
MESSAGE INDEXING FOR DOCUMENT-ORIENTED
INTEGRATION PROCESSES

Matthias Boehm, Uwe Wloka
Dresden University of Applied Sciences, Database Group, 01069 Dresden, Germany

Dirk Habich, Wolfgang Lehner
Dresden University of Technology, Database Technology Group, 01062 Dresden, Germany

Keywords: Enterprise Application Integration, Message Indexing, MIX, Algorithms, Data Structures, Performance.

Abstract: The integration of heterogeneous systems is still an evolving research area. Due to the complexity of integra-
tion processes, there are challenges for the optimization of integration processes. Message-based integration
systems, like EAI servers and workflow process engines, are mostly document-oriented, using XML technolo-
gies to achieve suitable data independence from the different and particular proprietary data representations
of the supported external systems. However, such an approach causes large costs for single-value evaluations
within the integration processes. At this point, message indexing, adapting extended database technologies,
can be applied in order to achieve better performance. In this paper, we introduce our message indexing
structure MIX and discuss and evaluate immediate as well as deferred indexing concepts.

1 INTRODUCTION

The horizontal integration of systems by message-
based communication via middleware products is a
widely used method of application integration to en-
sure a loose coupling of participating systems and ap-
plications. In order to reach the required data inde-
pendence, most integration platforms—like the SAP
Exchange Infrastructure (XI) or TransConnect—work
in a document-oriented way. There, external data
is translated into XML and thus could be processed
in a uniform way. Thus, the term messages refers
to XML messages with additional attributes and bi-
nary attachments. This claim is also true for the ma-
jority of workflow management systems.Due to the
document-oriented approach, access to single values
of a message (e.g., in ASSIGN or SWITCH operators)
is cost-intensive, where those costs increase with the
data size. Imagine data-centric integration processes
with several attribute evaluations for control-flow de-
termination; here, the document-oriented approach is
obviously inefficient. In order to eliminate these dis-
advantages, message indexing can be used. This leads
to a performance improvement which is proportional
to the increasing data size. Hence, in this paper, we
present a new message indexing approach in order

to enable an efficient read and write access to single
message values which are required during process ex-
ecution. Therefore, the paper is structured as follows.
In Section 2, we motivate our full approach and give
a detailed problem description. Further, we present
MIX—a transient message indexing structure—and
its processing concepts in Section 3. In Section 4,
we evaluate our approach with a number of experi-
ments showing the impact of the different concepts
and techniques. Finally, in Sections 5 and 6, we give
an overview of related work, summarize our results,
and conclude the paper. For a full version of the
paper—including all algorithms—see (Böhm et al.,
2008).
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Figure 1: MOM Reference Architecture.
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2 PROBLEM DESCRIPTION

The indexing of messages for document-oriented in-
tegration processes is very different to indexing stati-
cally stored data. These approaches often assume that
data is statically stored with a low update rate and read
optimization is the goal. However, in our application
area, high message throughput results in a high update
rate. Hence, the write performance is very important.

Architectural Considerations. In order to general-
ize document-oriented integration processes, Figure 1
introduces a Message-Oriented Middleware (MOM)
reference architecture. There, proprietary mes-
sages are received from external systems with pas-
sively listening inbound adapters. These inbound
adapters transform the incoming messages into an
internal XML message format. Those messages are
put into specific message queues, which separate
the inbound side from the outbound side. Here, mes-
sages are made persistent for scalability and recov-
ery purposes. Further, the core Process Engine
uses specific outbound adapters to actively inter-
act (pull and push) with external systems. Also,
the outbound adapters realize translations between
XML and the proprietary data format of the target
system. Thus, the right places of index maintenance
for incoming messages are the inbound and outbound
adapters because here, all attributes are scanned and
transformed into the internal XML format. The in-
dexed attributes are then used within the different in-
tegration processes ( e.g., in ASSIGN and SWITCH op-
erators). Fundamentally, the specification of which
attributes should be indexed can be explicitly defined
by a user or implicitly derived from the integration
process workflow description.

