
SIMILARITY MATCHING OF BUSINESS PROCESS VARIANTS

Noor Mazlina Mahmod, Shazia Sadiq and Ruopeng Lu
School of Information Technology and Electrical Engineering, The University of Queensland

St Lucia, QLD 4072, Brisbane, Australia

Keywords: Similarity Matching, Business Process Variants, Flexible Work Practice.

Abstract: Evidence from business work practice indicates that variance from prescribed business process models is
not only inevitable and frequent, but is in fact a valuable source of organizational intellectual capital that
needs to be captured and capitalized, since variance is typically representative of preferred and successful
work practice. In this paper, we present a framework for harnessing the value of business process variants.
An essential aspect of this framework is the ability to search and retrieve variants. This functionality
requires variants to be matched against a given criteria. The focus of this paper is on the structural criteria
which is rather challenging as query process structures may have different levels of similarity with variant
process structures. The paper provides methods for undertaking the similarity matching and subsequently
providing ranked results in a systematic way, as well as a reference architecture within which the methods
may be deployed.

1 INTRODUCTION

Instance adaptation of business processes is an
ongoing issue due to various reasons such as the
frequent change in underlying business objectives
and operational constraints, and the emergence of
unexpected events that cannot be handled by
predefined exception handling policies, collaborative
and/or knowledge intensive work, and gap of
process models from preferred work practices.
Consequently, the execution of process instances
needs to be changed at runtime causing different
instances of the same business process to be handled
differently according to instance specific conditions.

The typical consequence of instance adaptation
is the production of a large number of process
variants. An executed process instance reflects a
variant of realization of process constraints, and
provides valuable knowledge of organization at the
operational level. There is evidence that work
practices at the operational level are often diverse,
incorporating the creativity and individualism of
knowledge workers and potentially contributing to
the organization’s competitive advantage. Such
resources can provide valuable insight into work
practice, help externalize previously tacit
knowledge, and provide valuable feedback on
subsequent process design, improvement, and
evolution.

In this paper, we propose building a repository to
systematically capture, structure and subsequently
deliberate on the decisions that led to a particular
design. The focus is on providing a means to search
and retrieve process variants on the basis of their
structural similarity to a user defined query. In the
subsequent sections, we will first present the related
work for this topic. We then discuss the overall
variant management framework. Then, in section 4
we will introduce the notion of structural similarity.
This notion is used to conduct the matching analysis
as well as the ranking computation process, which
are respectively presented. Finally in section 5, we
conclude with a summary of contributions of this
work and its interesting extensions.

2 RELATED WORK

The goal of the work presented in this paper is to
find an effective means to facilitate the search and
retrieval of process variants that have total or partial
structural match with a given process query i.e. we
want to produce an effective method to find the
degree of structural similarity and to compute the
structural similarity rank between the process
variants.

The notion of similarity matching analysis is in
general a hard problem. It has been addressed from

234
Mazlina Mahmod N., Sadiq S. and Lu R. (2008).
SIMILARITY MATCHING OF BUSINESS PROCESS VARIANTS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 234-239
DOI: 10.5220/0001691002340239
Copyright c© SciTePress

various aspects e.g. string matching (Koudas et al,
2004) image and video matching (Shen et al, 2007),
and graph matching (Chen et al, 2005). For business
processes, notable work has been reported on
process equivalence (van der Aalst et al, 2006) that
takes into account execution sequences to conduct
the similarity analysis. Another approach is
presented in (Chen et al, 2005) to detect semantic
business process variants using ontology approach.

In (Lu & Sadiq, 2006), a selective reduce
technique has been introduced to reduce process
variants that can be visually compared to conduct
the structural matching between the process variant
and the process query. This process graph reduction
technique introduced in (Sadiq & Orlowska, 2000)
will be used and applied in the structural matching
analysis carried out by this paper as well. More
over, the flows counting algorithm introduced in (Lu
& Sadiq, 2006) is enhanced and modified to produce
an improved algorithm to compute the total
structural match and the different types of partial
structural match as presented in section 4.

3 VARIANT MANAGEMENT

A prerequisite to utilizing process variance for the
benefit of instance adaptation and process
improvements is the creation of the variants, such
that they can described, captured and eventually
utilized. We rely on an instance adaptation
framework (Sadiq et al, 2005) based on the principle
of late modelling (Weber et al, 2007) to achieve a
systematic creation of process variants. The
framework allows variants to be created under well
defined but minimal constraints, thus ensuring that
variant representations do not have drastic
differences that makes querying and eventually
learning from them practically infeasible.

