DATA ENCRYPTION AND DECRYPTION USING ANZL ALGORITHM

Artan Luma and Nderim Zeqiri
CST, SEE University, Ilindenska bb, Tetovo, Macedonia

Keywords: Cryptography, Algorithm, Security, ANZL.

Abstract

What is the ANZL Algorithm? It is a genuine result of our work which is theoretically and practically proved. By using the ANZL Algorithm, we can test whether a given number x belongs to Lucas's series. It can also be used to find a sequence of Lucas's numbers, starting from any number x. If a given number x, completes the relation $5 \cdot x^{2} \pm 4=\lambda^{2}$, we can say that it is a Lucas number and we mark it as $L_{n}=x$. From the pair of numbers $\left(L_{n}, \lambda\right)$, we can find the preceding L_{n-1} and the succeeding L_{n+1} e L_{n}. Based on these three elements of Lucas's series, we can create the key for data encryption and decryption.

1 ALGORITHM ANZL

Based on Fibonacci series:

$$
\begin{equation*}
1,1,2,3,5,8,13,21,34, \ldots \tag{1}
\end{equation*}
$$

We will be able to get the elements of Lucas's series using:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}-\mathrm{m}-1}=\frac{\mathrm{F}_{\mathrm{n}} \pm \mathrm{F}_{\mathrm{n}-2 \cdot \mathrm{~m}}}{\mathrm{~F}_{\mathrm{n}-\mathrm{m}}} \tag{2}
\end{equation*}
$$

Where $n, m \in N$ and $m \geq 1, n>2 \cdot m$. If m, is even, we use + , if m, is odd, the we use - . For $\mathrm{m}=1$ and $\mathrm{n}=3$, we have:

$$
\begin{equation*}
\mathrm{L}_{1}=\frac{\mathrm{F}_{3}-\mathrm{F}_{1}}{\mathrm{~F}_{2}}=\frac{2-1}{1}=1 \tag{3}
\end{equation*}
$$

For $\mathrm{m}=2$ and $\mathrm{n}=5$, we have:

$$
\begin{equation*}
\mathrm{L}_{2}=\frac{\mathrm{F}_{5}-\mathrm{F}_{1}}{\mathrm{~F}_{3}}=\frac{5+1}{2}=3 \tag{4}
\end{equation*}
$$

For $\mathrm{m}=3$ and $\mathrm{n}=7$, we have:

$$
\begin{equation*}
L_{3}=\frac{\mathrm{F}_{7}-\mathrm{F}_{1}}{\mathrm{~F}_{4}}=\frac{13-1}{3}=4 \tag{5}
\end{equation*}
$$

For $\mathrm{m}=4$ and $\mathrm{n}=9$, we have:

$$
\begin{equation*}
L_{4}=\frac{\mathrm{F}_{9}-\mathrm{F}_{1}}{\mathrm{~F}_{5}}=\frac{34+1}{5}=7 \tag{6}
\end{equation*}
$$

For $\mathrm{m}=5$ and $\mathrm{n}=11$, we have:

$$
\begin{equation*}
L_{5}=\frac{\mathrm{F}_{11}-\mathrm{F}_{1}}{\mathrm{~F}_{6}}=\frac{89-1}{8}=11 \tag{7}
\end{equation*}
$$

Based on this general formula, using Fibonacci's numbers we will generate Lucas's series of numbers:

$$
\begin{equation*}
1,3,4,7,11,18,29, \ldots \tag{8}
\end{equation*}
$$

Theorem 1: For Lucas's seires $L_{n}, n \in N$, we have:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}-1}+\mathrm{L}_{\mathrm{n}}=\mathrm{L}_{\mathrm{n}+1}, \mathrm{n}>1 \tag{9}
\end{equation*}
$$

Theorem 2: For odd members of Lucas's series $\mathrm{L}_{\mathrm{n}}, \mathrm{n} \in \mathrm{N}$, we have:

$$
\begin{equation*}
\mathrm{L}_{2 \cdot \mathrm{n}-1} \cdot \mathrm{~L}_{2 \cdot \mathrm{n}+1}=\mathrm{L}_{2 \cdot \mathrm{n}}^{2}+5 \tag{10}
\end{equation*}
$$