Characteristics of Message Indexing. Based on the
architectural considerations, there are specific charac-
teristics of message indexing, which allow the usage
of context knowledge and thus more efficient index
maintenance. Each message includes an sequence-
generated message ID. Thus, the message IDs are
an ascending sequence (not clean because of con-
currency) of BIGINT values and are thus advanta-
geous for the use as index tree key criteria. Further,
transformation operations within the process cause
the creation of new messages with new message IDs.
Thus, index scans must be aware of dynamic message
ID changes and dynamic attribute name changes.
Next, a high update rate (insert, update and delete)
is caused by the fact that indexed attributes are often
read only once. Finally, integration processes have a
throughput-oriented optimization goal, which offers
the possibility of asynchronous processing, where la-
tency time is acceptable.

3 MIX: MESSAGE INDEX

The message indexing structure MIX uses context
knowledge to speed up the index maintenance. In
this section, we define the core index structure and
describe our techniques for index maintenance.

3.1 Index Structure

The index structure is an extended B+ tree. Indexed
attributes are exclusively stored within the leaf nodes,
while all other nodes contain key values. Based on
this core model, we define our indexing rules, which
differ from the original B+ tree. The core index tree
comprises three types of nodes. First, each index node
comprises n−1 search keys sorted in ascending order
and n (node size) pointers to child nodes. Here, all
types of nodes could be children of index nodes and
the message ID is used as key criterion. Second, all
indexed attributes are stored at the lowest tree level
within the leaf data nodes. Such a node contains a
hashmap of several indexed attributes related to one
message ID. In this hashmap, (1) the hash values of
the XPath expression for the specific attribute and (2)
the attribute values are stored. Third, the Leaf node
pointer is used similar to leaf data nodes, but it does
not contain any materialized data but instead it has a
pointer to either a leaf data node or another leaf node
pointer.

Definition 1. We define that the MIX structure is im-
balanced under all circumstances. However, the tree
works in a self-organizing way, which lets it tend to-
wards a balanced state. Leaf data nodes are always
present on the lowest tree level.

Definition 2. Let f be the fill factor of the tree. We
define that the root node and all other index nodes of
the tree must have at least one pointer to a child node.
The index nodes are allowed to have an f of 1.0 with
n pointers to child nodes. The leaf data nodes must
include at least one (XPath expression, value) tuple
and the leaf node pointer must reference exactly one
leaf data node or leaf node pointer.

Definition 3. Let n be the node size; then, an index
node may include n−1 search keys and n node point-
ers at the most. We define that n may vary between
nodes for adaptively changing n during runtime.

Definition 4. We define that single elements or index
nodes and thus complete subtrees may be inserted into
and deleted from the index tree.

Figure 2 illustrates the message index macro ar-
chitecture. Basically, there is the core index
tree, which works according to the above pre-
sented definitions. Furthermore, all accesses to the
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Figure 2: Message Index Macro Architecture.

core index tree are synchronized using an exter-
nal lock table. For that, only the states NO LOCK,
READ LOCK and WRITE LOCK are supported. The
locking mechanism is based on hierarchical locks
for the specific message ID. Aside from the struc-
tural organization, there are four types of interac-
tions with the MIX: IXPUT(inserting indexed values
and subtrees), IXUPDATE (updating indexed values),
IXREMOVE (deleting indexed values and subtrees) and
IXSCAN (reading indexed values). Here, only IXSCAN
works in a synchronous and thus blocking way. All
other interactions may be used both synchronously
(immediate) or asynchronously (deferred). For the
case of deferred processing, we provide an insert
queue as well as a delete queue. However, a syn-
chronous IXSCAN causes the queues to be flushed.
This structure is by design write-optimized (deferred
techniques) and allows for dynamic updates of in-
dexed values with low costs.

An example MIX index structure is illustrated by
Figure 3 and shows a balanced index tree with n = 3
and nine leaf nodes. Especially the leaf node pointers
are specific to our approach. There is a pointer from
leaf node (msgID = 104) to leaf node (msgID = 103).
In conclusion, all IXSCAN104 will imply an IXSCAN103
with very low overhead. Furthermore, there is also an
indirect leaf node pointer (msgID=117) that refers to
another leaf node pointer.