Process Variant Repository (PVR) provides a
well-formed structure to store past process designs,
as well as an instrument to utilize process variants as
an information resource (Lu & Sadiq, 2006). The
capture of executed process variants in the
repository and the subsequent retrieval of preferred
process variants are the two major functions of PVR.

Fig. 1 presents an overview of PVR reference
architecture, details in (Lu & Sadiq, 2007).

We observe that a process variant at least
contains information from the following dimensions:
Structural dimension contains the process model
based on which the process instance is executed.
Behavioral dimension contains execution
information. Contextual dimension contains
descriptive information (annotations) from the
process modeller.

In this paper, we primarily focus on the search
and retrieval of variants based on its structural
dimension. However, there is evidence (Lu & Sadiq,
2007) that multi-criteria search and retrieval can
allow further refinement.

Figure 1: Reference architecture of PVR.

Definition 1 (Process Model). A process model W
is a pair (N, E), which is defined through a directed
graph consisting a finite set of nodes N, and a finite
set of flow relations (edges) E⊆N×N. Nodes are
classified into tasks T and coordinators C, where
N=C∪T, and C∩T=∅. Task is the set of tasks in W,
and C contains coordinators of the type {Begin, End,
Fork, Synchronizer, Choice, Merge}, which have
typical workflow semantics.

Figure 2: Example process models of process variants.

Figure 2 presents example process models of
different process variants. Suppose these process
variants belong to a network diagnosis process in a
Telco company as described above, and tasks
T1,…,T8 correspond to a list of network testing
activities. For example, T1 represents “Send Test
Message”, T2 represents “Test Hub201”, and T3
“Test ExchangeA30” etc. In the rest of this paper, we
omit the full task names for clarity.

Definition 2 (Process Variant). A process variant V
is defined by (id, W, B, T, C, M), where
– id is the identifier for the process variant;

SIMILARITY MATCHING OF BUSINESS PROCESS VARIANTS

235

– W is the process model (N, E) for V defined on
the task set T⊆N;

– B is a set of behavior properties defined for the
process which may include execution sequences,
resources utilized, time durations etc (see (Lu &
Sadiq, 2007)0 for more details on behavior
properties for variants)

– T={T1, …, Tn} is the set of tasks in V. Each task
may also contain task level behavior properties.

– C is an annotation that textually describes the
design of the variant;

– M is the set of modeler(s) who participated in the
instance adaptation for V.

The schema for process variants contains instance
level (id, W, B, T, C, M) and task level features (T).
The id can be combined with the variant symbol V,
i.e., V10 denotes variant V with the feature (id, 10).
Occasionally we omit the subscript i for V when
there is no ambiguity. Each element in V is referred
to as a feature of V. In this way, the schema of
process variant is defined by a list of features from
structural, behavioral and contextual dimensions.
The process variant repository is the set of all
collected process variants, that is PVR={V1, …, Vn}.

4 STRUCTURAL MATCHING

The notion of structural similarity for business
processes is rather involved. There have been some
notable attempts to define structural relations, e.g.
see equivalence, subsume and transform relations in
(Sadiq & Orlowska, 2000), as well as similarity
based on execution sequences in (van der Aalst et al,
2006). Due to the labelling of nodes in process
graphs, as well as the specialized semantics of
modelling constructs, the equivalence notion in
process graphs is somehow computationally
simplified.

Figure 3: Approach for Structural Matching.

However, the question of degree of similarity still
remains. For example, two graphs may have same
task set, but arranged in different sequences (A, B, C
vs. A, C, B). Should such a difference be classified
as “similar”. If yes, to what degree. In the
remaining section, we will present our approach to

address the above question in a systematic way as
summarized in Fig. 3.

4.1 Formulate Query

A query is a structural expression of search criteria
representing partial or complete description for a
process variant, or multiple process variants sharing
similar features. Unlike traditional query systems
however, the search criteria for process variants may
also include reference to complex structural features
as well as multi-dimension features e.g., tasks T1, T2
and T3 were performed by a senior engineer in
sequence, and finished execution within 1 day (cf.
We in Fig. 3), or having execution sequence <T1, T3,
T4, T5, T6> and tasks T5 and T6 were in parallel
branches in the process model (cf. Wb in Fig. 2).