Theorem 3: For even members of Lucas's series $\mathrm{L}_{\mathrm{n}}, \mathrm{n} \in \mathrm{N}$, we have:

$$
\begin{equation*}
\mathrm{L}_{2 \cdot \mathrm{n}} \cdot \mathrm{~L}_{2 \cdot n+2}=\mathrm{L}_{2 \cdot n+1}^{2}-5 \tag{11}
\end{equation*}
$$

With the help of Theorems 2 and 3 we can find the algorithm to test if a number belongs to Lucas's series or not.

$$
\begin{equation*}
\mathrm{L}_{2 \cdot \mathrm{n}-1} \cdot \mathrm{~L}_{2 \cdot \mathrm{n}+1}=\mathrm{L}_{2 \cdot \mathrm{n}}^{2}+5 \tag{12}
\end{equation*}
$$

From Theorem 1, $\mathrm{L}_{2 \cdot \mathrm{n}}$, we can write:

$$
\begin{equation*}
\mathrm{L}_{2 \cdot \mathrm{n}}=\mathrm{L}_{2 \cdot \mathrm{n}+1}-\mathrm{L}_{2 \cdot n-1} \tag{13}
\end{equation*}
$$

As a result:

$$
\begin{equation*}
L_{2 \cdot n}^{2}=\left(L_{2 \cdot n+1}-L_{2 \cdot n-1}\right)^{2} \tag{14}
\end{equation*}
$$

If:

$$
\begin{align*}
& \left(\mathrm{L}_{2 \cdot \mathrm{n}+1}-L_{2 \cdot n-1}\right)^{2}=L_{2 \cdot n+1}^{2}-2 \cdot L_{2 \cdot n+1} \cdot L_{2 \cdot n-1}+L_{2 \cdot n-1}^{2} \tag{15}\\
& \left(L_{2 \cdot n+1}+L_{2 \cdot n-1}\right)^{2}=L_{2 \cdot n+1}^{2}+2 \cdot L_{2 \cdot n+1} \cdot L_{2 \cdot n-1}+L_{2 \cdot n-1}^{2} \tag{16}
\end{align*}
$$

Now, the expression $\left(L_{2 \cdot n+1}-L_{2 \cdot n-1}\right)^{2}$, can be written as:

$$
\begin{equation*}
\left(L_{2 \cdot n+1}-L_{2 \cdot n-1}\right)^{2}=\left(L_{2 \cdot n+1}+L_{2 \cdot n-1}\right)^{2}-4 \cdot L_{2 \cdot n+1} \cdot L_{2 \cdot n-1} \tag{17}
\end{equation*}
$$

So that we have:
$L_{2 \cdot n}^{2}=\left(L_{2 \cdot n+1}-L_{2 \cdot n-1}\right)^{2}=\left(L_{2 \cdot n+1}+L_{2 \cdot n-1}\right)^{2}-4 \cdot L_{2 \cdot n+1} \cdot L_{2 \cdot n-1}$
From Theorem 2:

$$
\begin{align*}
& \mathrm{L}_{2 \cdot n}^{2}=\left(\mathrm{L}_{2 \cdot n+1}+\mathrm{L}_{2 \cdot n-1}\right)^{2}-4 \cdot\left(\mathrm{~L}_{2 \cdot n}^{2}+5\right) \tag{19}\\
& \mathrm{L}_{2 \cdot n}^{2}=\left(\mathrm{L}_{2 \cdot n+1}+\mathrm{L}_{2 \cdot n-1}\right)^{2}-4 \cdot \mathrm{~L}_{2 \cdot n}^{2}-20 \tag{20}\\
& 5 \cdot \mathrm{~L}_{2 \cdot n}^{2}+20=\left(\mathrm{L}_{2 \cdot n+1}+\mathrm{L}_{2 \cdot n-1}\right)^{2} \tag{21}\\
& 5 \cdot L_{2 \cdot n}^{2}+20=\left(\mathrm{L}_{2 \cdot n+1}+\mathrm{L}_{2 \cdot n-1}\right)^{2}=\Omega^{2} \tag{22}
\end{align*}
$$

