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Abstract:  This paper proposes a global model of a set of alarm sequences that are generated by knowledge based 
system monitoring a dynamic process. The modelling approach is based on the Stochastic Approach to 
discover timed relations between discrete event classes from the representation of a set of sequences under 
the dual form of a homogeneous continuous time Markov chain and a superposition of Poisson processes. 
An abductive reasoning on these representations allows discovering chronicle models that can be used as 
diagnosis rules. Such rules subsume a temporal model called the average time sequence that sums up the 
initial set of sequences. This paper presents this model and the role it play in the analysis of an industrial 
process monitored with a network of industrial automata.

1 INTRODUCTION 

A Knowledge Based System (KBS) for monitoring a 
dynamic process aims at warning the operator(s) 
about the occurrences of unsatisfactory behaviors 
with a sequence of alarms. Such a situation is now 
the standard framework in most industries and one 
of the problems is the acquisition of knowledge 
about alarm correlations in dynamic systems. 

The purpose of our work1 is to define a method 
for discovering the timed relations between alarms 
to predict undesirable alarms. The alarms we are 
concerned with can be very high level alarms like 
Sachem’s alarms, the generic KBS developed by the 
Arcelor-Mittal Group for monitoring its production 
tools (Le Goc, 2004), or low level alarms like PLC’s 
alarms (Programmable Logic Controller or industrial 
automaton) for example. Experts are convinced that 
such timed relations exist but are not able to provide 
them because this kind of knowledge is intimately 
related to the dynamics of a monitored process: tools 
must then be defined to facilitate the discovery and 
quantification of the timed relations. 
                                                 

1 This work has been partly financed by the 2i company under 
the contract n°120/06/04/2006. 

To this aim, we develop the Stochastic Approach 
for discovering temporal knowledge from a set of 
sequences of discrete event class occurrences and 
represent this knowledge with abstract chronicle 
models. An abstract chronicle model is a set of 
binary relations between discrete event classes. Such 
a model is operational when it allows predicting an 
alarm before it occurs with a minimal confidence. In 
this case, such a model is called a signature of the 
alarm. This paper shows that this model corresponds 
to a global model of the set of sequences called the 
Average Time Sequence that can be used to reason 
about the couple made with the process and its 
monitoring KBS. The Average Time Sequence is 
then a new concept that fills one the mains problems 
of the Timed Data Mining techniques (Mannila, 
2002). 

The next section presents the main works related 
to the problem of discovering a predictive model of 
alarms. Section 3 introduces the basis of the 
Stochastic Approach framework we propose to 
tackle this problem and defines the concept of 
Average Time Sequence. The use of such a model is 
illustrated with a real world industrial process in 
section 4. The paper concludes on the operational 
aspects of the proposed approach. 

173
Bouché P., Le Goc M. and Coinu J. (2008).
A GLOBAL MODEL OF SEQUENCES OF DISCRETE EVENT CLASS OCCURRENCES.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - AIDSS, pages 173-180
DOI: 10.5220/0001680701730180
Copyright c© SciTePress



2 RELATED WORKS 

The problem of discovering a signature from a 
sequence of alarms can be formulated in the 
following way: given a sequence ω, what is the 
abstract chronicle model that allows predicting the 
occurrences of a given discrete event class? 

This problem has been for example tackle in the 
context of a telecommunication network (Cordier 
and Dousson, 2000; Dousson and Vu Duong, 1999). 
This approach is based on a frequency analysis of 
alarm logs in order to discover some frequent 
“patterns” of alarms that are represented under the 
form of “chronicles”. This constitutes an application 
of Frequency Approach of the Data Mining domain 
to the content of timed data bases.  

