
AN IMPLEMENTATION OF XML DATA INTEGRATION

Weidong Pan, Jixue Liu and Jiashen Tian
School of Computer and Information Science, University of South Australia

Mawson Lakes, Adelaide, SA 5095, Australia

Keywords: XML, data Integration, enterprise infiormation sytsem, DTD, document, data transformation.

Abstract: Data integration is essential for building modern enterprise information systems. This paper investigates the
implementation of XML data integration through transforming XML data from different data sources into a
common global schema. Following the work our research group has done earlier, the paper is focused on the
implementation of XML data transformation. First, the proposed methodology to realize XML data integration
is sketched. Then, the representation of a DTD and document and other relevant concepts for transforming
XML data are presented. The transforming operations defined by a set of operators are outlined focusing on the
required functionality for data integration. Building upon these, the implementation of the data transformation
operations is investigated. The current implementation is reported with a simplified example illustrating how
the methodology can be applied for practical enterprise information integration.

1 INTRODUCTION

Data integration is essential for building modern en-
terprise information systems since data is normally
distributed on different platforms. In order to inte-
grate these data together to provide a unique view
for users, there is a need for technologies to imple-
ment the conversion of data from different sources to
a common unified schema. Since XML has been in-
creasingly used for data representation and exchange
across the Internet, it is of specific importance to in-
tegrate XML data from multiple data sources into a
global schema with a unique structure. This paper
investigates the implementation of XML data inte-
gration, more specifically, it aims to realize the inte-
gration through converting XML data from different
schemas into a unified global schema.

A number of earlier research has devoted to XML
data integration. The techniques proposed can be
summarized into two main procedures, scheme map-
ping and data conversion. The former aims to de-
velop techniques to map XML data from different
sources to a common global schema, through which
XML data distributed at different sources can be rep-
resented in a unique view; the latter aims to, based
on the mapping between an original and a destina-
tion schema, develop techniques to convert XML data
from different sources into a destination platform that
conforms to an integrated global schema. Data con-
version can be done through query processing or ex-
ecuting a sequence of transformation operations. By

query processing, users retrieve data from a document
and then build another document using the retrieved
data. W3C’s XQuery (Boag et al., 2007) and XSLT
(Kay, 2007) are two typical query languages. Data
conversion can also be implemented by executing a
sequence of data transformation operations defined by
a set of operators. Data transformation operators have
been proposed in a number of previous work, some
are similar to XML algebra expressions derived from
relational data model (Zamboulis, 2004). In general,
they just provide operators for XML document update
and have not provided a systematic set of transforma-
tion operators with a clear semantic. Although a few
has considered DTD transformation when document
is being transformed (Erwig, 2003), none has covered
the full DTD syntax. In addition, to the best of our
knowledge, the implementation issue of the operators
has not been well addressed and accordingly their per-
formance has not been deeply studied from the view-
points of practical applications.

To address these problems, our research group has
proposed a set of XML data transformation operators
to realize XML data integration (Liu et al., 2006).
Compared with other data transformation operators,
our operators include two types of transformation: 1)
DTD transformation, and 2) document transforma-
tion. This can ensure the output documents of the
operators always conform to the output DTDs, which
is critical to the semantics of output data. Our op-
erators are defined with the consideration of the full
syntax of DTDs and documents, especially the nested

111
Pan W., Liu J. and Tian J. (2008).
AN IMPLEMENTATION OF XML DATA INTEGRATION.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 111-116
DOI: 10.5220/0001677401110116
Copyright c© SciTePress

brackets in element type definitions, multiplicity con-
straints attached to those nested brackets, and disjunc-
tion. They are complete for the transformation of
DTDs and documents. In addition, they are semanti-
cally traceable when being used to realize XML data
integration; each has a particular intention and creates
a particular semantic effect towards the overall goal.
Up to this point, we have completed a preliminary im-
plementation of these operators using Java and JSP
techniques. This paper is to report our recent research
in XML data integration, focusing on the implemen-
tation of the operators, as the performance analysis
for the operators has been presented in another paper
(Tian et al., 2008).