Ω is the sum of adjacent members of $L_{2 \cdot n}$, of Lucas's series. We can prove in the same way that:

$$
\begin{equation*}
5 \cdot \mathrm{~L}_{2 \cdot \mathrm{n}+1}^{2}-20=\left(\mathrm{L}_{2 \cdot \mathrm{n}}+\mathrm{L}_{2 \cdot n+2}\right)^{2}=\Psi^{2} \tag{23}
\end{equation*}
$$

Ψ is the sum of adjacent members of $L_{2 \cdot n+1}$. Based on the above-mentioned relations, we can test wthether a given number x , belongs to Lucas's series. We can also use this to find a sequence of Lucas's numbers starting from any number x. If x, completes the relation $5 \cdot x^{2} \pm 20=\lambda^{2}$, we cab say that it is Lucas's number and we mark it as $x=L_{n}$. From the pair (L_{n}, λ), we can also find the preceeding and succeeding numbers $\mathrm{L}_{\mathrm{n}-1}$ and L_{n+1} of L_{n}.

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}-1}=\frac{\lambda-\mathrm{L}_{\mathrm{n}}}{2} \quad \text { and } \quad \mathrm{L}_{\mathrm{n}+1}=\frac{\lambda+\mathrm{L}_{n}}{2} \tag{24}
\end{equation*}
$$

Since we have found L_{n-1}, L_{n}, L_{n+1}, we can find the whole series of Lucas's numbers:

$$
\begin{equation*}
2,1,3,4,7,11, \cdots, L_{n-1}, L_{n}, L_{n+1}, \cdots \tag{25}
\end{equation*}
$$

Table 1.

x	λ	$\mathrm{L}_{\mathrm{n}-1}$	$\mathrm{~L}_{\mathrm{n}}$	$\mathrm{L}_{\mathrm{n}+1}$
1	5	2	1	3
2	0	-1	2	1
3	5	1	3	4
4	10	3	4	7
7	15	4	7	11
11	25	7	11	18
18	40	11	18	29
29	65	18	29	47

We will now see how we can encrypt or decrypt a message by using the ANZL algorithm to create the key. Let p be the message (plaintext), and k the key. c is the encrypted message (ciphertext). If we want to encrypt a message, we will use this formula:

$$
\begin{equation*}
\mathrm{c}=\mathrm{p}+\mathrm{k}(\bmod 26) \tag{26}
\end{equation*}
$$

If we want to decrypt a text, we will use:

$$
\begin{equation*}
\mathrm{p}=\mathrm{c}-\mathrm{k}(\bmod 26) \tag{27}
\end{equation*}
$$

We will now show how to create the key. First of all, we choose a number x and this number is put in the ANZL algorithm to test whehter it belongs to Lucas's series or not. The formula of the ANZL algorithm which tests the number $x \in N$, is:

$$
\begin{equation*}
5 \cdot x^{2} \pm 4=\lambda^{2} \tag{28}
\end{equation*}
$$

If x, meets this condition, then $F_{n}=x$, which means that x, is a number in the Lucas's series. Since F_{n} and λ, we can easily find F_{n-1} and F_{n+1}. These two elements of Lucas's series are found by using the formulas:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}-1}=\frac{\lambda-\mathrm{L}_{\mathrm{n}}}{2} \quad \text { and } \quad \mathrm{L}_{\mathrm{n}+1}=\frac{\lambda+\mathrm{L}_{n}}{2} \tag{29}
\end{equation*}
$$

Now that we have found Lucas's elements L_{n-1}, L_{n}, L_{n+1}, we can construct the whole series if Lucas's numbers:

$$
\begin{equation*}
0,1,1,2,3,5,8, \cdots, L_{n-1}, L_{n}, L_{n+1}, \cdots \tag{30}
\end{equation*}
$$

We will now design a scheme to create the key. In order to do this, the most important are the levels.