The Data Mining domain aims at defining tools 
and methods to discover knowledge from large data 
sets. The basic principle consists in identifying a 
minimal set of relations that characterize a data set. 
The different approaches are based on the “Apriori” 
algorithm. For example, (Agrawal and Al, 1993) 
propose a method to mine association rules from a 
large sequence of purchasing transactions carried out 
by a customer. A transaction is characterized by a 
set of bought and buys item times. The problem 
consists in finding a sequence of items called a 
pattern that is frequently observed in the transaction 
sequences. To this aim, the “Apriori” algorithm 
computes the support of a pattern as the number of 
times the pattern is observed in a given data base. 
Only patterns with a support greater than a minimal 
threshold are retained. This explains why this 
approach is called the Frequential Approach. This 
approach has been extended to sequential pattern 
through a set of algorithms like AprioriAll, 
AprioriSome and DynamicSome (Agrawal and Al, 
1993). 

(Manilla and al, 1997) propose another approach 
to discover temporal patterns, called “episodes”, in a 
discrete events sequence corresponding to the alarms 
of a telecommunication network (Hatonen and Al, 
1996). An episode is a collection of events that 
appear relatively close to each other in a partial 
order. The discovering process of temporal patterns 
is based on the frequency of an episode α in a 
sequence s, which is the fraction of the number of 
temporal windows in which the episode α occurs 
over the total number of temporal windows 
contained in the sequence s. The episode α having a 
frequency over a minimal threshold is then 
considered as a temporal pattern (Winepi and 
Minepi algorithms). 

On another hand, in the Temporal Logic domain, 
Ghallab proposes the notion of chronicle model to 
represent a set of timed binary relations between 
events (Ghallab, 1996). A chronicle model is a kind 
of temporal pattern specification where nodes are 
events and links are timed binary constraints 
represented with [min, max] intervals. A chronicle 
model is a richer representation of temporal 
knowledge than an episode because it allows the 
adding of timed binary constraints between alarms. 
Ghallab’s method for discovering chronicle models 
consists in splitting a set of event sequences in 
examples and counter examples and to order the 
sequences with the time of the events. When 
forgetting the times, the method determines the 
longest patterns that are common to the examples 
and that are not included in the counter examples. 
The timed constraints between events are then added 
by experts or computed with an ad’hoc algorithm. 

Ghallab’s method is not general because it 
supposes to be able to define what an example and a 
counter example are. With the Face algorithm, 
Dousson and Vu Duong (Dousson and Vu Duong, 
1999) adapt the notion of chronicle models to the 
“Apriori” algorithm to discover recurrent chronicle 
models from a log of events but do not propose a 
sound method to evaluate the timed constraints.  

According to (Manilla, 2002), the problem of 
discovering timed relations from a set of timed data 
is still an open problem. One of the reasons is the 
combination of logical relations and temporal 
constraints (Cauvin et Al, 1998; Hanks and 
McDermott, 1994). In particular, the relations 
provided by the Frequency Approach are local 
models of the studied sequences that are difficult to 
generalize. 

The Stochastic Approach has been developed to 
tackle these difficulties and propose to discover 
abstract chronicle models from a sequence of alarms 
considered as occurrences of discrete event classes 
(Le Goc, 2004), (Bouché and Le Goc, 2004). This 
approach is based on the representation of a 
sequence of discrete alarms generated by a couple 
(Process, KBS) under the dual form of a 
homogeneous Markov chain and its superposition of 
Poisson processes. A set of tools have then been 
designed according to the Stochastic Approach and 
implemented in a Java environment called the “ELP 
Lab” (Le Goc and Al, 2006). 
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3 BASIS OF THE STOCHASTIC 
APPROACH 