We propose that the structural query requirement
be expressed in a way that is in like with the query-
by-example (QBE) paradigm, where a process
model WQ is presented in the query containing the
desired structural features, and the objective is to
retrieve all process variants with a process model W
similar to WQ. WQ can resemble a complete process
model (cf. Wa

Q in Fig. 4), which specifies the exact
structure required for the process variants to be
retrieved; or a partial process model (cf. Wb

Q in Fig.
4), which contains a fragment of the process model
characterizing the desired structural features to be
retrieved. Based on the above discussion, we define
the schema for a query as follows:

Definition 3 (Query). Let F be the set of all features
in PVR. A query Q is defined by the set of query
features {F1

Q, …, Fk
Q}, where ∀Fi

Q∈F, Fi
Q

corresponds to a feature defined in schema of V.

Figure 4: Example of structural query features, Wa

Q as a
complete process model and Wb

Q as a partial process
model.

As mentioned before, the focus of this paper is on
the structural dimension, and hence in the discussion
below, the query feature is assumed to represent the
process model W, and set of tasks T from the variant
schema (id, W, B, T, C, M).

4.2 Filter Variants

As variant repositories can potentially be very large,
we propose a pre-processing step through which
variants that are totally dissimilar to the submitted
query can be filtered out of the similarity analysis

ICEIS 2008 - International Conference on Enterprise Information Systems

236

and ranking steps. The filtering process consists of
two steps. Firstly, task set T for each variant is
compared with the task set of the submitted query,
and only those variants are filtered out where the
intersection of the two sets is above a certain
threshold.

Upon this filtered set of variants, a method of
select reduce (Lu & Sadiq, 2006) is applied, which
allows process variant models to be reduced to
graphs containing only the tasks present in the
query, while preserving the structure of the original
variant model.

Figure 5: Reduced process models against query feature
WQ..

Figure 5 provides an illustration of the select reduce
method for the variants given in Fig. 2.

The select reduce method provides a visual
capability of identifying equivalent or similar
variants. Although in large variant repositories, the
visualization will not assist and hence further
analysis is required as described below.

Variants may have different levels of similarity
to the given query. The overview of the structural
similarity types is described in Fig. 6.

Figure 6: Types of Structural Similarity.

“Total Match” type represents the process variant
that is totally similar to the process query (e.g. RWb
in Fig 5). Meanwhile, “Partial Match” type
represents the process variant that is similar to the
process query.
The partial match is split into two categories where
“All Tasks Exist” and “Partial Tasks Exist”. “All
Tasks Exist” represents the reduced process variant
that consists of all of the query tasks. Meanwhile

“Partial Tasks Exist” represents the reduced process
variant that contains only some of the query tasks.

Subsequently, each of these two categories of the
partial match type is divided into two more specific
categories where SC indicates “Same Construct” and
DC “Different Construct”. The ATSC category
signifies that the reduced process variants are
exactly similar to the process query. The PTSC
category denotes that although the reduced process
variant does not contain all the tasks existed in the
process query, however, the structural constructs are
similar to the process query. Similarly ATDC and
PTDC refer to the different structural constructs of
the reduced process variant against the process
query.

4.3 Rank Results

Except for the case of the “Total Match” all other
cases, namely ATSC, ATDC, PTSC and PTDC will
need to be somehow ranked to determine the degree
of structural similarity with the submitted query.
Before we proceed with the structural similarity rank
computation for partial match, some structural
elements of process variants should be considered
and should be assigned a dissimilarity weight/degree
(DD) in order to distinguish the difference between
the types of structural elements and to specifically
formulate the computation.

In this paper, we only focused on selected
structural elements in order to illustrate the rank
computation, namely (1) extra task, (2) extra fork or
(3) synchronizer, (4) missing task and (5) missing
fork or (6) synchronizer within process variants in
comparison to a process query.

The following sections present a justification or
rationale of the dissimilarity degree (DD) of various
structural elements representing the dissimilarity of
the process variant. DD will be applied in the
structural similarity rank computation algorithm for
partial matches later.

 (1) Dissimilarity Element: Extra Task: The DD
of 0.5 is given to every extra task that exists in the
process variant under the intuition that if the task is
extra, the process variant might be a bit less
effective (i.e. the process will have to run more tasks
or unnecessary tasks, thus it will consume more
resources).

(2) Dissimilarity Element: Extra Fork: The DD
of 0.8 is given to every fork split that exists in the
process variant. An extra fork split contributes more
DD than the extra task because each fork split
involves a different strategy in process execution.

