
IMPROVING SOFTWARE TEST STRATEGY WITH A METHOD
TO SPECIFY TEST CASES (MSTC)

Edumilis Méndez, María Pérez and Luis E. Mendoza
Processes and Systems Department – LISI

Universidad Simón Bolívar
Caracas – Venezuela

Keywords: Software testing, Test cases, Method, Test strategy, Use cases, Software test.

Abstract: An interesting difference between tests and other disciplines of the software development process is that
they constitute a task that essentially identifies and evidences the weaknesses of the software product. Four
relevant elements are considered when defining tests namely, reliability, cost, time and quality. Time and
cost shall increase to the extent reliable tests and quality software are desired, but what does it take to make
actors understand that tests should be seen as a security network? If quality is not there before starting the
tests, it will not be there upon their completion. Accordingly, how can we lay out a trace between tests and
functional and non-functional requirements of the software system? This Article is aimed at proposing a
method that allows for specifying test cases based on use cases, by incorporating elements to verify and
validate traceability among requirements management, analysis & design, and tests. This initiative
originated as a response to the request of a software developing company of the Venezuelan public sector.

1 INTRODUCTION

The objective of the test discipline is to assess
product quality throughout its life cycle based on a
set of best practices (Leffingwell and Widrig, 2006)
that include the following: (a) verification of the
software product’s proper operation, and (b)
verification of requirements’ proper implementation.
Grimán et al. (2003) indicate that this discipline is
not usually implemented in an organized and
systematic manner. Additionally, according to
Kruchten (2000), Pfleeger (1998), Pressman, (2002),
and Sommerville (2000), the test execution process
must be considered throughout the project life cycle
to ensure a high quality product. Success of this
process depends on the adoption of an adequate
testing strategy. A software testing strategy
comprises a group of activities that describes the
steps to be taken in a test process, considering the
amount of efforts and resources required for
achieving proper software construction (Pressman,
2002).

But, from the perspective of a company, which
strategies can be used? Which methodology or
method should be adopted to determine the
traceability between tests and requirements? Which
methodology or method ensures enhanced

verification and validation activities? Which
strategy guarantees the delivery of a quality
software product?

In this regard, we proposes a method that allows
specifying test cases (TCs) based on use cases
(UCs), as a starting point for the standardization and
traceability of the software development process,
thus obtaining highly profitable quality products.

2 RELATED WORK

The IEEE Standard for Software Test
Documentation (IEEE829-98) provides a good
description of test documents and their relationship
with one another and with the testing process. Test
documents may include, among others, TC
Specification. (SWEBOK, 2004).

Three key aspects (Utting and Legeard, 2007)
are considered for functional testing: design of the
test case, application of the test and analysis of
results, and verification of how the test fulfills the
requirements.

Perry (2006) introduces a complete guide for
effective testing process, including TCs, and it
proposes a TC template containing certain aspects

159
Méndez E., Pérez M. and E. Mendoza L. (2008).
IMPROVING SOFTWARE TEST STRATEGY WITH A METHOD TO SPECIFY TEST CASES (MSTC).
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 159-164
DOI: 10.5220/0001686501590164
Copyright c© SciTePress

considered for our method, such as the use of IDs
for TCs and UCs. Likewise, Lewis (2000) proposes
a template for TCs that includes conditions,
environment, version and system.

In recent years, a Model-based Testing (TDD)
approach was proposed, which provided for the
automation of the design of black-box tests.
SWEBOK (2004) defines black-box test where test
cases rely solely on the input/output behavior.

Some authors like Pinkster et al. (2006), state
that subsequent improvement in testing quality is
more than likely provided that requirements are
considered as the testing basis; this is known as
requirement-based testing.

Likewise, UML Testing Profile (2005)
introduces the integration of concepts, such as test
control, test group, and TC into the TC concept,
which can be decomposed into several lower-level
test cases and permits the easy reuse of TC
definitions in various hierarchies.

Some benefits of the requirements/test matrix
(Lewis, 2000) include: correlation of tests and
scripts with requirements, facilitation of review
status, and provision of a traceability mechanism
throughout the development cycle that includes test
design and execution.