Figure 1.
If we want to create a key with level 2 , then its keys will be:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}-2}, \mathrm{~L}_{\mathrm{n}-1}, \mathrm{~L}_{\mathrm{n}}, \mathrm{~L}_{\mathrm{n}+1}, \mathrm{~L}_{\mathrm{n}+2} \tag{31}
\end{equation*}
$$

This means that the key will consist of five elements. The number of elements is determined by this formula:

$$
\begin{equation*}
\mathrm{N}=2 \cdot \mathrm{~m}+1 \tag{32}
\end{equation*}
$$

N , is the number of elements of the key and m , are the levels. Let's have a plaintext now: South East

European University which we want to encrypt. First of all we have to have $x \in N$, so that it meets the condition of the ANZL algorithm:

$$
\begin{equation*}
5 \cdot x^{2} \pm 4=\lambda^{2} \tag{33}
\end{equation*}
$$

For $\mathrm{x}=8$, we will get:

$$
\begin{equation*}
5 \cdot 8^{2}+4=324=18^{2} \tag{34}
\end{equation*}
$$

This means that the condition of the ANZL algorithm has been met so that we have $L_{n}=8$ and $\lambda=18$. Knowing the pair $(\mathrm{x}, \lambda)=(8,18)$, we will find the preceeding and succeeding numbers of $L_{n}=8$:

$$
\begin{align*}
& \mathrm{L}_{\mathrm{n}-1}=\frac{\lambda-\mathrm{L}_{n}}{2} \quad \text { and } \quad \mathrm{L}_{\mathrm{n}+1}=\frac{\lambda+\mathrm{L}_{\mathrm{n}}}{2} \tag{35}\\
& \mathrm{~L}_{\mathrm{n}-1}=\frac{25-11}{2}=\frac{14}{2}=7 \tag{36}\\
& \mathrm{~L}_{\mathrm{n}+1}=\frac{25+11}{2}=\frac{36}{2}=18 \tag{37}
\end{align*}
$$

After we have found these three elements of Lucas's series: L_{n-1}, L_{n}, L_{n+1}, we will design the scheme of creating the key.

Figure 2.
If we decide to create a Level 2 key që do të thotë $\mathrm{m}=2$, we get:

$$
\begin{equation*}
\mathrm{N}=2 \cdot \mathrm{~m}+1=2 \cdot 2+1=4+1=5 \tag{38}
\end{equation*}
$$

This means that the key will consist of five elements:

$$
\begin{equation*}
4,7,11,18,29 \tag{39}
\end{equation*}
$$

The text is now being converted into numbers. In order to do this we use the Table 1:

We get the text: South East European University and we convert it into numbers.

Table 2.

a	b	c	d	e	f	g
0	1	2	3	4	5	6
h	i	j	k	1	m	n
7	8	9	10	11	12	13
o	p	q	r	s	t	u
14	15	16	17	18	19	20
v	w	x	y	z		
21	22	23	24	25		

Table 3.

S	o	u	t	h	e	a	S
18	14	20	19	7	4	0	18
t	e	u	r	o	p	e	a
19	4	20	17	14	15	4	0
n	u	n	1	v	e	r	S
13	20	13	8	21	4	17	18
i	t	y					
8	19	24					

In order to encrypt the message, we use:

$$
\begin{equation*}
c=p+k(\bmod 26) \tag{40}
\end{equation*}
$$

The key is:

$$
\begin{equation*}
4,7,11,18,29 \tag{41}
\end{equation*}
$$

We take the key and we put it into the message which we want to encrypt:

Table 4.

s	0	u	t	h	e	a	s
18	14	20	19	7	4	0	18
4	7	11	18	29	4	7	11
22	21	5	11	10	8	7	3
W	V	F	L	K	I	H	D
t	e	u	r	o	p	e	a
19	4	20	17	14	15	4	0
18	29	4	7	11	18	29	4
11	7	24	24	25	7	7	4
L	H	Y	Y	Z	H	H	E
n	u	n	1	v	e	r	S
13	20	13	8	21	4	17	18
7	11	18	29	4	7	11	18
20	5	5	11	25	11	2	10
U	F	F	L	Z	L	C	K
i	t	y					
8	19	24					
29	4	7					
11	23	5					
L	X	F					