3.2 Inserting Indexed Values

The insertion of indexed values is realized with the
interaction IXPUT. Here, we distinguish two tech-
niques: the immediate IXPUT and the deferred
IXPUT. The algorithm for immediate IXPUT is real-
ized in the specific node type Index Node. The mes-
sage ID, an XPath expression, an instance value and
the current depth (decremented for each index level)
are given. Basically, there is a loop over all node
pointers of the current index node, searching the right
key. If it is found, three different cases may occur.
First, the current node pointer could be NULL; then,

a new child index node is created, depending on the
given index depth. Second, the pointer could refer-
ence a leaf node. If the msgID is equivalent, the new
attribute can simply be inserted; otherwise, the cur-
rent leaf node has to be reordered or split to a new
index node. Third, the pointer is not a leaf node; then
the IXPUT event is recursively pushed down, or if the
child node is already full, it also has to be split.

Figure 3: Example Index Tree Structure.

Especially the sequence-generated message ID in
connection with the—not per definition balanced—
tree allow for optimization. If the index tree is full,
which means that it is balanced and it has a fill factor
of 1.0, the next IXPUT would result in an index split.
In order to use the context of sequence-generated
keys, we use the symmetric index grow-up. Here, the
root index node is checked to see if it is full. If it is, a
new index node with n node pointers is created. After
that, the whole old root node is inserted into the new
root tree. The result of this is that—in case that all
message IDs are inserted in sequence (default)—no
index node splits will occur any longer, which makes
the IXPUT operation really efficient.

However, there is further optimization potential.
If we know that all inserted values are (nearly) in se-
quence, the tree path search for each new value can
be optimized by a deferred algorithm which reduces
the tree path searches. The precondition for that is the
introduced insert queue, where all insert requests
are asynchronously stored. In case the QUEUE SIZE
is reached, a specific thread locks the queue and sorts
the entries with the quick-sort algorithm. Now, we
create a new index node tmp with n key slots. Fur-
ther, we know the last inserted message ID (lastID).
For each request, it is tested whether or not the mes-
sage ID is larger than lastID. If it is, the request is
inserted into tmp; otherwise, it fails and has to be in-
serted directly into the root index. Finally, the whole
subtree tmp could be inserted into the root index and
the queue can be unlocked. The deferred IXPUT
algorithm works like the immediate IXPUT, except
for the fact that complete subtrees can be inserted. It
has to be checked if the complete subtree, with given
minID and maxID, can be inserted into the match-
ing node pointer. If so, the algorithm is very similar
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to immediate IXPUT. Otherwise, an original subtree
splitting must occur. Due to cost-intensive splitting,
all leaf data nodes are simply inserted with IXPUT.

3.3 Updating Indexed Values

The update of indexed values is a very specific prob-
lem, related to integration processes. There, the
update is realized with the interaction IXUPDATE.
In analogy to the insertion of indexed values, we
contribute algorithms for two main techniques: the
immediate IXUPDATE and the deferred IXUPDATE.
Basically, an IXUPDATE ensures that multiple message
IDs may reference one leaf data node. Therefore, the
IXUPDATE is conceptually separated into an IXSCAN,
the creation of the leaf node pointer to the scanned
node, and an IXPUT of the leaf node pointer, which is
also a leaf node. Although this could be realized sim-
ply on the root index level, this would be inefficient.
Our main approach here is that the update request is
recursively pushed down along the index tree until the
old message ID and the new message ID are not con-
tained within one pointer slot. At this point, the up-
date event is separated into a tree scan and a tree put.
Thus, the conceptual separation of events is realized
at the lowest possible index level. The algorithm of
immediate IXUPDATE searches for the right key slot
using the old message ID. If a slot is determined, the
new message ID is checked to see if it also could be
applied to the slot. If so, the update request is recur-
sively applied on the slot pointer. Otherwise, the low-
est possible update level in the index has been reached
and the separation of events occurs. In addition to the
dynamic message ID update, an update request can
also initiate dynamic attribute changes (with new and
old XPath expressions). The leaf node pointer then
also contains a mapping for these attributes. Thus,
both types of dynamic updates could be realized with
one generic algorithm. The deferred IXUPDATE is
correlated to the deferred IXPUT. There is a unique
insert queue for both deferred insert and deferred
update requests. The enhancement is achieved by the
substitution of update requests with insert requests.

