
A GENERATIVE APPROACH TO IMPROVE THE
ABSTRACTION LEVEL TO BUILD APPLICATIONS BASED ON

THE NOTIFICATION OF CHANGES IN DATABASES

J. R. Coz, R. Heradio Gil, J. A. Cerrada Somolinos and J. C. López Ruiz
Departamento de Ingeniería de Software y Sistemas Informáticos, Universidad Nacional de Educación a Distancia

Ciudad Universitaria, Juan del Rosal 16, E-28040. Madrid, Spain

Keywords: Generative Programming, Software Product Line (SPL), SQL Procedural Extension Language.

Abstract: This paper highlights the benefits, in terms of quality, productivity and time-to-market, of applying a
generative approach to increase the abstraction level to build applications based on the notification of
changes in databases. Most of the databases maintain meta-tables with information about all stored tables;
this information is used in an automatic process to define the software product line (SPL) variability. The
remaining variability can be specified by means of domain specific languages. Code generators can
automatically query the meta-tables, analyze the input specifications and configure the current product. The
paper also introduces the Exemplar Driven Development process to incrementally develop code generators
and the Exemplar Flexibilization Language that supports the process implementation.

1 INTRODUCTION

Significant research lines advocating for the increase
in the productivity of the software development are
the Generative Programming (GP) (Czarnecki,
2000), the Model Driven Development (MDD) and
its representative the Model Driven Architecture
(MDA) of OMG (Object Management Group)
(Frankel, 2003), Frameworks (Gamma, 94) and
Software Product Lines (SPL) engineering
(Clements, 2002), (Verlage, 2005).

GP and MDD propose to raise the level of
abstraction of programming languages through
specifications or models. According to (Weis, 2003),
a key factor for success with these paradigms is the
automatic translation from the model to executable
code. To make this possible, the domain should be
restricted enough so that the overlaps between
systems that integrate a family overcome
discrepancies (Cleaveland, 2001).

Frameworks are considered as gray box
abstractions (Greenfield, 2004) and as a result their
reutilization demands a remarkable learning effort
and the evolution of the products have a dependency
on the framework implementation.

Early case studies have exhibited significant
barriers to adopt an SPL approach. For instance, in

the successful Diesel Engine SPL, Cummins stopped
all product deployments for six months (Krueger,
2002) As C. Krueger argues (Clements, 2002), many
organizations cannot afford to slow or stop
production for six months, even if the potential
Return On Investment (ROI) is huge.

The approach proposed in this paper is the
construction of a SPL using an approach based on
GP (Czarnecki, 2000). To build the SPL an
adaptation of the Exemplar Driven Development
(EDD) and Exemplar Flexibilization Language
(EFL) (Heradio, 2007) are used. The SPL created is
about the notification of changes in databases.

The purpose of the notification of changes in
databases is to provide a range of services to users
to make them aware of the changes that are being
produced in a database. For the construction of such
applications programmers should know certain SQL
procedural extension languages and, in some cases,
certain libraries that provide the database products.
These kinds of applications must be manually built
and the cost of development is high.

The development of the SPL presented in this
work offers a high productivity and profitability as it
will be discussed later in this paper, allowing the
automatic construction of all products of the SPL,
from an exemplar, or product modified with the
necessary flexibility, and a Domain Specific

421R. Coz J., Heradio Gil R., A. Cerrada Somolinos J. and C. López Ruiz J. (2008).
A GENERATIVE APPROACH TO IMPROVE THE ABSTRACTION LEVEL TO BUILD APPLICATIONS BASED ON THE NOTIFICATION OF CHANGES
IN DATABASES.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 421-424
DOI: 10.5220/0001679904210424
Copyright c© SciTePress

Language (DSL) for this domain.
This paper is structured as follows: section 2

presents the domain. Section 3 describes the analysis
of this domain. Section 4 summarizes EDD. Section
5 presents EFL that supports the flexibilization of
any software artifact. The section 6 gives an
overview of the profitability of the solution provided
in several study cases. Finally, the section 7
summarizes the presented work.

2 DOMAIN OVERVIEW

The research problem is to find an economic way for
implementing the change notification service in
databases. This service is responsible for
communicating the changes that happen in the
database to the subscribed users. Users can be
interested only in specific events. For example, users
may need to be reported about: insertions, deletions,
updates, login, logouts, start ups, shutdowns and
others. To implement this kind of features nowadays
databases offer different mechanisms such as
Advanced Queue, Pipes or Alert / Signals
technologies, procedural extension languages such
as PL / SQL and specialized libraries that extend
these languages such as AQ, Pipe and Alert /Signals
Libraries.