A sequence ω={ok}k=0,…,m-1 is an ordered set of m 
occurrences ok≡(tk, x, i) of discrete event ek≡(x, i), 
where x∈X is the name of a discrete variable, 
i∈Ix⊆ℵ is a discrete value of x and tk∈Γ={ti}, ti∈ℜ,  
is the time of the assignation of the discrete value i 
to the variable x so that: ok≡(tk, x, i) ⇔ x(tk)=i. The 
occurrences are timed with a continuous clock 
structure (i.e. tk-2-tk-1 ≠ tk-1-tk): 
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A couple (ok, on) of two successive occurrences 
related to a variable x describes the modification of 
the values of the variable x over the interval [tk, tn[: 
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As a consequence, a sequence ω={ok} of discrete 
event occurrences ok≡(tk, x, i) concerned with a 
variable x describes the temporal evolution of a 
discrete function x(t) defined on ℵ. 
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A discrete event class is a set Cj={ei} of discrete 
events ei≡(x, i). The notation “ei::Cj” (resp. “ok::Cj” 
or “Cj

k”) denotes that the discrete event ei (resp. the 
occurrence ok≡Cj

k) belongs to the class Cj. A timed 
binary relation R(Ci, Co, [τ-,τ+]) describes an 
oriented relation between two discrete event classes 
that is timed constrained. “[τ-,τ+]” is the time 
interval for observing an occurrence of the output 
class Co after the occurrence of the input class Ci 
(equation (3)). 

3.1 Abstract Chronicle Model 

In this context, an abstract chronicle model is a set 
of binary relations with timed constraints between 
classes discrete events. Such a model is called an 
“ELP” model (ELP is the acronym of Event 
Language of Processing, (Le Goc and Al, 2006)). 
For example, the ELP model M123= {R12(C1, C2, [τ12

-

, τ12
+]), R23(C2, C3, [τ23

-, τ23
+])} of Figure. 1 is made 

of two binary relations between three discrete event 

classes. A sequence ω satisfies the M123 ELP model 
when: 
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ELP models can be used to predict the 
occurrences of discrete event classes (like C3 in the 
ELP model M123) in an unknown sequence ω’.  
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Figure 1: ELP representation of the M123 model  

To this aim, rules of the equation (5) form can 
be used in a diagnosis task. When such a rule 
predicts an occurrence of a discrete event class with 
a minimal confidence, the corresponding ELP model 
is called a “signature” (Le Goc and Al, 2006). 
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To measure the confidence of such rules, we 
define the anticipating ratio of an abstract chronicle 
model as the number of sub sequences of a sequence 
ω that matches the complete abstract chronicle 
model, divided by the number of the sub sequences 
that matches the abstract chronicle model but 
without the final binary relation (the class C3 in 
Figure 1). An abstract chronicle model is a signature 
when its anticipating ratio is equal to or greater than 
50%. 

3.2 Stochastic Representation 

When the discrete event classes are independent and 
the distribution of the inter-occurrence times of a 
discrete event class complies with a Poisson law of 
the form f(t)=1-e-λt (λ is the average number of 
occurrence in a unit of time and is called the Poisson 
rate(Cassandras and Lafortune, 2001)), the couple 
made with the process and its monitoring KBS can 
be considered as a stochastic discrete event 
generator (Le goc et Al, 2006). Consequently, a 
sequence of discrete event classes provided by such 
a generator can be represented under the dual form 
of a homogeneous Markov chain and its associated 
superposition of Poisson processes: a chronicle 
model is then connected with a specific path in the 
state space of the Markov Chain, and the timed 
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relations will be provided by the corresponding 
superposition of Poisson processes. 

To represent a sequence ω=(Ci
k)k∈K={0,…, m} as a 

Markov chain X=(X(tk); k∈K), the set of discrete 
event classes Cω={Ci}i=0…n-1 in ω is confused with 
the state space Q={i}i=0…n-1 of X. A binary sub 
sequence ω'=(Ci

k-1, Cj
k) of ω corresponds then to a 

state transition in X: X(d(Ci
k-1))=i→X(d(Cj

k))=j, 
where d is the function providing the time of a class 
occurrence. A simple depth-first backward search 
algorithm (i.e. from an output class to input classes) 
is used to generate the tree of the most probable 
paths that lead to an output class. (Le Goc and Al, 
2006)  

This tree, along with the associated matrix, is a 
first representation of the sequence of alarms. This 
result is interesting because, whatever the length of 
the sequence of alarms, it is entirely contained in a 
finite matrix. The tree of sequential relations can 
then be used to produce a functional model of the 
couple (process, KBS) (Bouché and Al, 2006), or to 
find signatures of the form of the equation (5).  