The paper is organized as follows. In Section 2, an
overview of the proposed methodology is presented.
Section 3 illustrates the representation of XML data,
providing some essential concepts and terms. Section
4 describes the data transformation operations defined
by the data transformation operators. Section 5 looks
into the implementation of the operators. Section 6 re-
ports the current implementation and presents a sim-
plified example to illustrate how the approach is used
in practical enterprise information integration appli-
cations. The final section summarizes the paper and
indicates the further work.

2 OVERALL DESCRIPTION OF
OUR METHODOLOGY TO
REALIZE XML DATA
INTEGRATION

As stated in the previous section, what we aim to
achieve is XML data integration by converting XML
data to a unified schema from different sources with-
out losing valuable semantic information. It is com-
plicated by the flexible XML syntax that allows differ-
ent ways to represent the data of same semantics. We
realize XML data conversion using a set of transfor-
mation operators that supply enough transformation
power and preserve the data semantics to a certain de-
gree.
The proposed methodology to achieve XML data in-
tegration is through data transformation. All the
DTDs and the conforming documents from different
data sources are converted to a unified XML format
that conforms to the integrated global schema. As
illustrated in Figure 1, in the conversion of a DTD
from a particular source, a four-tuple expression is
built based on the given DTD file. Then, the tuple ex-
pression is transformed to a new one through execut-
ing a sequence of data transformation operations, de-

DTD
file

Source

conforms to

XML
file

Destination

Transform the
document trees
by executing a
series of
transformation
operations

Restore the
transformed
tuple
expression
into a DTD
file

Restore the
transformed
document
trees into an
XML file

supplies
information

conforms to

DTD
file

XML
file

Transform the
tuple expression
by executing a
series of
transformation
operations

Build
document
trees from
the XML
file

Build a
four-tuple
expression
from the
DTD file

Figure 1: Framework for XML data transformation.

fined by a set of operators. After the transformation,
the new tuple expression is restored into a new DTD
file, achieving a conversion from the previous DTD
to a new one. The transformation of an XML doc-
ument from a particular source to a targeted schema
has a similar process except that it requires the sup-
port from the transformation of its conformed DTD
to ensure the output document has a compatible se-
mantic structure.

In the sections that follow, we will elaborate the
methodology outlined here.

3 XML DATA REPRESENTATION

3.1 DTD Representation

A DTD defines the structure of its corresponding doc-
uments by a list of element type declarations. In the
proposed approach, this information is represented by
a four-tuple D = (EN,G,β,ρ), where EN is the set of
the element names in the DTD; G is the set of type
constructors which define the elements; β is the set of
the functions connecting an element with its type con-
structor; and ρ is the root of the DTD. Figure 2 shows
a simplified DTD example and its corresponding tu-
ple expression. It is extracted from a DTD used in a
publishing company for publication information.
Note, to save space, the headers and the string type
#PCDATA in the DTD are intentionally left out. An
element in G can be a single element, or a component
including multiple elements in conjunctive or disjunc-
tive sequences. For example, if g ∈G, then g can be in
the following forms: g = e (e ∈ EN), g = Str (Str is a
symbol denoting #PCDATA), or g = g1,g2 or g1|g2 or
[g]c, where g1 and g2 are recursively defined, and c ∈
{‘?’, ‘1’, ‘+’, ‘∗’}. The multiplicity c defines the mul-
tiplicity constraints of g. Transforming a DTD also
involves the transformation of the multiplicities. For
handling multiplicities, ‘?’, ‘1’, ‘+’ and ‘∗’ are rep-
resented by the intervals [0,1], [1,1], [1,n] and [0,n],