3.4 Removing Indexed Values

There are as many deletion requests as insert re-
quests within the index. Thus, an efficient IXREMOVE
is required. Here, we distinguish as well: the
immediate IXREMOVE and the deferred IXREMOVE.
The deferred IXREMOVE can be designed to be
lazier in order to achieve best performance. The core
algorithm of immediate IXREMOVE works as fol-
lows. It has two parameters: the message ID msgID

and a Boolean flag f orce. Note, if f orce is set to false,
then this immediate algorithm is only used for setting
delete flags as a precondition of the deferred algo-
rithm. Mainly, the algorithm comprises the search
for the right key slot. If the right one is found, it is
checked whether of not f orce is specified, whether
the child node is a leaf node and whether the child
node is unused. This latter check is caused by pend-
ing leaf node pointers (back ref counter). In case the
check has been successful, the pointer is simply set
to NULL. Otherwise, the remove event is recursively
pushed down. With this algorithm, only leaf nodes are
eliminated. All free index nodes have to be deleted by
a deferred IXREMOVE. The deferred IXREMOVE is
based on the described flagging of unused data nodes.
Figure 4 shows this concept using tree annotations
(+,-). So, if a node is flagged as deletable, it gets a
’-’, otherwise it has a ’+’. A parent node is ’-’ if all
its children are set to ’-’. The deferred IXREMOVE
only operates on the root index level, trying to cut off
complete subtrees. In conclusion, only a maximum of
n−1 node pointers and keys have to be shifted to the
left. The deferred IXREMOVE algorithm is mainly
separated into two parts: (1) the removal of subtrees
and (2) the reordering of subtrees. So, in conclusion,
the current index tree could be seen as a sliding win-
dow over all indexed values from past to future.

3.5 Reading Indexed Values

The reading of indexed values can be processed exclu-
sively with an Immediate IXSCAN. There, the com-
plexity of scanning an attribute is O(log(n)). It com-
prises the search for the right key slot. If it is found,
an IXSCAN is recursively processed on the child node.
So, implicitly, three actions may occur. First, if the
child node is an index node, the algorithm is called in
a recursive way. Second, in case of a leaf data node,
the scan is transformed into a simple hashmap lookup
using the given XPath expression. Third, in case of a
leaf node pointer, the referenced node is scanned.

Figure 4: Deferred Index Removal.
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4 EVALUATION EXPERIMENTS

The message indexing structure MIX and its opera-
tions IXPUT, IXUPDATE, IXREMOVE, and IXSCAN were
evaluated with a large set of experiments with dif-
ferent scale factors. Hence, we illustrate only the
main experiments. When doing so, we also compare
MIX with the alternatives, such as a B+ tree imple-
mentation as well as DOM and SAX message scans.
The experimental setup for the process type execution
comprises a local computer system (CS [Dual Gen-
uine Intel T2400, 1.5GB RAM]) and a Java imple-
mentation of the MIX index structure, which works in
a transient way. This means the single values only re-
side in the main memory. We chose Java due to its
relevance for document-oriented integration systems.
SAX/DOM Comparison. The index usage has to be
compared with the direct access to single values of
document-oriented messages. The difference is the
performance impact when applying the message in-
dexing to integration systems. We conducted exper-
iments to measure the performance of MIX as well
as of the XML technologies Document Object Model
(DOM) and Simple API for XML (SAX). The result is
shown in Figure 6a. Obviously, using the index, sig-
nificant performance improvements are possible. The
message index has a scanning time independent to the
message size. In contrast to this, there is an exponen-
tial scanning time for DOM, while the SAX scanning
time increases linearly for an increasing message size.
The message index is also nearly independent from
the used fill factor due to its logarithmic complexity.
B+ Tree Comparison. Then we compared MIX to a
default Java B+ tree implementation. In order to eval-
uate this issue, we conducted two experiments. The
first experiment’s focus was on the maintenance of
dynamic message ID changes. MIX can use the leaf
node pointers, while two B+ trees (values, lookup) are
required. The second experiment simply compared
the insert, delete and read performance of both index
structures. Figure 5 shows the results of both experi-
ments. Obviously, the MIX IXSCAN is always superior
to the B+ tree find and also scales better with an in-
creasing number of pointers. Although the B+ tree
insert outperforms the MIX IXUPDATE for a small
number of pointers, MIX scales much better due to
the usage of update request forwarding. In summary,
MIX is more efficient than the B+ tree in managing
node pointer references. Further, all MIX operations
are slightly superior to the B+ tree operations.
Deferred Technique Evaluation. In a next step, we
compared immediate and deferred techniques, where
the latter use context knowledge to achieve much
better performance. Thus, we conducted an experi-

Figure 5: MIX / B+ Tree Comparison.