To constitute a timed binary relation of the form 
R(Ci, Cj, [τ-, τ+]), the timed constraint [τ-, τ+] is 
simply added to the sequential relation Rs(Ci, Co). 
Such a timed constraint is related with the average 
delay Di-j=E[d(Cj

k)-d(Ci
k-1)] between two successive 

occurrences ok-1::Ci and ok::Cj in a specific ωs
i-j 

sequence that contains only the occurrences of the 
two classes Ci and Cj of the sequence ωs. The 
average delay Dij between the occurrences of two 
classes Ci and Cj of ω is evaluated from two types of 
Poisson processes: 
• A Poisson process (Ni-j(t-tmin); t∈T) that counts 

the number of sub sequences ω’=(Ci
k-1, Cj

k) in 
each ωs

i-j. 
• A compound Poisson process (ND

i-j(t-tmin); t∈T) 
associated to each Poisson process (Ni-j(t-tmin); 
t∈T)  
The average delay Dij is then given by (Le Goc 

and Al, 2006): 
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In our applications, the timed constraints are 
often intervals of the form [0, 2/λi-j] because experts 
generally agree with this choice, which takes into 
account 60% of the occurrences. The role of the 
“BJT4T” algorithm (Backward Jump with Timed 
constraints for Trees) is to compute the set of the 
most probable timed binary relations R(Ci, Cj, [τ-, 
τ+]) in a set Ω of sequences ωi that leads to a specific 
discrete event class Cj. The “BJT4S” algorithm 

evaluates the anticipating ratio of each branch of the 
tree: the signatures are the branches of the tree 
having an anticipating ratio greater that an arbitrary 
threshold. 

3.3 Average-Time Sequence 

A signature subsumes a particular sequence called 
the “Average-Time Sequence” (A-TS). 

The average-time sequence ωs of a signature S 
containing k classes Ci is made with the occurrences 
of the only k classes of S. For each Ci class, the 
number of occurrences is generated and temporally 
distributed according to the Poisson rates λi of the Ci 
class. The A-TS ωs is then the result of the ordering 
of the occurrences of all the classes according to 
their time. 

The period of ωs is computed when finding the 
real number TS so that: 

∃TS ∈ℜ, ∀i∈ℵ, ∃mi∈ℵ, λi*TS = mi            (7) 

The natural number mi is the number of 
occurrences of the class Ci during the period TS. This 
means that, Ci

k being the kth occurrence of ωs, the 
occurrence of time d(Ci

k)+(j*TS) is also an 
occurrence of the Ci class:  

∀j∈ℵ,Ci
k∈ωS⇒∃Ci

m∈ωS, 
d(Ci

m)=d(Ci
k)+(j*TS)    (8) (8) 

An average-time sequence of a signature S is 
made with the following method. For each discrete 
event classes Ci of S, a standard Poisson number 
generator is used to produce mi natural numbers 
according to the Poisson rate λi of Ci. To each of the 
mi natural numbers corresponds a particular inter-
occurrence time. This time is provided when 
superposing the natural number distribution with the 
corresponding time distribution of the occurrences 
of Ci (figure 2). 
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Figure 2: Times and Numbers Distributions. 