ICEIS 2008 - International Conference on Enterprise Information Systems

112

<!ELEMENT root (name,publ)*>
<!ELEMENT publ (year,(book|article)+)*>
<!ELEMENT book (title,ISBN, price)>
<!ELEMENT article (title,journal,issue?,page)>

(a) A Simplified DTD example
EN = {root,name, publ,year,book,article, title, ISBN,

price, journal, issue, page}
G = {Str, [name, publ]∗, [year, [book|article]+]∗, [title,

ISBN, price], [title, journal, issue?, page]}
β(root) = [name, publ]∗,β(publ) = [year, [book|article]+]∗,
β(book) = [title, ISBN, price],
β(article) = [title, journal, issue?, page],
β(year) = β(name) = β(title) = β(ISBN) = β(price) =
β(journal) = β(issue) = β(page) = Str.

(b) The tuple expression of the DTD example

Figure 2: A DTD example and its tuple expression.

respectively. The operations of two multiplicities c1
and c2 are conducted relying on the operations of their
intervals. Thus, c1⊕ c2(= c1c2) has the semantics of
the multiplicity whose interval encloses the intervals
of c1 and c2, e.g., +? = ∗ and 1? =?. Similarly, c1	c2
is the multiplicity whose interval equals to the inter-
val of c1 taking that of c2 and adding that of 1, e.g.,
?	? = 1 and ∗	+ =?.

3.2 Document Representation

A well-formed XML document is a textual rep-
resentation of data and is composed of elements
with hierarchically nested structures as defined in
its corresponding DTD. In our methodology, a doc-
ument is represented by a series of trees T = (e :
val T1 T2 · · · Tm), where T1 T2 · · · Tm are recursively
defined child trees of T , e : val is the root of T and
the parent of T1 T2 · · · Tm, and e ∈ EN, val is a text
string if the root node contains a value, otherwise, it
is omitted. Figure 3 is an example showing an XML
document represented by such trees.

3.3 Hedge and Hedge Conformation

A hedge H is a sequence of trees under one
node in a document. For instance, in the doc-
ument shown in Figure 3, T , T1T2, T3T4T5, and
(title:ABC)(ISBN:-345)(Price:50) are four hedges. A
hedge may contain smaller hedges. Here our in-
terest is in which child trees of a node belong to
a hedge conforming to a specific type construc-
tor. For example, let g+ = [A, [B,C?]∗,D?]+, β(e) =
g+ and T =(e((A)(B)(B)(C)(A)(B)(C)(D))), then hedge
(A) conforms to [A], hedge (B)(B)(C) conforms to
[B,C?]∗, hedge (A)(B)(B)(C) conforms to g, and hedge
(A)(B)(B)(C)(A)(B)(C)(D) conforms to g+. A hedge H
conforms to g is denoted by Hg.

By using the hedge notation, the child trees of a
node can be logically split and thus, the cardinality

constraints of a structure can be checked.

<root>
<name>M. Fox</name>
<publ>
<year>2006</year>
<book><title>ABC</title><ISBN>-345</ISBN> <price>50</price></book>
<book><title>DEF</title><ISBN>-302 </ISBN><price>120</price></book>

<year>2005</year>
<book><title>XYZ</title><ISBN>-145</ISBN> <price>180</price></book>
<article><title>FGH</title><journal>J1</journal><issue>2</issue><page>55-58

</page></article>
<year>2004</year>
<article><title>XXX</title><journal>J2</journal><page>20-24</page></article>
<article><title>T8</title><journal>J1</journal><issue>2</issue><page>8-15

</page></article>
</publ>
<name>K. Page</name>
<publ>
<year>2006</year>
<book><title>YYY</title><ISBN>-452 </ISBN> <price>200</price></book>

<year>2004</year>
<book><title>ZZZ</title><ISBN>-223</ISBN> <price>220</price></book>

<year>2003</year>
<article><title>GG</title><journal>J2</journal> <page>75-80</page></article>
<book><title>TTTT</title><ISBN>-243</ISBN><price>180</price></book>

</publ>
</root>

(a) A simplified document example
T = (root: T1 T2)
T1 = ((name: “M. Fox”) (publ: (T3 T4 T5))), T2 = ((name: “K. Page”) ···)
T3 = ((year: “2006”) (book: ···))
T4 = ((year: “2005”) ···), T5 = ((year: “2004”) ···)
······

(b) The document trees for the example

Figure 3: A document example and its tree expression.