(3) Dissimilarity Element: Extra Synchronizer:
The DD of 1.0 is given to every extra Synchronize

Similarity Type

Total Match Partial Match

All Tasks Exist Partial Tasks Exist

Same Construct

(ATSC)

Different Construct

(ATDC)

Same Construct

(PTSC)

Different Construct

(PTDC)

SIMILARITY MATCHING OF BUSINESS PROCESS VARIANTS

237

Coordinator existing in the process variant. The
higher weight is assigned to the extra synchronizer
as it contributes more DD than the extra task and
fork Coordinator since rationally the synchronizer
may involve more than a task with several incoming
transitions.

(4) Dissimilarity Element: Missing Task: The
DD of 1.5 is given to every missing task in process
variant because we believe that if a task is missing, it
contributes more DD than the extra task and the
extra fork/synchronizer coordinator because
reasonably if a task is missing, the process variant
will not execute the task which was deemed
important for the query formulation.

(5) Dissimilarity Element: Missing Fork: The
DD of 1.8 is given to every missing fork split in
process variant since a missing fork contributes
more DD than the missing task as logically some
important strategies in process execution are missing
that might lead to a different result.

(6) Dissimilarity Element: Missing Synchronizer:
The DD of 2.0 is given to every missing
synchronizer in process variant because if any
synchronizer is missing, it contributes more DD than
the missing task and fork split since logically the
synchronizer may involve dissimilarity of due to
other branches in addition to the differences found in
above two cases.

To compute the structural similarity rank of
partial match, we assume that the filtering (based on
task sets and select reduce) as well as the
classification of similarity type (i.e. ATSC, ATDC,
PTSC, PTDC), has been completed. Then, we
formulate a different computation formula for every
partial match category by combining the DD
calculation and flow match count to provide a
reasonable structural similarity rank for every partial
match category. Intuitively, it can be observed that
the ATSC rank should be the highest partial match
rank, the ATDC and PTSC rank will be in the next
and the PTDC rank should be lowest rank amongst
the partial match categories.

This algorithm is used to compute the rank of
structural similarity between process variants. The
total match is computed based on the flow counting
of the same task type. For partial match, instead of
calculating only the matching flows between the
process variant, the DD of different structural
elements as introduced earlier should be included to
specifically formulate the computation in order to
distinguish the different types and different levels of
structural similarity between the process variants.

For ATSC computation presented in the
algorithm, the DD calculation for extra tasks, forks
and synchronizers are included. The ATSC
computation is enhanced and added with the DD

calculation for missing fork and synchronizer to
compute ATDC partial match. Meanwhile, the rank
computation for PTSC and PTDC has included the
DD calculation for all missing and extra tasks, forks
and synchronizers.

Structural_Similarity_Rank_Computation
Input reduced process graph P, query graph Q
Output Structural Similarity Rank

rank ← 0
totalMatch ← 0
count ← 0
for each task t ∈ T[P], taskType[t] ∈ {task, coordinator} do
if InFlows[t] ∈ F[Q] then
count ← count + 1
end if
if OutFlows[t] ∈ F[Q] then
count ← count + 1
end if
matchFlow = 100% ∗ (count / |F[P]|)
if matchFlow =100% then
totalMatch = matchFlow
else if T[P] ∩ T[Q] > 0

matchTask = (#(T[P] ∩ T[Q]) / T[P])* 100%
end if

if taskType[t] = task
extraTask = (#(t[P]-T[Q]) *0.5 / T[P]
end if

if taskType[t] = coordinator and
coordinatorType[t] = fork

extraFork = (#(t[P]-T[Q]) *0.8 / T[P]
end if

if taskType[t] = coordinator and
coordinatorType[t] = Synchronizer

extraSync = (#(t[P]-T[Q]) *1.0 / T[P]
end if
missingTask ← 0
missingFork ← 0
missingSync ← 0

for T[Q] - T[P] do
if taskType[t] = task

missingTask = (#(t[Q]-T[P]) *1.5 / T[Q]
end if

if taskType[t] = coordinator and
coordinatorType[t] = fork

missingFork = (#(t[Q]-T[P]) *1.8 / T[Q]
end if

if taskType[t] = coordinator and
coordinatorType[t] = Synchronizer

missingSync = (#(t[Q]-T[P]) *2.0 / T[Q]
end if
return
(matchFlow + matchTask) – ((extraTask + extraFork + extraSync) *

(# (T[P]-T[Q])/ (T[P] *100%)) – ((missingTask + missingFork +
missingSync) * (# (T[Q]-T[P])/ (T[Q] *100%))

4.4 Present Results

Using the above approach, the user can be presented
with a concrete set of results from the process
variant repository. In Table 1, we provide an
example based on the variants presented in Fig 2 and
the query Wa

Q presented in Fig 4. It is assumed that
the threshold for task set intersection between the
variants and query graph is set at 5 (i.e.
#(T[P] ∩ T[Q]) ≥ 5, thus all variants listed in Fig 2
will be included in the first filtering step (see section
4.2).