If want to send this encrypted message to anyone, apart from the message itself, we also need to send the pair of numbers $\left(L_{n}, m\right)=(11,2)$. The person receiving the message can decrypt it by finding first
λ and then the key. Based on the ANZL algorithm, we find the values of λ :

$$
\begin{equation*}
5 \cdot x^{2} \pm 4=\lambda^{2} \tag{42}
\end{equation*}
$$

For $\mathrm{x}=11$, we get:

$$
\begin{equation*}
5 \cdot 11^{2}+20=625=25^{2} \tag{43}
\end{equation*}
$$

$\lambda=25$. Knowing $(x, \lambda)=(11,25)$, we will find the preceeding and the succeeding numbers $L_{n}=$ 11:

$$
\begin{align*}
& \mathrm{L}_{\mathrm{n}-1}=\frac{\lambda-\mathrm{L}_{\mathrm{n}}}{2} \text { and } \quad \mathrm{L}_{\mathrm{n}+1}=\frac{\lambda+\mathrm{L}_{n}}{2} \tag{44}\\
& \mathrm{~L}_{\mathrm{n}-1}=\frac{25-11}{2}=\frac{14}{2}=7 \tag{45}\\
& \mathrm{~L}_{\mathrm{n}+1}=\frac{25+11}{2}=\frac{36}{2}=18 \tag{46}
\end{align*}
$$

Figure 3.
Table 5.

W	V	F	L	K	I	H	D
22	21	5	11	10	8	7	3
4	7	11	18	29	4	7	11
18	14	20	19	7	4	0	18
s	o	u	t	h	e	a	S
L	H	Y	Y	Z	H	H	E
11	7	24	24	25	7	7	4
18	29	4	7	11	18	29	4
19	4	20	17	14	15	4	0
t	e	u	r	0	p	e	a
U	F	F	L	Z	L	C	K
20	5	5	11	25	11	2	10
7	11	18	29	4	7	11	18
13	20	13	8	21	4	17	18
n	u	n	i	v	e	r	S
L	X	F					
11	23	5					
29	4	7					
8	19	24					
i	t	y					

After having found these three elements of Lucas's series: L_{n-1}, L_{n}, L_{n+1}, we will design the scheme for creating the key.

We know that Level of key is 2, which means $\mathrm{m}=2$, so that:

$$
\begin{equation*}
\mathrm{N}=2 \cdot \mathrm{~m}+1=2 \cdot 2+1=4+1=5 \tag{47}
\end{equation*}
$$

This means thta the key will consist of five elements of Lucas's series:

$$
\begin{equation*}
4,7,11,18,29 \tag{48}
\end{equation*}
$$

Having the key, is quite easy to encrypt the text by using:

$$
\begin{equation*}
\mathrm{p}=\mathrm{c}-\mathrm{k}(\bmod 26) \tag{49}
\end{equation*}
$$

2 CONCLUSIONS

The aim of the ANZL Algorithm is to test whether a number x belongs to Lucas's series or not. If it does, then it is very easy to find the preceeding and succeeding numbers $\mathrm{L}_{\mathrm{n}-1}, \mathrm{~L}_{\mathrm{n}}, \mathrm{L}_{\mathrm{n}+1}$. This algorithm can also be used for purposes of data encryption and decryption in terms of creating the keys.

REFERENCES

Introduction to cryptography: with coding theory by Wade Trappe; Lawrence C Washington, Publisher: Upper Saddle River, N.J.: Pearson Prentice Hall, ©2006, ISBN: 0131862391
Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second Edition (Paperback) by Bruce Schneier; Paperback: 758 pages; Publisher: Wiley; 2nd edition (October 18, 1996); Language: English; ISBN-10: 0471117099; ISBN-13: 978-0471117094
Modern Cryptography: Theory and Practice (Hardcover)by Wenbo Mao; Hardcover: 740 pages; Publisher: Prentice Hall PTR; 1st edition (July 25, 2003); Language: English; ISBN-10: 0130669431; ISBN-13: 978-0130669438
Practical Cryptography (Hardcover) by Niels Ferguson, Bruce Schneier; Hardcover: 432 pages Publisher: Wiley (April 17, 2003); Language: English; ISBN-10: 047122894X; ISBN-13: 978-0471228943
Schneier's Cryptography Classics Library: Applied Cryptography, Secrets and Lies, and Practical Cryptography (Paperback) by Bruce Schneier; Paperback: 1664 pages; Publisher: Wiley (October 22, 2007); Language: English; ISBN-10: 0470226269; ISBN-13: 978-0470226261.

