
COMBINING DIFFERENT CHANGE PREDICTION
TECHNIQUES

Daniel Cabrero
Spanish Ministry of Internal Affairs, Traffic Division, C/ Josefa Valcárcel 44, Madrid, Spain

Javier Garzás
Kybele Consulting S. L. Madrid, Spain

Mario Piattini
Alarcos Research Group, University of Castilla-La Mancha, Ciudad Real, Spain

Keywords: Change prediction, object-oriented design, selectors of change.

Abstract: This work contributes to software change prediction research and practice in three ways. Firstly, it reviews
and classifies the different types of techniques used to predict change. Secondly, it provides a framework for
testing those techniques in different contexts and for doing so automatically. This framework is used to find
the best combination of techniques for a specific project (or group of projects) scenario. In third place, it
provides a new prediction technique based on what the expectation of change is, from the user’s point of
view. This new proposal is based on a gap found in the relevant research, during the course of a review of
the relevant literature.

1 INTRODUCTION

The maintenance cost of a software system is
directly related to how often is it expected to change
in the future (Wiederhold, 2006), and thus to how
expensive it is to modify that system. In this sense,
in order to optimize maintenance costs, it is possible
to find improvement possibilities for a given design,
but only “improvements related to artifacts having a
bigger change expectancy will really save costs in
later phases” (Cabrero et al., 2007).

This is an example of what can be found right
across the pertinent literature. Change prediction
techniques can be used for a wide range of purposes,
such as testing priorization, reengineering planning,
or artifact tracing.

Given the importance of change prediction,
many proposals to do with this have been presented
in the last decades. Thus, in order to summarize all
the available information, this paper reviews the
related research work regarding change prediction
and provides a classification of change prediction

techniques, consisting of three categories. This
classification depends on the source of information
used to carry out the estimation.

During the literature review, we realised that
there is a need for more research that addresses the
accuracy of the different proposals. In other words,
the literature did not give us an insight into which
techniques are supposed to be the most efficient for
each specific context of development.

This paper proposes a new technique that gathers
together all the preceding research work on
predicting change in object-oriented systems. This
new proposal is called Automatic Heterogeneous
change prediction (AHCP). This name comes from
the fact that we propose to evaluate, automatically,
the behaviour of each change prediction approach on
the precedent releases. The aim is also to use this
information to apply the best combination of
techniques to the next releases.

The literature review also highlighted a new gap
in the research. We did not actually find any change
prediction technique based on the user input. So in
this paper we also propose a fresh approach that

57
Cabrero D., Garzás J. and Piattini M. (2008).
COMBINING DIFFERENT CHANGE PREDICTION TECHNIQUES.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 57-63
DOI: 10.5220/0001675800570063
Copyright c© SciTePress

identifies which design artifacts will change, using
the estimated requirement changeability that is
extracted from the different stakeholders.

The remainder of the paper is organized as
follows. Section 2 describes the related research work
on change prediction, including our new proposal
based on user input. Section 3 points out what is
lacking in the existing approaches. Section 4
describes in more detail the AHCP technique
proposed in this paper. Finally, section 5 draws some
conclusions and identifies future research work.

2 CHANGE PREDICTION
APPROACHES

In the context of this work, we performed a review
of the literature on change prediction techniques. As
a result of the review, we identified several
interesting contributions focusing on the probability
of change. We classified those proposals into three
different approaches:
• Review of historical information
• Analysis of static structure and properties
• Extraction of user information
As regards the last one of the above approaches, a
new method called CORT (Change Oriented
Requirement Tracing) is proposed in this paper.

2.1 Historical Information Review

Predicting the future is a hard task indeed. We can,
however, study in detail what happened in the past,
and expect a similar behaviour in the near future. In
terms of change prediction, (Girba et al., 2004)
concludes that there is an “empirical observation that
classes which changed the most in the recent past
also suffer important changes in the near future”.

This technique reviews which artifacts have
changed throughout the system’s history. A good
option in the application of this technique is to
divide the whole life of the project into releases.
Table 1 shows an example of data extraction with
three releases: R1, R2, and R3. The idea is to count
the registered changes for each release in order to
estimate the next release changes.

Table 1: Extraction per release of historical information
data.