In contrast to prior initiatives, our method
includes all the aforementioned ideas for the
purpose of obtaining a method that supports
elements comprised in a test strategy.

3 TEST CASE

A TC is a specification -usually formal- of a set of
test inputs, execution conditions and expected
outputs identified for the purpose of assessing the
particular aspects of a testing element (Leffingwell
and Widrig, 2006): (a) TCs reflect traceability with
UCs (functionality), (b) TCs include the
complementary specifications of the requirements,
and (c) TCs provide the system’s design
specifications.
 All these elements ensure the compatibility of
test procedures with user/consumer requirements. In
practice, it is assumed that a UC itself is a TC and
that the project team works on the UCs without
planning the TCs in advance. As they test UCs, they
intuitively assume the test data and procedures
without making the need of documentation, which is
rather a mistake, since TCs expand or enhance the
information included in UCs. For instance, for UCs,
the values or conditions of tests are not specified.

TCs are essential for all testing activities
(Leffingwell and Widrig, 2006) due to the
following:
• They constitute the basis for the design and

execution of test procedures.
• Tests’ depth is proportional to the number of

TCs.
• Design and development, as well as required

resources, are governed by the required TCs.
If TCs are incorrect, the system quality will not

be reliable.
The method proposed herein states that testing

procedures are comprised of steps, conditions,
values, and expected/obtained results. Moreover, the
testing procedure may be automated through test
scripts. All the aforementioned concepts allow for
visualizing the test scope: What will be tested?
How, who, when, and what for? Once all TCs are
executed, the results should be fully disclosed for
the purpose of determining whether the acceptance
criteria defined by the user were satisfied upon
system validation.

In the following section you will find more
details of the proposed method.

4 METHOD TO SPECIFY TEST
CASES (MSTC)

The proposed method consists in creating a set of
TCs from a UC, since it is assumed that software
behavior must be tested based on requests or
requirements. Moving from a UC to a corresponding
set of TCs implies a reasonably wide and nontrivial
process. Leffingwell and Widrig (2006) describe
four (4) steps for achieving this process. Such steps
indicate what it is to be done, but they do not
explain in detail how to do it. Certain aspects that
were not expressed in writing were gathered and
proposed through the MSTC, based on bibliographic
review and our experience. Considering those steps
proposed by Leffingwell and Widrig (2006), we
intend to provide a method for specifying a set of
TCs from a UC.

 The MSTC contribution consists in the
incorporation of tests’ traceability elements as to
the entire development process and enhancement of
the testing strategy while regulating this process.
The development process is then structured in
phases, activities, roles or individuals involved and
artifacts generated. Likewise, it helps documenting
ideas that were issued prior to tests, and explaining
how TCs were generated. This is useful for verify

ICEIS 2008 - International Conference on Enterprise Information Systems

160

tests traceability with respect to previous phases,
and requirement, analysis and design disciplines,
and it guarantees the organization’s knowledge
management regarding quality assurance.

This method includes the 4 roles proposed within
the test discipline: test manager, test designer, test
analyst and tester. Each phase is described in the
following paragraphs, but due to space limitations,
the researchers’ contribution will be highlighted in
italics.

It should be mentioned that MSTC is activated
by the test analyst once UCs narratives are verified
and upon system functionalities’ approval by the
stakeholders.

4.1 Phase 1: Scenarios’ Identification

Activities in this phase to be conducted by the test
analyst are as follows:
1. Scenarios are identified based on the UC
narratives and considering specific scenarios for
each UC. The regular flow, each alternate flow or a
combination of both represents a scenario
susceptible of being executed and tested.
Consequently, the first scenario will always evoke
the regular flow of that particular UC. The relations
between the UCs and the scenarios may be one-to-
many.
2. Graphical representation of the sequence of
events for each UC: As shown in Figure 1, this
allows for abstracting events taking place in a UC,
i.e. the regular or basic flow and alternate flows, and
it helps visualizing the potential combinations that
would represent a scenario, since it determines the
point at which the basic flow occurs and also what
happens upon alternate flow activation. Then, the
UC is completed or returned to the basic flow.
3. Verification that all alternate flows, including
their completion or return actions, were graphically
represented.
4. Illustration (as seen in Table 1) of all scenarios
associated to a UC in Figure 1.
5. Identification of all UC’s scenarios, indicating
regular and/or alternate flow(s) comprised within
the UC. Table 2 represents the first of 3 devices
generated in the MSTC: Table: Scenarios per UC.