Although these utilities facilitate the
developments, products must be programmed
manually and the cost of development is high. The
development of specific products for this domain
depends not only on the specific requirements
established (priorities, time management,
subscribers, searches, granularity of the solution,
visibility, navigation between messages and so on),
but the internal structure of the database (tables,
keys, users and others).

3 DOMAIN ANALYSIS

The main requirements of this domain have been
analyzed after developing several products. Feature-
Oriented Domain Analysis (FODA) has been used in
order to specify the domain features. The FODA
notation followed (Czarnecki, 2004) uses the idea of
cardinality to solve the difficulties suffered by other
notations (Czarnecki, 2004), as suggested in
(Heradio, 2007).

A new DSL, called Notification Change Service
Language (NCSL) has been developed to gather the
domain variability. In order to derive new products,

the application engineer writes NCSL
specifications, from the user requirements, that are
completed with information automatically gathered
from the database as tables, users, fields, keys,
schemas and others.

Some elements of this NSCL describe variability
related to the internal database information (tables,
keys, schemas and others) whereas other elements
describe the events priorities, times, subscribers,
type of visibility, events to be notified by the
service, permissions and so on. Users, through a
program implemented for this purpose, specify their
needs against this NSCL.

4 EDD

EDD is a SPL methodology which takes advantage
of the similarities among domain products to build
them by analogy (Heradio, 2007).

The EDD starting point is whatever domain
product built using conventional software
engineering. The product is called exemplar. It is
assumed that this exemplar implements implicitly
the intersection of all the domain product
requirements. To satisfy the domain variable
requirements that are out of the intersection, EDD
uses the concept of exemplar Flexibilization. The
Flexibilization is the mechanism that allows
establishing an analogy relation between the
exemplar and the new product, so the new products
can be derived automatically from the exemplar. The
tool that performs the flexibilization is a domain
specific compiler (DSC), which is used to derive
automatically new products.

An adaptation of EDD has been developed,
where a NSCL is built specifying the user features
and using the necessary information from the
database. This database information is contained in
metatables and it is obtained automatically. Once the
domain specific language exist (in this case, the
NSCL), the DSC for this language is implemented.
A summary of the EDD adaptation is illustrated in
the next figure:

Figure 1: Generative model.

ICEIS 2008 - International Conference on Enterprise Information Systems

422

5 EFL

EFL is an external flexibilization technique that
supports non invasive exemplar transformations and
crosscutting flexibilizations. It is applicable to
whatever kind of software artifact and provides an
efficient generative variant construction [Heradio,
2007].

EFL is used to build the DSC that deal with the
specification variability and also with the
implementation variability in our domain case study.
EFL is currently implemented as a library of the
Ruby object oriented language (Thomas, 2004). This
implementation is distributed as Lesser GNU
General Public License (LGPL) and it is available in
different repositories as Ruby Forge [Heradio, 2008]

The most important part is that generators are
responsible for analyzing the exemplar and adapt it
in order to generate the new product according to the
given specification. Generators are also responsible
for detecting dependencies and inconsistencies in the
configuration model. This capability, in the SPL
presented in this paper, is considered essential
because the user might have selected wrong
requirement or the requirements could contain
incompatibilities among them, as combinations not
allowed. This could drive to an invalid product for
the SPL. In case of misconfigurations generators
provide a detailed report about the incompatible
features. The user can use this report to review the
selected features.

Finally, generators can analyse the internal
elements of the database to obtain all the necessary
information of the domain. Figure 2 illustrates how
the generators work: analyzing the NSCL
configuration consistency, updating information
from the database, generating the required reports
and finally getting all the products of the SPL from
the NSCL and the exemplar.

Figure 2: How Generators work.

6 STUDY CASES

The presented SPL has been employed for
conducting several case studies with different
databases: a database supporting a university that
offers courses, a control system for air navigation
that contains electronic controls that inform pilots of
changes in different aspects of navigation and
others.

Oracle database has been used in all these case
studies. Different implementation mechanisms
provided by Oracle are applied for implementing the
products. For example, it has been selected the PL /
SQL language and several libraries incorporated in
Oracle.

In all of these studies the SPL generates the
100% of the new products, covering all the features
specified. The study of investment profitability is
summarised below:

1. Generative properties and profitability. The
number of products that can be obtained with the
proposed SPL is measured. This number corresponds
to the combinations of features that have sense, that
is to say, that do not maintain dependencies or
constraints among them.

The number of products obtained in some of
these case studies carried out is tens of thousands.
This estimation is calculated using all the valid
requirements combinations.

For example, the Oracle Advanced Queue
mechanism is used in case of air navigation control
system. The number of valid feature combinations is
illustrated below, in table 1.

Table 1: Number of products that can be generated.