Number of Changes per Release Artifact
R1 R2 R3

Art. 1 3 0 1
Art. 2 5 1 3
Art. 3 0 4 2

Table 1 presents information that can be used in
several ways to predict changes. Release change
(Changesn+1) is calculated, then, as the average of
the previous changes in the releases, that is, the sum
of the changes of the previous releases (Σn Changesn)
divided by the number of releases (n), as set out in
Equation 1.

Changesn+1 = (Σi=(1...n) Changesi) / n (1)
Table 2 shows the application of Equation 1 in

the data presented in Table 1.

Table 2: Change prediction for the next release, using
historical information.

Artifact Estimated number of changes
Art. 1 4/3 = 1,25
Art. 2 9/3 = 3
Art. 3 6/3 = 2

To complete this approach, we can also take into
account that recent changes may have more relative
importance than old changes. (Girba et al., 2004)
used a technique called “Yesterday's Weather”,
which uses different metrics that assign a different
importance to changes, depending on when they
occur. For further information we would refer you to
their work.

(Sharafat & Tahvildari, 2007) noted that this
estimation would depend on the Time Between
Releases (TBR). “When the time between
consecutive releases is very short, an overestimation
can be observed; the opposite is true when this
period is longer than average”. To achieve the
prediction of change per unit of time, they proposed
the use of a polinomial technique.

2.1.1 Advantages and Drawbacks

The main advantage of this technique is that it can
be easily automated, but there are two pre-requisites
for its use. First of all, we need to have all this
information available in a Configuration
Management Tool. Secondly, this tool must have
already been used for a long enough period of time
to receive a representative amount of change
requests.

2.2 Static Structure/Properties
Analysis

Some researchers have realized that structures and
properties of an object-oriented design can identify
change-prone objects. An example of change
prediction based on static structure could be a
typical “god object” scenario where an object sends

ICEIS 2008 - International Conference on Enterprise Information Systems

58

messages to many other objects. This object is likely
to have a high probability of change, because when a
referenced object changes its interface, the change
may be propagated to the first object.

Properties or code structures could also point to
a change-prone object. The size and number of
methods of an object can also be an indicator of its
probability of change. The existence of code
structures, such as big case statements or any other
Bad Smells (Fowler, 1999) can also highlight a
bigger probability of change.

Those techniques have proved to be useful in
predicting change in each design artifact and
component. (Tsantalis et al., 2005) proposed a new
method based on “Axes of Change”, which assigned
probability of change, taking into account the
structure and dependencies of the static structure.
Their work compared their proposal to many other
change prediction methods based on static structure
and properties. Among this set of techniques we can
highlight Coupling Measures and Size Measures.

Coupling Measures have already been
referenced throughout Impact Analysis literature for
some time now. (Briand et al., 2002) provide a list of
techniques that aim to identify dependencies among
classes. Initially, this information was used to
analyse the impact of different alternatives, but later
on, a new utility of change prediction was
discovered. Recent research suggests that if a class
can be impacted by changes in other classes, this
will raise its probability of change. Among Impact
Analysis techniques, we can highlight (Chidamber et
al., 1998), who proposed a suite of OO metrics,
called C&K metrics: DIT (depth of inheritance tree),
NOC (number of children), CBO (coupling be-tween
objects), and RFC (response for a class), and two
intra-class metrics, WMC (weighted methods per
class), and LCOM (lack of cohesion in methods).

(Chen & Rajlich, 2001) also proposed a technique
in the context of Impact Analysis, based on the
construction of an ”Abstract System Dependence
Graph” (ASDG) representing dependencies between
software components and domain concepts. They also
proposed a tool called RIPPLES.

On the other hand, Size Measures are based on
the fact that the bigger a class is, the less
modularised its design is. This is the reason why
some design heuristics recommend keeping classes
simple and small. The Number of Methods per
Class-NOO used in (Arisholm et al., 2004) to
identify change prone classes, or the Class Size-CS,
used in (Wilkie & Kitchenham, 2000) to investigate
its relationship to the effort to implement changes,
figure in this group of techniques.

In addition, (Sharafat & Tahvildari, 2007)
proposed a combination of the “Axes of Change”
technique with the historical information, using both
probabilities together.

The above work is an interesting starting point for
our change prediction proposal. A new approach that
aims to gather together the previous research work on
change prediction must take into account the analysis
of structures and properties of design artifacts.