4 XML DATA
TRANSFORMATION
OPERATIONS

In the proposed methodology, the transformation of
XML data is implemented through executing a series
of data transformation operations against the tuple ex-
pression and the document trees. The data transfor-
mation operations are defined by a set of operators.
Because of the syntax differences between DTD and
document, each operator has defined two parts: one
for transforming the DTD and the other for transform-
ing its conforming documents. The formal definition
of each operator has been presented in (Liu et al.,
2006). This section will provide an overall descrip-
tion of the data transformation operations defined by
those operators.
The DTD transformation operation that each opera-
tor performs is listed in Table 1. Because the doc-
ument transformation operation of each operator is
to convert a given document into one with a struc-
ture that conforms to the transformed DTD, the ta-
ble also reveals the information for what transfor-
mation operation will be carried out on the con-
forming document by each operator. For instance,
unnest operator converts the DTD β(e) = [g1,g+

2]
into a new DTD β1(e) = [g1,g2]+. The operator
also transforms the document by converting the hedge

AN IMPLEMENTATION OF XML DATA INTEGRATION

113

Table 1: The DTD transformation operation of each opera-
tor.

Operator DTD transformation operations
opin opin([gc1

1 , · · · ,gcn
n]c)−→ [gc1 ?

1 , · · · ,gcn ?
n]c	? ,

where c⊇?
opout opout([gc1

1 , · · · ,gcn
n]c)−→ [gc1	?

1 , · · · ,gcn	?
n]c? ,

where i = 1, · · · ,n(ci ⊇?)
min(cc, i, [gc1

1 | · · · |g
ci
i | · · · |gcn

n]c)−→ g = [gc′1
1

min | · · · |gc′i
i | · · · |g

c′n
n]c	cc , where c⊇ cc and if i = 0:

∀ j = 1, · · · ,n(c′j = c jcc); else i ∈ [1, · · · ,n]:
c′i = cicc ∧∀ j 6= i(c′j = c j)

mout(cc, i, [gc1
1 | · · · |g

ci
i | · · · |gcn

n]c)−→ g = [gc′1
1 |

· · · |gc′i
i | · · · |g

c′n
n]ccc , where if i = 0 : j = 1, · · · ,n

mout (c j ⊇ cc ∧ c′j = c j	 cc); else i ∈ [1, · · · ,n]:
ci ⊇ cc ∧ c′i = ci	 cc and ∀ j 6= i(c′j = c j)

rename rename(e,e1)−→ e1 , where e1 6∈ parent(e)
shi f t Let g = g1,g2 , shift(g1,g2)−→ g = (g2,g1)
group group(g)−→ [g]1

ungroup ungroup([g]1)−→ g
expand Let ge ∈ g∧ e 6∈ parent(ge), then

expand(ge,e)−→ g = e∧β(e) = ge

collapse Let gp = ec ∧β(e) = [ge]c1 and ge ∩ parent(e) = φ

then collapse(e)−→ gp = [ge]cc1

nest Let g = [g1,g
c2
2]c ∧ c⊇+,

nest(g2)−→ g = [g1,g
c2+
2]c

unnest Let g = [g1,g
c2
2]c ∧ c2 = +|∗,

unnest(g2)−→ g = [g1,g
c2	+
2]c+

f act Let g = [[g0,g1]1| · · · |[g0,gh]1]c , then
fact(g0)−→ g = [g0, [[g1]1| · · · |[gh]1]1]c

de f act Let g = [g0, [[g1]1| · · · |[gh]1]1]c , then
defact(g0)−→ g = [[g0,g1]1| · · · |[g0,gh]1]c