In this table, we may observe that the ID
scenario is entered for the purpose of establishing
the tests’ traceability element, thus facilitating the
verification and approval of the tests and related
UCs. As can be seen in Table 2, IDs may include the
number of UCs and scenarios.

Figure 1: Flow visualization in a UC (Leffingwell and
Widrig, 2006).

Table 1: Scenarios per UC (Leffingwell and Widrig,
2006).

Number of
scenario

Originary flow Alternate flow Alternate next Alternate next

Scenario 1 Basic flow

Scenario 2 Basic flow Alternate flow 1

Scenario 3 Basic flow Alternate flow 1 Alternate flow 2

Scenario 4 Basic flow Alternate flow 3

Scenario 5 Basic flow Alternate flow 3 Alternate flow 1

Scenario 6 Basic flow Alternate flow 3 Alternate flow 1 Alternate flow 2

Scenario 7 Basic flow Alternate flow 4

Scenario 8 Basic flow Alternate flow 3 Alternate flow 4

Number of
scenario

Originary flow Alternate flow Alternate next Alternate next

Scenario 1 Basic flow

Scenario 2 Basic flow Alternate flow 1

Scenario 3 Basic flow Alternate flow 1 Alternate flow 2

Scenario 4 Basic flow Alternate flow 3

Scenario 5 Basic flow Alternate flow 3 Alternate flow 1

Scenario 6 Basic flow Alternate flow 3 Alternate flow 1 Alternate flow 2

Scenario 7 Basic flow Alternate flow 4

Scenario 8 Basic flow Alternate flow 3 Alternate flow 4

6. Verification of identification and description of
all potential scenarios for each UC.
In short, each scenario represents a number of
possibilities to execute a UC and prevents from
testing only some potential combinations.

4.2 Phase 2: TCs’ Identification

This phase takes the following activities, which
should be assigned to the test designer:
1. Ideas for new tests are organized based on items
to be tested: functionality (UC), quality attributes,
validation of inflow and outflow, databases,
interfaces, etc. This will depend on the type of
application, technological restrictions, scope of the
project, purpose and motivation of tests, and
expertise of the test team (especially the tester’s).
2. Table 3 must be filled in. This represents the
second device generated from the proposed method
and its data is associated to consider the TC for
Scenario 02-02 (login error). Based on information
generated by the test ideas, there is one TC for
validating a “login error” upon entering invalid
characters; one TC for logins in lowercase letters;
one TC for logins lengths over 10 characters; and
one TC for blank logins. The, information related to

IMPROVING SOFTWARE TEST STRATEGY WITH A METHOD TO SPECIFY TEST CASES (MSTC)

161

all identified TCs is completed: test case ID, TC
name, expected results (values, error messages,
etc.), test level and test type. With respect to the
TC’s ID, we suggest including in the standard
nomenclature determined by the organization a UC-
scenario-TC structure, for instance, in order to
identify that 02-02-01 refers to TC 01 of scenario 02
of UC 02.
3. It is verified that all TCs have been identified for
each scenario. Then, the following phase is
addressed.