2.2.1 Advantages and Drawbacks

We can point out that one great advantage of those
methods is that static structures and properties can
be analysed automatically. Some tools already use
metrics presented here to improve code and design.
Unfortunately, those tools do not focus on the
probability of change, and do not assign a different
value to the improvement opportunities.

(Tsantalis et al., 2005) made tests on two “open
source” Java projects, and identified the accuracy of
all those different techniques. It is difficult to ensure
the applicability of those accuracy rates to any
software system, however. Different software, such as
Real-Time system or Business Management Systems,
may have different cycles of change. Thus, different
methods should be used to predict their changes.

2.3 Extracting Change Tendencies
from Stakeholders

In the preceding sections, we have presented a
review of the different techniques used to predict
changes in an object- oriented system. Those
techniques are based on concepts such as historical
information or static properties; that is, they are
based on technical data. We could easily imagine a
situation, however, where two projects with a similar
history and static properties could have a different
probability of change for non-technical reasons.

Sometimes, only final users and other
stakeholders know about the possibility of some
changes ocurring. We did not find any technique
focusing on the change expectancy provided by users.
In response to that lack, we propose a new technique
called CORT (Change Oriented Requirement
Tracing) which uses user input to estimate which
design artifact requirement will change. Our
technique is inspired by a case study presented by
(Srikanth & Williams, 2005), which used a method
called VBRT (Value Based Requirement Tracing).
This sets a requirement priorization based on the risk
and relative Value of each requirement.

COMBINING DIFFERENT CHANGE PREDICTION TECHNIQUES

59

In our case, we use a similar approach, but
focused on changeability. We propose a technique
that aims to ask the user about future possibility of
change in the case of each approved requirement.
We will later use tracing techniques to translate this
Value from requirements to design artifacts.

2.3.1 CORT: Requirement Extraction

First of all, we need to identify all the different
stakeholders of the project. Then these individuals
are asked to assign “changeability” variables to each
requirement and use case. They are asked explicitly
about the possibility of several possible future
scenarios. The identification of those variables will
be based on work done on Software Product Lines.

“Software Product Lines (SPL) engineering
gathers the analysis, design and implementation of a
family of systems in order to improve the reuse of
the commonality among them” (Clements &
Northrop, 2001). A Product Line is thus a group of
“similar” systems. In the SPL field, there is
significant experience in models of variability. The
experience in this field grouped differences, called
“discriminants” of a family of products, into
“mutually exclusive”, “optional” and “multiple”
differences (Keepence & Mannion, 1999). If we
want to express this in change prediction terms,
those types of changes would be extension (multiple
discriminant), change (option discriminant) and
suppression (mutually exclusive discriminant).

As far as our case is concerned, stakeholders are
asked to estimate the “probability of change”, the
“probability of extension” and the “probability of
suppression”. This will generate three matrices of
requirement/stakeholders with an “estimated
variability” of each requirement from the point of
view of each stakeholder. Table 3 shows an example
of one of those matrices, focusing on “probability of
extension”.

Table 3: Estimated Extension matrix.

 User 1 User 2 User 3
Req. 1 28% 71% 0%
Req. 2 28% 100% 14%
Req. 3 0% 14% 0%

The next step is to calculate the average probability
(or adjusted average, which assigns weights to different
users if each stakeholder is not equally important). For
the sake of simplicity, in our case we will consider all
users to have the same relative importance and we will
not use weights. Each column of Table 4 represents a

type of change extracted from a matrix such as the one
presented in Table 3.

Table 4: Estimated Probability of change for each
requirement.

 Chang
e

Extensio
n

Suppressio
n

Req. 1 33% 12% 15%
Req. 2 47% 6% 80%
Req. 3 5% 5% 1%

As denoted by (Keepence & Mannion, 1999),
different types of change can be solved using
different types of design patterns. This is the main
reason why it could be a good idea to specify what
sort of change is to be expected (change, extension
and suppression).This facility is not available from
other change prediction techniques.