The maximum of the two distributions match 
together: the most frequent natural number λi 
corresponds to the most frequent inter-occurrence 
time 1/λi. This means that the inter occurrence time 
corresponding to the number λi is 1/λi. So the inter 
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occurrence time corresponding to the number 1 is 
1/λ2

i. This lead to the equation 9 providing the inter-
occurrence time for any number n>0: 

2,0,
i

nnnn
λ

⇔>ℵ∈∀                    (9) 
When n=0, equation 9 leads to an inter-

occurrence time equal to 0 that means simultaneous 
occurrences. To avoid this problem, an arbitrary 
constant τi is associated with the number 0. This 
constant corresponds to a shift of the time of the 
occurrence series. In practice, we define the values 
of the constants τi from the value of the Poisson rate 
λi: 
• When λi≥1, then τi = 1/2λ2

i, (i.e. the half of the 
inter occurrence time for n=1) 

• When λi<1, τi = 1/2λi. (i.e. the half of 1/λi) 
This leads to the equation 10 that provides the 

inter occurrence time corresponding to each natural 
number of a series generated with a standard Poisson 
number generator parameterized λi.  
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The occurrence series of a Ci class is made when 

substituting each n of the natural number series with 
an occurrence of the time: the time of the preceding 
occurrence plus the inter-occurrence time given by 
the equation 10 (cf. Table 1 for an example with 
λi=0,58). An instance of the A-TS ωs of a signature 
S is then the superposition of the occurrences series 
of each class Ci of the signature S. 

Table 1: Example of Occurrence Time Computation. 

natural number inter-occurences time occurrences dates
0 0,29726516 0,29726516
3 9,21521999 9,51248515
1 3,26991677 12,78240192
0 0,29726516 13,07966708
0 0,29726516 13,37693224  

 
Using this method, an instance of the average 

time sequence ωs of a signature S can be used to 
generate sequences whose stochastic and timed 
properties are as close as necessary of the initial set 
of sequences. The average time sequence ωs 
constitutes then a global model of a given set of 
sequences according to a signature S.  

The next section illustrates the interest of this 
model when the process is a lime kiln production 
unit supervised with an industrial automaton. 

4 APPLICATION 

The application is a lime kiln unit used to produce 
quicklime by the calcination of limestone (calcium 
carbonate). The main inputs of this process are 
stones and energy flows. The main output is the 
evacuated flow of quicklime. The supervision 
system monitors 9 components of the Lime Kiln 
process (Figure 2) and detects 174 types of alarms. 
The diagram of Figure 2 are the relation of each of 
the 174 types of alarms with one of the 9 component 
of the lime kiln production unit are the only 
elements provided to analyze the given sequence. In 
other words, there is no a priori knowledge available 
about the behavior and the functions of lime kiln 
production unit. 

Stones

Crushing Lime

Filing Bucket

Furnace Evacuation

Stones

Crushing Lime

Filing Bucket

Furnace Evacuation

 
Figure 3: Structural Model of a Lime Kiln Process. 

4.1 Stochastic Representation 

To apply the Stochastic Approach, the 174 types of 
alarms are considered as 174 classes of discrete 
events and 9 variables are associated with one of the 
9 components. A class is then constructed with a 
variable and a set of 19 possible values in the 
average. Alarms are designated with natural 
numbers in the interval [2000, 2173]. 

The two conditions of the Stochastic Approach 
must be verified: the independence of the classes 
and the distribution of the occurrences according to 
the Poisson law. The first condition is guaranteed by 
the supervision system: an alarm occurrence does 
not depend on a preceding occurrence of alarm. In 
that case, the second condition is often verified (see 
(Lang and Al, 1999) for a more general discussion 
about these conditions). Figure 3 shows the counting 
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processes of the occurrences of some of the classes: 
the second condition is verified at least with 
visualization: there is no anomaly in the global 
growth of each curves. The Markov chain of the 
Stochastic representation contains then 174 states 
and 30276 potential transitions. 
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Figure 4: Part of Poisson Processes of ω.  

The analyzed sequence ω contains 2852 
occurrences and covers around 22 days. During this 
period, the global occurrences counting process of ω 
behaved like a Poisson process with a rate λ equal to 
5,4 occurrences per hour, that is to say one 
occurrence every 11’.  