4.3 Phase 3: TCs’ Specifications

One of the most significant contributions of this
research is the third device (Design) used to describe
TCs in detail, as shown in Table 4: TCs’
specifications (TCS). This should also be completed
by the test designer and the following activities
should be performed for each TC:
1. Identification of the system’s name, UC ID,
requirement ID, scenario ID, TC ID and TC version.
This allows for laying out a bidirectional trace
between these elements: for instance, it may
determine whether all TCs were specified for the
UCs and whether all UCs were already tested (tests

scope).
2. Identification of the level and type of test
associated to the TC, the information of which is
generated by TC as per the scenarios table.
3. Identification of the test environment. The name
of the company might be indicated, provided that it
is the development or production environment. If
the company has different environments, the
environment where this particular TC will be
executed should be indicated.
4. Identification of the TC creator and tester. We
recommend that two different individuals perform
these activities so the testing process can be true
and reliable.
5. Indication of the TC’s origin date and execution
date.
6. Identification of the conditions that should be
present to execute the TC. Which are the conditions
for causing or making a user to execute a specific
event or series of events? In Table 4, we observe
that all functionalities associated to user’s validation
should be implemented. Likewise, it should be
verified that data to be used for this TC has been
validated and approved by the corresponding level,
etc.

Table 2: Scenarios for UC002.

Scenario ID Originary flow Alternate flow Alternate next Alternate flow

02-01 Basic flow

02-02 Basic flow Alternate flow 1:
Login Error

02-03 Basic flow Alternate flow 1:
Login Error

Alternate flow 3:
Cancel Press

02-04 Basic flow Alternate flow 2:
Password Error

02-05 Basic flow Alternate flow 2:
Password Error

Alternate flow 3:
Cancel Press

02-06 Basic flow Alternate flow 1:
Login Error

Alternate flow 2:
Password Error

02-07 Basic flow Alternate flow 1:
Login Error

Alternate flow 2:
Password Error

Alternate flow 3:
Cancel Press

02-08 Basic flow Alternate flow 3:
Cancel Press

Scenario ID Originary flow Alternate flow Alternate next Alternate flow

02-01 Basic flow

02-02 Basic flow Alternate flow 1:
Login Error

02-03 Basic flow Alternate flow 1:
Login Error

Alternate flow 3:
Cancel Press

02-04 Basic flow Alternate flow 2:
Password Error

02-05 Basic flow Alternate flow 2:
Password Error

Alternate flow 3:
Cancel Press

02-06 Basic flow Alternate flow 1:
Login Error

Alternate flow 2:
Password Error

02-07 Basic flow Alternate flow 1:
Login Error

Alternate flow 2:
Password Error

Alternate flow 3:
Cancel Press

02-08 Basic flow Alternate flow 3:
Cancel Press

Table 3: TCs per scenario 02-02.

Test Case
ID

TC name Expected results Test level Test type

02-02-01 Login with invalid
characters

Message 20 Error:
Invalid Login

System/
acceptance

Function/ Access
Control

02-02-02 Login with Lowercase
letters

Message 20 Error:
Invalid Login

System/
acceptance

Function/ Access
Control

02-02-03 Login length over 10
characters

Message 20 Error:
Invalid Login

System/
acceptance

Function/ Access
Control

02-02-04 Login in Target Message 20 Error:
Invalid Login

System/
acceptance

Function/ Access
Control

Test Case
ID

TC name Expected results Test level Test type

02-02-01 Login with invalid
characters

Message 20 Error:
Invalid Login

System/
acceptance

Function/ Access
Control

02-02-02 Login with Lowercase
letters

Message 20 Error:
Invalid Login

System/
acceptance

Function/ Access
Control

02-02-03 Login length over 10
characters

Message 20 Error:
Invalid Login

System/
acceptance

Function/ Access
Control

02-02-04 Login in Target Message 20 Error:
Invalid Login

System/
acceptance

Function/ Access
Control

ICEIS 2008 - International Conference on Enterprise Information Systems

162

Table 4: TCs’ Specification (TCS) 02-02-02.

System/Project ID/Name: SIS-PROJ Test Level: System/Acceptance

Use Case ID: CU-02 User’s Validation Test(s) Type(s): Function/ Access Control

Requirement ID: (solo para Caso de Uso No Funcional) Test environment: AMBIENTE1

Scenario ID/Name: 02-02 Login Error Test Case´s Author: LISI

Test Case ID/Name: 02-02-02 Login with Lowercase letters Tester´s name: Probador 1

Test Case Version: v.1. Origin Date: 10-01-07 Execution Date: 15-03-07

Condition(s) for that Test Case is executed

The user wishes enter the system. All functions related to user´s validation have been implemented. Data to be used for the
tests have been validated and approved. Certain users have been registered as valid users.