Let g1 = ec1
1 , · · · ,ecm

m and g2 = ēc̄1
1 , · · · , ēc̄m

m ,
merg where ∀ i = 1, · · · ,m(β(ei) = β(ēi)),

then merg(g1,g2)−→ [ec1 c̄1
1 × · · ·×ecm c̄m

m]+

Let gc = [ec1
1 , · · · ,ecm

m]c , c = ∗|+, then split(g)−→
gc̄1

1 ,gc̄2
2 , · · · ,gc̄h

h , where h≥ 2 and c̄1 = c	+, c̄2
split = · · ·= c̄h−1 =?, c̄h = ∗ and g1 = [ec1

11, · · · ,e
cm
m1],

g2 = [ec1
12, · · · ,e

cm
m2], · · · , gh = [ec1

1h, · · · ,e
cm
mh] and

∀ i = 1, · · · ,m(ei1 = ei ∧ ∀ j = 2, · · · ,h(β(ei j) =
β(ei))) and all ei j (i = 1, · · · ,m; j = 2, · · ·h) are
distinct and are not in parent(g)
Let g = [ec1

1 , · · · ,ecm
m]cg , f = [ēc̄1

1 , · · · , ēc̄w
w]c f ,

∀ ei ∈ g(β(ei) = Str), ∀ ē j ∈ f (β(ē j) = Str),
pro j c1, · · · ,cm, c̄1, · · · , c̄w ∈ [1,?], c f⊇cg and ∀ ēc̄ j

j ∈
f (j = 1, · · · ,w)(if ∃ eci

i ∈ g so that ei = ē j then
c̄ j⊇ci , else c̄ j =?), then proj(g, f)−→ f

Hg1 Hg2
1 · · · Hg2

m which conforms to β(e) into a hedge
Hg1 Hg2

1 · · · Hg1 Hg2
m that conforms to β1(e).

The operations that transform a DTD and its conform-
ing documents into a target schema from its original
schema progress in two recognized phases. In the first
phase, the XML data is converted into a flat form;
and in the second phase, the flat form is converted
into the target schema. A flat form is defined by
β(e) = [gc1

1 | · · · |g
cn
n]c, where n ≥ 1 and ∀i = 1, · · · ,n(ci =

1|?∧ gi = [e
ci1
i1 , · · · ,ecimi

imi
]),∀ j = 1, · · · ,mi(ei j ∈ EN ∧ ci j =

1|?∧β(ei j) = Str). Obviously such a flat form has the
minimum layers of brackets to keep the semantics of
disjunctions and conjunctions. It can help to simplify
the comparison of two data schemas. Here the idea is
to respectively convert the original schema βs(e) and
the target schema βt(e) into the flat form Bs(e) and
Bt(e), and then convert Bs(e) into Bt(e) through a se-
ries of projection operations. Suppose the operation
sequence from βt(e) to Bt(e) is Φ, then carry out the
revered sequence Φ−1 against Bt(e) to convert it into

an equivalent schema β′s(e). By this process, βs(e)
is converted to β′s(e), which agrees with the structure
defined in βt(e). Note all the operations in Φ−1 are
respectively the inverse operations in Φ, e.g., if min
is executed in Φ, then the corresponding operation is
mout in Φ−1.

5 IMPLEMENTATION OF THE
XML DATA
TRANSFORMATION
OPERATIONS

5.1 Main Challenges

There are a number of challenges in the development
of the XML data transformation operators when is-
sues such as information preservation, nested brack-
ets, and mutually nested conjunction and disjunction
are considered. Obviously these issues must be ade-
quately addressed for practical enterprise information
integration applications.