4.2 Signatures of the 2139 Class 

The alarms corresponding to the 2139 class show a 
problematic level of material on the evacuation of 
the quicklime. This type of alarms is on of the most 
problematic to manage the lime kiln production unit. 

The BJT4T algorithm is used to build the tree of 
the most probable sequential relations leading to the 
2139 class. The algorithm is parameterized so that 
the tree has a depth of 4 levels, each node having a 
maximum of 4 children’s. The BJT4S extract from 
this tree the 2139 class signature of Figure 4: this 
branch is the only branch of the 2139 class tree 
having an anticipating ratio greater than 50%. 

213920982154 2164
[0s, 31h44m4s] [0s, 4h56m15s][0s, 6h56m24s]

213920982154 2164
[0s, 31h44m4s] [0s, 4h56m15s][0s, 6h56m24s]  

Figure 5: 2139 Class Signature. 

The anticipating ratio of the 2139 class signature 
of Figure 4 is 150%: 3 sub sequences of ω satisfy the 
constraints of the complete 2139 class signature and 
2 sub sequences satisfy the constraints of the 
signature without the final link (i.e. 2098→2139). In 
other words, two occurrences of the 2139 class, 
2139648 and 2139669, satisfy the timed constraint of 
the 2098→2139 relation while the corresponding 

2098640 occurrence belongs to only one triplet of 
occurrences (2154499, 2164625, 2098640) that satisfy 
the 2139 class signature without the final link. 

This 2139 class signature means that there is a 
strong probability that a problem with the evacuation 
(2139) can occur when there is a problem on the 
filling bucket (2154) which is correlated with a 
problem on the furnace B (2164, 2098).  

4.3 Average-Time Sequence 

The 2139 class signature is made with 4 classes, the 
Poisson rates of which are given in the table of 
figure 6. 

Table 2: Poisson rates of the 2139 class signature. 

2098 2139 2154 2164
Lambda 0,58 3,28 1,03 0,4  

 
Using equation (13), the period of the associated 

A-TS ωs is Ts=100 days long and contains 528 
occurrences (58 occurrences of the 2098 class, 328 
occurrences of the 2139 class, etc). The time of these 
occurrences is given by the equation (14) for each of 
these classes. The beginning of ωs is the following: 
{(0,3; 2139); (0,6; 2139); (0,9; 2139); (0,97; 2154); 
(1,2; 2139); (1,5; 2139); (1,72; 2098); (1,8; 2139); 
(1,94; 2154); (2,1; 2139); (2,4; 2139); (2,5; 2164); 
(2,7; 2139);(2,91; 2154); (3; 2139); (3,3; 2139); 
(3,44; 2098); (3,6; 2139); (3,88; 2154); (3,9; 2139); 
(4,2; 2139); (4,5; 2139); (4,8; 2139); (4,85; 2154); 
… } 

Using the properties of the exponential 
distribution, ωs can be used to produce a new 
sequence ωs’ the stochastic properties of which are 
as close as desired to the filtered sequence ω2139⊂ω 
containing the only occurrences of the 4 classes of 
the 2139 class signature. 

To this aim, a Poisson number generator using 
the Poisson rates of Table 1 allows to define the time 
of each occurrences of the ωs’ sequence so that the 
inter-occurrence time is not a constant but follows 
the exponential law λte-λt. ωs’ is then a particular 
realization of the A-TS ωs. Given such a sequence, 
the BJT4T algorithm will produce the tree of Figure 
5 for the 2139 class. 

 

Figure 6: 2139 Class Tree according to ωs’.  
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This tree can be compared with the 2139 class 
tree of the filtered sequence ω2139 Figure 6. 

 

Figure 7: 2139 Class Tree according to ω2139.  