For the execution of Test Case:

Step Condition Value(s) Expected Results Obtained Results

It enters the login Log-in attempt
and presses OK.

aDM22
Message 20 Error: Invalid Login √

It enters the login Log-in attempt
and presses OK.

administrator
Message 20 Error: Invalid Login √

It enters the login Log-in attempt
and presses OK.

AdminisTRATOR
Message 20 Error: Invalid Login √

Test Case Approval Criterion : If the expected results are achieved in a 100%

Test Case´s Decision of approval: Approved: X Failed: (mark with an X the results obtained)

Test Case´s Date of Approval:_15-03-07_

System/Project ID/Name: SIS-PROJ Test Level: System/Acceptance

Use Case ID: CU-02 User’s Validation Test(s) Type(s): Function/ Access Control

Requirement ID: (solo para Caso de Uso No Funcional) Test environment: AMBIENTE1

Scenario ID/Name: 02-02 Login Error Test Case´s Author: LISI

Test Case ID/Name: 02-02-02 Login with Lowercase letters Tester´s name: Probador 1

Test Case Version: v.1. Origin Date: 10-01-07 Execution Date: 15-03-07

Condition(s) for that Test Case is executed

The user wishes enter the system. All functions related to user´s validation have been implemented. Data to be used for the
tests have been validated and approved. Certain users have been registered as valid users.

For the execution of Test Case:

Step Condition Value(s) Expected Results Obtained Results

It enters the login Log-in attempt
and presses OK.

aDM22
Message 20 Error: Invalid Login √

It enters the login Log-in attempt
and presses OK.

administrator
Message 20 Error: Invalid Login √

It enters the login Log-in attempt
and presses OK.

AdminisTRATOR
Message 20 Error: Invalid Login √

Test Case Approval Criterion : If the expected results are achieved in a 100%

Test Case´s Decision of approval: Approved: X Failed: (mark with an X the results obtained)

Test Case´s Date of Approval:_15-03-07_

7. Description of the TC procedure. This procedure
comprises steps to be taken for testing the UC
scenario through the TC approach, i.e. particular
conditions that might apply for a given step, values
used, results expected and results obtained. It should
be mentioned that the latter is included in the TCS
table upon TC execution.

If data is not properly entered, it would not be
possible to execute tests and determine the results.
Supplementary specifications should be followed to
determine the performance measures (minimum and
maximum), inception valid ranks, interface
protocols, among others.
8. Indication of TC’s approval criterion. As
observed in Table 4, the main criterion is that all
expected results must be 100% achieved.
9. The test analyst and designer verify that all TCs
have been properly specified.

4.4 Phase 4: TCs’ Execution and
Approval

Activities in this phase include the following:
1. Verification that the environment and conditions
to execute the TC are appropriate. Individuals
involved in these tests must cooperate to this
procedure.
2. The test manager and designer must authorize the
test cycle activation.
3. The tester executes all TCs and enters data of the
results obtained into each TCS Table.

4. The test manager decides on the
approval/rejection of a TC based on the criterion
established, and it should also indicate the date of
approval and, in certain cases, its signoff.
5. The test team verifies whether the test cycle
completion criterion was met to decide on the test
cycle’s fully approval or request the application of
additional tests on certain TCs for a subsequent test
cycle, until all acceptance criteria are satisfied.
6. The test team keeps all deliverables and posts the
results of the test cycles, changes, etc., obtained
during the testing process.

4.5 Phase 5: Recording and Analysing
Results

The objective is to maintain and improve the TCs
asset. This is important especially if the intention is
future reuse, in subsequent test cycles or to other
software products. This phase is centered on: (a)
determine the minimal set of additional TCs to
validate the stability of subsequent Builds, (b)
remove TCs that no longer serve a useful purpose or
have become economic infeasible to execute, (c)
conduct general maintenance of and make
improvements to the maintainability of TCs
automation, (d) explore opportunities for reuse and
productivity improvements, (e) maintain test
environment configurations and test data sets, and
(f) document lessons learned –both good and bad
practices–discovered during the TCs execution.