Figure 6: MIX Operation Comparisons.

ment comparing the immediate and deferred IXPUT
as well as the immediate and deferred IXREMOVE.
The deferred techniques both use a queue size of
10. The performance was examined in dependence
on the index fill factor. Figure 6b illustrates the re-
sults. The deferred techniques are superior in nearly
all situations compared to their immediate counter-
parts. There is a large difference between immediate
IXPUT and deferred IXPUT. Although the differ-
ence between immediate IXREMOVE and deferred
IXREMOVE is not as large, it is still a good im-
provement. However, when using the deferred
IXREMOVE, performance peaks are possible.
Optimal Configurations. The chosen queue size and
the node size have measurable impact on the index
performance. We conducted two experiments for the
MIX operations in order to determine optimal config-
uration properties. First, we experimented with differ-
ent queue sizes, which are used for the deferred write
operations. There, a node size of 3, a fill factor of
100,000 and a sequence factor of 0.99 was used. Fig-
ure 6c shows the performance plot. Up from a queue
size of 10, there is a pretty constant performance with
marginal differences for increasing queue sizes but
with no significant trend towards better performance.
However, there are performance peaks, caused by the
characteristics of deferred processing. Second, we
tried to choose the optimal node size with the imme-
diate operations. The node size was expected to be a
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compromise between high write performance (large
node size) and high read performance (small node
size). Figure 6d shows the result. Up from a node
size of 8, an almost linear performance trace should
be mentioned for increasing node sizes. The perfor-
mance of read and write operations reacts in the same
way for small node sizes. However, up from a node
size of 26, the expected trend is shown.

5 RELATED WORK

Basically, we survey four fields of indexing which
are close to our approach: XML indexing techniques,
B tree optimization, B+ tree optimization, and ex-
isting work in the field of information integration.
Due to the fact that we index single message val-
ues, identified by XPath expressions, we want to
separate us from XML indexing techniques. These
could be classified into the groups structural indexing
((Chung et al., 2002), (Grust, 2002), (Haustein et al.,
2005), (Kaushik et al., 2002), and (Qun et al., 2003)),
value indexing ((Bruno et al., 2002), (Rao and Moon,
2004)) and hybrid indexing (where information re-
trieval techniques are used). Typically, when applying
such indexing techniques, multiple indexes (not appli-
cable in our context) are built, indexing all single val-
ues of a document. We adopt MIX to context knowl-
edge of integration processes. Equal approaches—
using workload characteristics—were also used for B
tree indexes ((Graefe, 2004), (Graefe, 2006), (Graefe
and Larson, 2001), and (Lomet, 2001)). There, spe-
cific techniques (e.g., buffering) are provided for op-
timizing B trees for high update rates or special hard-
ware setups. In contrast to XML indexing techniques
and B tree indexing, our index structure is very simi-
lar to well-known B+ tree indexes, where all data re-
side in the leaf nodes. In particular, we want to point
out (Chen et al., 2001) and (Chen et al., 2002), where
internal jump-pointers from the current leaf node to
the following leaf node are used in order to speed up
range scans by pre-fetching. However, due to the se-
mantic context and the type of usage, there are ma-
jor differences to our approach. In the area of inte-
gration of heterogeneous systems, there is only little
work on indexing. A very exciting approach is the
adaptation of information retrieval methods for index-
ing dataspaces (Dong and Halevy, 2007). Such an
inverted list (like the Hier-ATIL) would also be ap-
plicable for message indexing using the message IDs
as instance identifiers and the XPath expression as
keywords. However, in order to adapt to the context
knowledge, a B+ tree extension is more efficient.

6 SUMMARY AND
CONCLUSIONS

Our intent was to optimize integration processes by
applying message indexing using context knowledge
about the specific characteristics of message-based
and document-oriented integration processes. There-
fore, we developed the message indexing structure
MIX, which is able to handle the dynamic message
ID changes and dynamic attribute name changes in
a suitable way. Furthermore, we take advantage of
the integration process characteristics, the sequence-
generated message IDs, the high update rate and also
the throughput-oriented optimization goal by intro-
ducing deferred index maintenance techniques.
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