2.3.2 CORT: Requirement Tracing

“Requirements tracing is the ability to follow the life
of a requirement in a forward and backward
direction” (Gotel & Finkelstein, 1994). For our
proposal, we are only interested in requirement
tracing techniques that establish relationships between
requirements and design artifacts in a forward
direction. This relationship will allow us to analyse
which objects will change if a given requirement
changes, and to translate that “probability of change”
from requirements to objects. For example, if a
requirement 1 has a 33% of probability of change and
this change will affect both the A and B objects, we
could conclude that objects A and B have a 33% of
probability of change.

Several techniques have been proposed over the
last years. An interesting summary of tracing
techniques is provided by (Cleland-Huang et al.,
2004). A further detailed analysis of each tracing
technique is beyond the scope of this document. A
simple approach is recommended in this case,
however, because at this stage of the process we
already know the relative importance of each
requirement, and we can trace only requirements
that have a higher probability of change.

2.3.3 Advantages and Drawbacks

One of the main advantages of this approach is that
many software requirement tools, which already
have variables associated with requirements such as
importance or frequency, can use it with ease. In
addition, as we extract information on change
directly from stakeholders, our technique is the only
one that allows an identification of the specific kind

ICEIS 2008 - International Conference on Enterprise Information Systems

60

of change that may be expected (Change, Extension
or Suppression). On the other hand, we need access
to the software requirement specification and it is
essential to have direct contact with stakeholders,
which is not always available. Another important
drawback is that processes involving stakeholders
are expensive in terms of both time and resources.

3 LACKS IN EXISTING
TECHNIQUES

A number of tests for change prediction accuracy
have been done in specific contexts. However, we
found a gap in the research as regards when to apply
each of those techniques. In other words, some
techniques are more valuable than others, depending
on the specific kind of project.

For example, reviewing historical data and user
input techniques can be very useful in some
Business Management Systems, where final users
could constantly add functionality incrementally, or
redesign some parts of the application user interface.
On the other hand, structure analysis techniques can
achieve a better accuracy in other contexts, such as a
real-time system. This raises the following issues:

• When should we use each technique? Which
one adds more value?

• Can we use several techniques at the same
time?

• If so, how much accuracy does each
technique provide?

(Chaumun et al., 1999) claims that "In summary,
most results on the influence of design on
changeability come out of small systems, and the
change impact models we found in the literature are
incomplete or not systematic".

We believe that this lack of knowledge,
concerning when and how is it efficient to use all
those different approaches, makes it difficult for the
software industry to use change prediction
techniques. We also believe that further research in
this field would help to reduce maintenance costs,
and facilitate the daily work of the industry.

4 AHCP (AUTOMATIC
HETEROGENEOUS CHANGE
PREDICTION)

In the sections above, we have given an overview of
the available research work that is related to change

prediction. There exist a lot of metrics and
techniques that could help when trying to
accomplish this task. In fact, a given technique could
successfully predict changes in a given scenario and
yet it might not achieve this accuracy in other
context. The problem then, as stated before, is that it
is difficult to know what the accuracy of each
approach will be.

This new approach sets out to identify which
techniques of change prediction predict the future
better than others, for a given scenario. In addition,
it uses this information to select the most appropiate
techniques for making new predictions. To achieve
this, we will use the concept of “change selector” to
identify (or “select”) change prone classes.

4.1 Change-Prone Selectors

When talking about change prediction, each metric
or technique that aims to identify a change-prone
class can be modelled as a selector. For example, the
Class Size metric can be modelled as “Classes larger
than 5Kb of source code (without comments)”. We
call this a “selector”, because it “selects” classes
complying with this size, and marks them as change-
prone classes.

Table 5 summarizes an initial example of a
catalogue of selectors, where some previous research
work has been modelled. Each selector can be
configured through variables. For example, CS
selector can be configured using the “Size in KB”
variable. When this variable is configured to a very
high value, only really big classes will be selected.

Table 5: Example of Selector Catalogue.

Prev. Work Change Selector Variables
Historical Number of changes per

release > M
M = Num of

Changes
CORT The probability obtained

< N
N = Thrshld.

Axes of Change The probability obtained
< N

N = Thrshld.

CS (Class Size) Classes larger than 5Kb of
source code (without
comments)

N = Size in
KB

CBO(Coupling
Measure)

A class must be coupled
with at least N other
classes

N = Num. of
classes

NOO (Num of
Methods)

Every class must contain
at least N methods

N = Num. of
methods

Refactorings Switch or if sentence with
more than N
statements

N = Num. of
statem.