IMPROVING SOFTWARE TEST STRATEGY WITH A METHOD TO SPECIFY TEST CASES (MSTC)

163

4.6 Strategy Checkpoints

To ensure the proper method application and
strategy accomplishment, the following checkpoints
are required:

• Phase 1: (a) Is there any matrix of scenarios per
each system UC?, (b) Check that all scenarios in
the corresponding UC have been included in the
matrix of scenarios per UC, (c) Check for
completeness of IDs of UCs and TCs and their
correspondence with the nomenclature proposed.

• Phase 2: (a) Is there any matrix of TCs per
scenario?, (b) Check for completeness and
accuracy of IDs, names, expected results, tests
levels and test type for each TC matrix per
scenario

• Phase 3: (a) Is there any TC table with
specifications for each TC identified in the prior
stage?, (b) Check traceability among IDs of the
TCs, UCs, their requirements and scenarios, (c)
Check for accuracy and completeness of all
items indicated in the TC specification table, (d)
Were approval criteria for each TC specification
validated?

• Phase 4: (a) Were results from the execution of
TCs through field fill-in, namely obtained
results, approved/failed, date of approval, date
execution, documented?, (b) Was the test cycle
completion criterion indicated in the Test Plan
document?, (c) Were the results from tests and
changes applied during the testing process
delivered and posted?

5 RESULTS DISCUSSION AND
FUTURE WORK

The MSTC method proposed was used for 4
projects, thus obtaining significant results as to: (1)
quality of the developed products. Upon completion
of the construction phase, software systems had
already reached 90% of the expected quality; (2) the
largest project implemented 51 UCs and required
the documentation, execution and approval of 460
TCs. The TCS Table can be used to define TC
procedures associated to non-functional
requirements; and, (3) this experience established a
precedent for future projects, and defined
management indicators that may reflect, for
instance, the average number of TCs per application.
Currently, MSTC is being used by other public and
private sector organizations working in 16 projects;
therefore, the following step in this research should

be posting the results from the method application at
each organization.

6 CONCLUSIONS

This Article described a method for specifying TCs
based on UCs, by incorporating elements to verify
and validate traceability among requirements
management, analysis & design, and tests. In
addition, it evidenced that test costs might be
reduced at a mid- and long-term, since we may
resort to non-specialized testers, provided that what
will be tested, when and how? is clearly defined in
advance.

REFERENCES

Kruchten P., The Rational Unified Process as
Introduction (2nd Edition, Addison – Wesley, 2000.

Leffingwell D. and Widrig D., 2006. Managing Software
Requirements, a Use Case Approach (Second Edition,
Addison-Wesley, Pearson Education, 2006.

Grimán A., Pérez, M. and Mendoza L., 2003. Estrategia
de pruebas para software OO que garantiza
requerimientos no funcionales. III Workshop de
Ingeniería de Software, Chillán, Chile. 1-10.

Lewis W. 2000. Software testing and continuous quality
improvement 000 by CRC Press LLC Auerbach is an
Publisher of CRC Press LLC.

Perry W. 2006. Effective Methods for Software Testing.
Wiley. Third Edition.

Pfleeger S. 1998, Software Engineering, Theory and
Practice, Pretice-Hall.

Pinkster I., Burgt B., Janssen D. and Veenendaal E. 2006.
Successful Test Management. Springer and
Logicacmg.

Pressman R. 2002. Ingeniería del Software: Un enfoque
Práctico, McGraw Hill, 2002).

Sommerville I. 2000. Software Engineering. Pearson
Education.

 SWEBOK. 2004. Guide to the Software Engineering
Body of Knowledge 2004 Version. IEEE Computer
Society.

UML Testing Profile Version 1.0 formal/05-07-07. This is
a testing profile for UML 2.0.

Utting M. and Legeard B. 2007. Practical Model-based
Testing. Morgan Kaufmann and Elsevier Publisher.

ICEIS 2008 - International Conference on Enterprise Information Systems

164