It is essential to preserve the semantics of data
when carrying out a data transformation. The rela-
tionships between data elements must be preserved.
For example, before and after a data transformation,
it is desired that the title and ISBN of a book are put
under the same element. This derives a requirement
that the data transformation operations must be able
to be reversed. Although our operators have been de-
fined by carefully considering this requirement, it is
very complicated to realize the reverse due to the con-
sideration of the full XML syntax. As an example, let
β1(e) = [g?

1|g2]∗, if we do min(?,0, [g?
1|g2]∗), we’ll get

β2(e) = [g??
1 |g

?
2]
∗	?, that is [g?

1|g
?
2]

+because ?? =? and
∗	? = +. Clearly we cannot go back to the origi-
nal β1(e) by doing mout(?,0, [g?

1|g
?
2]

+) because in that
case, we attain β3(e) = [g1|g2]∗. A solution to such
problems is not to carry out the multiplicity opera-
tion immediately but just keep the information. That
means we should store the operation ?? attached to g1
in the β2(e) in a particular data structure, rather than
getting their operation result immediately. This leads
to the data structure and the algorithm implementing
the operations more complicated.

5.2 Overall Implementation
Framework

The overall framework for implementing a data trans-
formation operator can be briefly described as fol-
lows. Based on the element e to be operated, the β(e)

ICEIS 2008 - International Conference on Enterprise Information Systems

114

is located from the tuple expression built from a given
DTD, and then its output part is updated. This real-
izes the conversion from β(e) to β1(e), the latter will
determine the transformed DTD of the operator. The
β(e) is also provided for the document transforma-
tion. The node e in the document is found through
parsing the document tree, then all the hedges con-
forming to β(e) under the node are converted into
the new ones conforming to β1(e). The conversion
requires considerable complicated operations against
the hedges, including comparison, group, modifica-
tion, re-structure, etc.

5.3 The Implementation of Document
Transformation

To transform a document from its original schema
into a targeted one by using our operators, five tasks
must be performed: 1) construct document trees from
the given XML file; 2) locate the nodes to be operated
in the document trees; 3) identify the hedges requir-
ing conversion under each of the nodes; 4) transform
the hedges into a new format according to the opera-
tor; and 5) store the modified document trees into an
XML file.

Some of the tasks can be accomplished with the
help of the XML DOM parser (Maruyama, 2002). It
is invoked to traverse the document tree, and when
the node e to be operated is found, it transmits all its
child trees to a procedure. The latter identifies the
hedges that conform to the β(e) provided by the DTD
transformation. If such a hedge is identified, then task
4 will start and the hedge will be converted according
to the definition of the operator. At the last, an XML
file is built by storing the new hedges to it, which can
be accomplished by the parser.
An algorithm has been developed to identify the
hedges that conform to a particular type definition
from the child trees of a node. It splits the child trees
into logic groups using the hedge notations and then
checks their conformation to a given type definition.
Its input arguments include: 1) a type definition ex-
pression gg to which the child trees conform; 2) a type
constructor gg1 to which the hedges to be identified
must conform; 3) the child trees of a node; and 4) an
index from which to start the search in the child trees.
In the algorithm, gg is used as the rule to parse the
child trees, gg1 is used as the criterion to check if a
hedge is the one to be identified.

The algorithm produces two indexes as its output.
The elements between them in the child trees form the
hedge identified by the algorithm. Due to the space
limit, we are not able to provide the algorithm in this
paper. The interested readers can contact us to get it.

6 THE OPERATOR PACKAGE
AND ITS APPLICATIONS FOR
ENTERPRISE INFORMATION
INTEGRATION

To apply the proposed methodology to realize enter-
prise information integration, we have developed a
Complete XML Data Transformation System. Fig-
ure 4 shows its entry interface. From the interface,
users can, across the Internet, perform various data
transformation to realize enterprise information inte-
gration. They can carry out the data transformation
in a step-by-step mode or ask the system to automati-
cally accomplish a series of transformation operations
for them.

Figure 4: The entry interface of the system.