ICEIS 2008 - International Conference on Enterprise Information Systems

238

Table 1: Result of Structural Similarity Rank
Computation.

Variant Similarity Rank
Wc 80.47%
Wa 74.22%
Wd 35.79%
Wb 28.1%
We 8.63%

Based on the rank result in Table 1, process variant
Wc (ATSC) carries the highest structural similarity
rank which is 80.47%. The reasons for the high rank
can be visually observed from Figs 2 & 5. A more
subtle difference exists between Wd and Wb. The
constructs of Wb seems visually more similar to Wa

Q

than the process variant Wd. However, if we look
closer, the matching flows between process variant
Wd and the process query Wa

Q are higher. For
example, there is a matching flow from task T4 to
synchronizer in process variant Wd and there is also
a matching flow from fork coordinator to task T3 but
there is no such matching flows in process variant
Wb., and thus the higher structural similarity rank for
Wd.

5 CONCLUSIONS

It is a challenging issue to find the degree of
structural similarity between process variants and a
given process query due to the complexity of the
process graph semantics and different levels of
structural similarity and partial match criteria that
need to be taken into account. We have proposed a
means to facilitate the search and retrieval of process
variants that satisfy the structural criteria of a given
process query. The dissimilarity degree
rationalization introduced in this paper gives an
intuitive weighting scheme to compute the different
rankings between the process variant.

The results of the proposed method can be
enhance the capability of process designers in their
instance adaptation and process improvement
endeavours due to the additional knowledge of
precedent preferred and successful work practice
embedded in process variants. In our future work we
intend to utilize the proposed algorithm within a
larger framework of multi-criteria. Although these
extensions hold several challenges, it is envisaged
that by providing querying capabilities across
various properties of the variants will further
improve the experience of process designers.

REFERENCES

Aalst, W. M. P. van der, Alves de Madeiros, A.K. and
Weijters, A. J. M. M., Process Equivalence:
Comparing Two Process Models Based on Observed
Behaviour, BPM 2006, vol. 4102, 2006, pp. 129-144.

Chen, L., Gupta, A., Kurul, M. E., Efficient Algorithms for
Pattern Matching on Directed Acyclic Graphs, IEEE
Int. Conf. on Data Engineering (ICDE), Tokyo, Japan,
March. 2005.

Koudas, N., Marathe , A., Srivastava D., Flexible string
matching against large databases in practice. Proc. of
the 13th VLDB, Morgan Kaufmann, 2004.

Koschmider, A., and Oberweis, A., How To Detect
Semantic Business Process Model Variants?, In Proc.
Of SAC ‘07, Korea, 2007.

Leymann, F. and Altenhuber W., Managing Business
Processes as an Information Resource, IBM Systems
Journal, vol. 33, 1994, pp. 326-348.

Lu, R., and Sadiq, S., On the Discovery of Preferred Work
Practice through Business Process Variants. 26th
International Conference on Conceptual Modeling (ER
2007) Nov 05-09, 2007.

Lu, R., and Sadiq, S., A Reference Architecture for
Managing Business Process Variants. Proceedings of
the 9th International Conference on Enterprise
Information Systems (ICEIS2007) Funchal, Portugal,
2007.

Lu, R., and Sadiq, S., Managing Process Variants as an
Information Resource. 4th International Conference
on Business Process Management (BPM2006),
Vienna, Austria, 2006.

Sadiq, S., Sadiq, W., Orlowska, M., A Framework for
Constraint Specification and Validation in Flexible
Workflows. Information Systems Vol.30/5, Jul 2005.

Sadiq,W. and Orlowska, M.E., Analyzing Process Models
using Graph Reduction Techniques, Information
System, vol.25,no.2, 2000, pp.117-134.

Shen, H.T., Zhou, X., Huang, Z., Shao, J., and Zhou, E.,
UQLIPS: A Real-time Near-duplicate Video Clip
Detection System, In Proceedings of 33rd VLDB,
2007. (demo)

Weber , B., Rinderle, S., Reichert, M., Change Patterns
and Change Support Features in Process-Aware
Information Systems. CAiSE 2007: 574-588.

SIMILARITY MATCHING OF BUSINESS PROCESS VARIANTS

239