Type Combinations
Time Management 12

Subscriptions and Priority 4
Aggregations and Visibility 6

Waits and Granularity 9
Navigation and Searches 6

Operations 32
Total 497.664

Not Valid 124.416
Number of Products 373.248

2. Profitability Depending on the Database
size. For larger databases the code to be generated is
bigger than for small ones. The database size, in a
simplified form, depends on the number of tables
with requirements of notification changes, the
number of users of the database who subscribe to the
notification changes service and the number of fields
in each table. This study shows that the profitability

A GENERATIVE APPROACH TO IMPROVE THE ABSTRACTION LEVEL TO BUILD APPLICATIONS BASED ON
THE NOTIFICATION OF CHANGES IN DATABASES

423

increases with the size of the database, that is to say,
more code is automatically generated. Figure 3
illustrates a study of four databases with different
sizes, and the average number of code lines
generated for each product.

Lines of Code (LOC) for each Product in several
Databases

0

20000

40000

60000

Database Size

LO
C

Pipes
Queues
Signals and Alerts

Pipes 363 1.551 5.781 11.361
Queues 1.413 5.793 21.393 41.993
Signals and
Alerts

726 3102 11562 22722

1 2 3 4

Figure 3: Code Lines vs. Database Size.

In this study we have considered different
implementation technologies and databases. The
first database has the smallest size, with only 8
tables that contains changes notifications features
and with 10 subscribers to the notifications changes
service. The second one contains 50 tables and 10
subscribers. The third one contains 200 tables and 30
subscribers and in the last one there are 400 tables
and 50 subscribers. In all cases there is an average
size of the fields for each table.

3. Effort to Build the SPL. To make this
estimation, measured in lines of code (LOC), it is
taken into account: the development of the test
products developed, the exemplar, the generators
and the entire generation of the NSCL. For example,
in a database of average size (50 tables and 10
subscribers), this effort is equivalent to the
development of a dozen products.

7 CONCLUSIONS

This paper has showed the construction of a SPL
using a generative programming approach. A new
DSL, called NCSL, has been developed to gather the
domain variability. EDD and EFL [Heradio, 2007]
have been used as supporting tools to build the
product line.

The SPL presented has been applied to solve
different study cases related with change
notifications service in databases. In all of these
studies the SPL was able to generate the 100% of the
new products, covering all the requirements
specified.

The profitability analysis shows great benefits of

applying this SPL. This profitability increases with
the database size.

REFERENCES

Czarnecki, K.; Eisenecker, U. W. Generative
Programming. Methods Tools and Applications.
Addison-Wesley, 2000.

Frankel, D. John Wiley and Sons, 2003. Model Driven
Architecture: Applying MDA to enterprise Computing.

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley. 1994.

Clements, P.; Northrop, L. SOFTWARE PRODUCT
LINEs: Practices and Patterns. Boston, MA: Addison-
Wesley, 2002.

Verlage, M.; Kiesgen, T. Five years of product line
engineering in a small company. Proceedings of 27th
International Conference on Software Engineering,
2005 (ICSE 2005), pp. 534-543.

Weis, T.; Ulbrich, A.; Geihs, K. Mode metamorphosis.
Software, IEEE. Volume 20, Issue 5, Sept.-Oct. 2003
Page(s):46 – 51.

Cleaveland, J. C. Program Generators with XML and
JAVA. Prentice Hall, 2001.

Greenfield, J.; Short, K. Software Factories: assembling
Patterns, Models, Frameworks, and Tools. Wiley,
2004.

Krueger, C. Eliminating the adoption barrier. IEEE
Software, Volume 19, Issue 4, 2002, pp. 29-31.

Heradio, R. Metodología de desarrollo de software
basada en el paradigma generativo. Realización
mediante la transformación de ejemplares. Ph. D.
Thesis, Ingeniería de SW y Sistemas Informáticos de
la UNED, España. 2007.

Czarnecki, K.; Helsen, S.; Eisenecker, U. Staged
Configuration Using Feature Models. Software
Product Lines Conference (SPLC). Boston, MA, USA,
August 30-September 2, 2004, pp. 266-283.

Czarnecki, K.; Bednasch, T.; Unger, P.; Eisenecker, U.W.
Generative programming for embedded software: An
industrial experience report. ACM
SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering
GPCE’02), Pittsburgh, October 6–8, 2002, LNCS
2487, Springer-Verlag (2002), pp. 156–172

Thomas, D.; Fowler C.; Hunt, A.; Programming Ruby:
The Pragmatic Programmers' Guide. Pragmatic
Bookshelf; 2nd edition (October 1, 2004).

Heradio, 2008, A Ruby implementation of EFL in
RubyForge: http://rubyforge.org/projects/efl/

ICEIS 2008 - International Conference on Enterprise Information Systems

424