In the following, we will briefly illustrate the appli-
cations of the method in practical enterprise informa-
tion integration via an example. Recently, publica-
tions are no longer just the distribution of the printed
works, e.g. book or journal. They now include vari-
ous electronic media, e.g. CD, web, etc. In different
publishing companies, the publication information is
normally encoded in different XML formats. It thus
requires techniques to integrate these information to-
gether to provide users with publication information
in a unified format. Suppose an enterprise informa-
tion system adopts the DTD shown in Figure 5 to
provide users with publication information. Note the
headers and the string type #PCDATA of the DTD are
not included in the figure to save space. Clearly in
order to provide users with publication information
using such a structure, all the relevant publication in-
formation encoded in other formats, including the one
shown in Figures 2 and 3, must be converted to match
the structure.
Our methodology can be used to realize the publica-
tion information integration. The basic process is, by

AN IMPLEMENTATION OF XML DATA INTEGRATION

115

using the data transformation operators, publication
information encoded in other format is converted to a
flat form, and then further converted into an equiva-
lent structure which conforms to the integrated global
schema.

<!ELEMENT root (course,ref*)*>
<!ELEMENT ref (book|article|VCD|videoTape)>
<!ELEMENT book (title,author,publisher,ISBN,ISSN?,year)>
<!ELEMENT article (title,author,source+)>
<!ELEMENT VCD (title,publisher,ISSN)>
<!ELEMENT videoTape (title,publisher,ISSN)>
<!ELEMENT source (URL*|conference|journal)>
<!ELEMENT conference (cname,organizer,venue,time,URL?)>
<!ELEMENT journal (jname,Vol,No?,PG?)>

......

Figure 5: A common global DTD structure.

7 SUMMARY AND FURTHER
WORK

This paper has presented a framework for implement-
ing XML data integration via converting XML data
from different data sources to an integrated global
schema. The representation of DTDs and documents,
and the transforming operations of XML data, de-
fined by a set of operators, have been illustrated. The
implementation of the transformation operations has
been investigated and a package of the operators has
been reported. In the proposed method, the full XML
syntax has been covered, including nested brackets in
element type definitions, multiplicity constraints at-
tached to those nested brackets, and disjunction, for
which other work has not provided sufficient support.
Using the methodology, the transformed documents
always conform to the transformed DTDs, which is a
property that is not possessed by any query languages
and algebras where users require detailed program-
ming of the transformation procedure. With our work,
users are freed from using complex language syntaxes
and they just need to combine operators for achieving
their desired XML data integration.

Our next work includes the refinement of the oper-
ators and the automated XML data conversion using
the operators according to a sequence of operations
defined based on the mapping between the original
and target schema. The latter is also the one we will
continue to investigate.

REFERENCES

Boag, S., Chamberlin, D., Fernandez, M. F., Florescu, D.,
Robie, J., and Simeon, J. (2007). Xquery 1.0: An
xml query language. 1st International Conference on
Template Production.

Erwig, M. (2003). Toward the automatic derivation of xml
transformations. LNCS 2814 - ER 2003 Workshops
ECOMO, IWCMQ, AOIS, and XSDM Proceedings,
pages 342–354.

Kay, M. (2007). XSL Transformations (XSLT), Version
2.0. http://www.w3.org/TR/xslt20/.

Liu, J., Park, H., Vincent, M., and Liu, C. (2006). A for-
malism of XML Restructuring Operations. LNCS -
ASWC, pages 342–342.

Maruyama, H. (2002). XML and Java: developing Web ap-
plications. Addison-Wesley, Boston, Massachusetts.

Tian, J., Liu, J., Pan, W., Vincent1, M., and Liu, C. (2008).
Performance Analysis and Improvement for Transfor-
mation Operators in XML Data Integration. APWeb
08, pages 214–226.

Zamboulis, L. (2004). Xml data integration by graph re-
structuring. BNCOD, pages 57–71.

ICEIS 2008 - International Conference on Enterprise Information Systems

116

