach can achieve full
coverage for all of the programs tested, while the
rest of the algorithms present weakness mostly in the
quadratic formula and the triangle classification,
with the best results confined to achieving less than
90% coverage.

Table 1: Testing Coverage Comparison of test data
generation algorithms on a pool of standard programs.

 Algorithm

Program

Rand
om

Gradien
t Decent GA-1 Our

Approach
Binary Search 78 100 77 100
Bubble Sort 100 100 100 100
Insertion Sort 100 100 100 100
Quadratic
Formula 74 70 73 100

Triangle
Classification 85 75 85 100

Factorial 100 100 100 100

ICEIS 2008 - International Conference on Enterprise Information Systems

32

Figure 4: Performance over time.

Table 2 presents experiments conducted on a set of
Java programs varying in size and complexity. The
complexity is determined based on conditions, e.g.
complexity is high (H) if there are conditions
consisting of three or more predicates, medium (M)
if predicates are only two, and simple (S) denotes
conditions with only one predicate. Table 2
describes LOC (lines of code), #TC (the size of the
return set of test cases), the complexity of the
program, the testing coverage in relation to the All-
DU-Paths data flow criterion and the number of
runs, where a run is the simulation of a test case so

Table 2: Empirical results on a pool of sample programs
varying in both size and complexity.

ID LOC # TC Complexity Coverage #Runs
1 20 2 S 100% 2000
2 20 4 M 100% 2000
3 20 4 H 100% 2000
4 50 4 S 100% 2000
5 50 8 M 100% 2000
6 100 7 S 100% 2000
7 100 7 S 100% 2000
8 250 9 M 100% 3500
9 250 10 M 100% 6400

10 500 12 S 100% 12400
11 1000 15 M 94% 16300
12 1500 23 M 90% 19500

as to determine its coverage. It is evident that the
proposed approach is highly successful even in cases
with large programs of considerable complexity.

Figure 4 presents a graphical comparison of our
approach against the random algorithm on a
randomly generated program of 2000 LOC. The
figure shows performance over time, where
performance is measured by the corresponding
testing coverage percentage and time is shown as a
number of runs.

The preliminary results reported show that the
testing framework is efficient and capable of testing
programs with respect to data flow criteria.

Compared to other testing approaches, such as
the random and the conventional usage of genetic
algorithm (e.g. using the complete control flow
graph for evaluating test cases and directing the
search), our proposition can achieve better coverage,
in shorter execution time and can test more complex
programs.

5 CONCLUSIONS

This paper described a search based test case
generation approach which uses both the control
flow and data flow graphs of a program under test

DYNAMIC SEARCH-BASED TEST DATA GENERATION FOCUSED ON DATA FLOW PATHS

33

for searching and determining a near to optimal set
of test cases according to the data flow criterion.
Based on previous work, we extended a test case
generation system by integrating and exploiting the
functionality of the two graphs. Control flow graph
assists in dynamic code coverage, i.e. determines
executed code on the control flow on the fly. Data
flow graphs assist in extracting the data flow paths
according to the All_DU_Paths data flow criterion.
A test case generator uses the control flow graph to
identify the executed part of an All_DU_Path and
evaluate the test case. The test case generator
employs a genetic algorithm which uses the
feedback to adapt its behaviour and hence to come
closer to the appropriate set of test cases. In this
work, we also addressed the challenge of the
composite gene mutation and we proposed the
switch-mutation operation, which can mutate not
only the gene (i.e. a variable of the test case) as a
complete unit but also an element of the gene (i.e. an
element of an array which is treated as an input
variable). Experimental results revealed the
efficiency of our approach over a pool of standard
programs. These results indicated better
performance compared to similar studies, both in
terms of testing coverage and execution time, the
latter being calculated in terms of evaluation runs.