Figures 5 and 6 differ only with the position of 
the 2098 and 2154 classes. This difference comes 
from the fact that the 2154 class has a non-
homogenous behavior in ω2139 (and consequently in 
ω): during the seven first days, the Poisson rate of 
the 2154 class is three times greater than during the 
13.9 last days. The Poisson rate of the 2154 class of 
the average time sequence ωs (and consequently ωs’) 
is closer to the Poisson rate of the 13.9 last days. 
This means that the 2154 class defines two periods 
where its Poisson differs but are constant. This leads 
to cut up ω2139 in two periods. 

It is to note that only the 2154 class Poisson rate 
differs from the first period to the second period; the 
Poisson rates of the other classes are not 
significantly different. 

Table 3: Poisson rates of the second part of ω2139.  

2098 2139 2154 2164
Lambda 0,64 3,37 0,64 0,35

Second Period 13,9 days
2098 2139 2154 2164

Lambda 0,64 3,37 0,64 0,35

Second Period 13,9 days

 
Containing only 48 occurrences, the first period 

of the sequence ω is too short to provide a 
significant tree, so no studies can be done. 

Using the same method, a new realization ωs” of 
the A-TS is made with the Poisson rates of the 
second part of the ω2139 sequence (Table 2). The 
BJT4T algorithm produces the 2139 class tree of 
Figure 7 with ωs”: 

The tree of Figure 7 is now very similar to the 
tree of any realization of the A-TS ωs (Figure 5): the 
only difference is the relative position of the leaves 
corresponding to the 2154 and the 2098 classes (at 
the left side of the trees). We supposes that the cause 
of this difference is the too short length of the 
second part of the ω2139 sequence (14 days) to be 
representative to the couple made with the process 
and its monitoring system. 

Nevertheless, we can consider that, for a given 
class Ci, the stochastic properties of the occurrences 
of the class contained in any realization of the 

corresponding A-TS ωs are very close to those of the 
filtered sequence ωCi⊂ω, the temporal properties of 
the occurrences being the same. This shows that, 
according to a signature, the corresponding Average-
Time Sequence is a global model of a sequence. 
This result is true with any signature. 

 
Figure 8: 2139 Class Tree according to ωs”.  

5 CONCLUSIONS 

This paper presents the Average-Time Sequence 
model of a log of alarms and shows that this model 
is a global model of the relations between the 
alarms. 

The modeling process is based on the Stochastic 
Approach for discovering temporal knowledge from 
a set of sequences of discrete event class 
occurrences. The Stochastic Approach represents 
such a set in the dual forms of a homogeneous 
Markov chain and a superposition of Poisson 
processes. The advantage of this approach is that the 
timed binary constraints are provided by the Poisson 
process theory and are coherent with the probability 
of the binary sequential relation between two 
classes. The discovered knowledge is represented as 
abstract chronicle models made with a set of binary 
relations between discrete event classes that are 
timed constraints. 

The paper shows that an abstract chronicle 
model usable to predict the occurrences of a discrete 
event class subsumes a global model of the 
sequence, the average time sequence. Such a model 
can be used to produce a sequence the stochastic and 
timed properties of which are as closed as desired of 
those of the given set of sequences. 

The Stochastic Approach has been used to study 
the alarms or the messages generated by a wide 
variety of monitored process like the blast furnace 
and the Sachem monitoring system (Le Goc, 2004), 
a galvanization bath and the Apache monitoring 
system (Le Goc and Al, 2006) or the wafer 
manufacturing production tools and its the 
supervision system of the STMicroelectronics 
company (Benayadi and Al, 2006). The application 
described in this paper shows that the Stochastic 
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Approach can also be applied to analyze the alarms 
generated by an industrial automaton supervising a 
production process. 

Currently, we are working at introducing an 
entropic criterion in the Stochastic Approach to 
prune the trees produced with the BJT4T algorithm 
(Benayadi and Le Goc, 2007) and at defining a 
cognitive approach of modeling dynamic systems 
that is compatible with the Stochastic Approach of 
modeling (Masse and Le Goc, 2007). 
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