Currently we are carrying out more experiments
with larger and more complex programs which can
assess the performance of our framework in more
realistic environments. Future work will consider the
extension of the framework to support control flow
graph slicing so as to identify faulty parts of the
code. Future work will consider the modification of
the new mutation operator to support composite
genes of objects, i.e. when one or more objects are
given as input variables to a testing unit. In this case,
the test case generator may need to exercise the
following: (i) the object itself, e.g. by generating a
new object, (ii) the state of the object, e.g. by calling
some methods of the object before assigning it to the
gene and (iii) a descendent object (following
heritage tree) and hence the late binding, by creating
an object of a sub-class and up-casting it to the
target object. Finally, we plan to investigate the
incorporation of a new type of graph which will be
able to capture both the control flow graph and the
object oriented features.

REFERENCES

Andrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S.
2006. Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE
Transactions on Software Engineering 32 (8), 608-
624.

Clarke, L.A., Podgurski, A., Richardson, D.J., Zeil, S.J.
1989. A formal evaluation of data flow path selection
criteria. IEEE Transactions on Software Engineering
15 (11), 1318-1332.

Frankl, P.G., Weyuker, E.J. 1988. An applicable family of
data flow testing criteria. IEEE Transactions on
Software Engineering 14 (10), 1483-1498.

Kapfhammer, G.M. 2004. Software testing. In: Tucker,
A.B. (Ed.), CRC Press, Boca Raton, FL, 105.1-105.44.

Korel, B. 1996. Automated test data generation for
programs with procedures. In: Proceedings of the
1996 ACM SIGSOFT international symposium on
Software testing and analysis , San Diego, California,
United States, 209-215.

Laski, J.W., Korel, B. 1983. Data flow oriented program
testing strategy. IEEE Transactions on Software
Engineering 9 (3), 347-354.

McMinn, P. 2004. Search-based software test data
generation: A survey. Software Testing, Verification
and Reliability 14 (2), 105-156.

Michael, C.C., McGraw, G., Schatz, M.A. 2001.
Generating software test data by evolution. IEEE
Transactions on Software Engineering 27 (12), 1085-
1110.

Michael, C., McGraw, G. 1998. Automated software
testdata generation for complex programs. In:
Proceedings of the 13th IEEE International
Conference on Automated Software Engineering,
Honolulu, Hawaii, October 1998, 136-146.

Ntafos, S.C. 1984. On required element testing. IEEE
Transactions on Software Engineering 10 (6), 795-
803.

Ntafos, S.C. 1988. A comparison of some structural
testing strategies. IEEE Transactions on Software
Engineering 14 (6), 868-874.

Ntafos, S.C. 1981. On testing with required elements. In:
Proceedings of IEEE-CS COMPSAC, November 1981,
132-139.

Rapps, S., Weyuker, E.J. 1982. Data flow analysis
techniques for test data selection. In: Proceedings of
the 6th IEEE-CS International Conference on
Software engineering, Tokyo, Japan, September 1982,
272-278.

Rapps, S., Weyuker, E.J. 1985. Selecting software test
data using data flow information. IEEE Transactions
on Software Engineering 11 (4), 367-375.

Sofokleous, A., Andreou, A. 2007. Batch-optimistic test-
cases generation using genetic algorithms. In:
Proceedings of the 19th IEEE International
Conference on Tools with Artificial Intelligence
(ICTAI), Patra, Greece, October, 157-164.

ICEIS 2008 - International Conference on Enterprise Information Systems

34

Sofokleous, A.A., Andreou, A.S., Ioakim, G. 2006.
Creating and manipulating control flow graphs with
multilevel grouping and code coverage. In:
Proceedings of the 8th International Conference on
Enterprise Information Systems (ICEIS 2006), Paphos,
Cyprus, May 2006, 259-262.

Zhao, J. 2003. Data-flow-based unit testing of aspect-
oriented programs. In: Proceedings of the 27th IEEE-
CS Annual International Conference on Computer
Software and Applications (COMPSAC '03), Dallas,
Texas, USA, 188-197.

Zhu, H., Hall, P., May, J. 1997. Software unit test
coverage and adequacy. ACM Computing Surveys 29
(4), 366-427.

DYNAMIC SEARCH-BASED TEST DATA GENERATION FOCUSED ON DATA FLOW PATHS

35