COMBINING DIFFERENT CHANGE PREDICTION TECHNIQUES

61

This example of a list is only an initial step.
Selectors will be added or deleted through
experimentation, as described in the next section.

4.2 Assigning Value to Selectors

Even if software architects know about techniques
that help to estimate the probability of change, they
must deal with the problem of selecting the
appropriate technique or set of techniques for its
specific situation. In fact, right up to the present
time, no work addressing this issue has been
published.

The advantage of change prediction techniques
is that we can estimate the accuracy of each type of
technique using historical information, and use
selector’s variables and weights to find out the best
combination of techniques for each kind of project.

Let us imagine an Enterprise Management
project. We can use our technique to perform
simulations of estimation of change at the end of the
third release, in order to estimate changes in the
fourth release. Our approach proposes to compare
the results of each technique with the changes that
actually happened. Depending on the Overall
Accuracy-OA and Sensitivity-S (Percentage of
correct change classifications), we will set up the
weight variable for each technique. The bigger the
OA and S are, the higher the weight will be.

False Positive Ratio-FPR (Percentage of
incorrect classifications of changes that did not
occur) will help to set the Threshold and other
variables, such as number of changes, number of
methods and so on. In this case, the bigger the FPR
is, the higher the Threshold and number of changes
must be. OA, S and FPR ratios were extracted from
(Tsantalis et al., 2005) accuracy tests.

We can thus make the comparison using several
possibilities, to find the best combination of
techniques for this specific project. Table 6 shows an
example of this data.

Table 6: Weighting and configuring Selectors.

Selector Threshold Weight
Historical Changes = 3 0,5
CORT Threshold = 0,6 0,3
Axes of

Change
Threshold = 0,3 0,2

Another interesting aspect is the automation of
this technique. This would allow us to repeat this
process for a set of projects in order to segment them
into different groups, depending on which
techniques predict the Probability of Change with

greater accuracy. This will provide new results that
should help to guide future research.

In the example described in Table 6, accuracy
values have automatically discarded the rest of the
techniques. Note that each technique is selected or
discarded automatically. In this way, whether or not
to apply a technique will be based on empirical data
instead of on personal opinions.

4.3 Why is this Information Useful?

This information obtained by comparing expected
results with historical data can be useful in order to:

• Estimate costs in future releases of a project.
• Choose between the different kinds of

estimation techniques depending on the
characteristics of our specific project.

• Invest more effort in the testing and tracing
of where the Probability of Change is
higher.

• Design applications to make them easier to
maintain, introducing patterns where the
application is expected to change.

Change prediction techniques can also be useful
in focusing efforts on change-prone artifacts. This is
possible in several ways. For example, (Girba et al.,
2004) used it to guide the reverse engineering
process of large systems. (Kung et al., 1995) were
also interested in change prediction for regression-
testing purposes.

5 CONCLUSIONS AND FUTURE
WORK

The problem of software change prediction is not
new. In the last few years many research papers on
this issue have been presented. However, our
experiences in several software factories reveal that
industrial practice doesn’t reflect this research effort.

We believe that the misuse of change prediction
techniques is due to the fact that developers don’t
know which techniques are available. Apart from
that, they don’t know which techniques are supposed
to be the most efficient ones for their specific
context of development.

This work has presented a review and
classification of the different types of change
prediction techniques. It also provides a framework
for testing those techniques automatically, in
different contexts.

The result of this work is directly applicable to
different lines of research. For example, the relative

ICEIS 2008 - International Conference on Enterprise Information Systems

62

importance of a test or a design decision will be
bigger if it focuses on a change-prone component. In
other words, the Return of Investment will be more
profitable if we focus our efforts correctly, using
change prediction techniques.

In future work, we plan to build an agent that
both automates and assists in the different steps
proposed in this paper. More specifically, in the
context of the Traffic Division of the Spanish
Ministry of Internal Affairs, we plan to apply those
techniques to guide software improvements. In this
way, we plan choose which part of applications
should be refactored (change-prone classes) in order
to improve their maintainability.

We expect that increasing the maintainability of
change-prone component, the cost of maintenance
will decrease, and a higher Return of Investment will
be provided face to changes.

ACKNOWLEDGEMENTS

This research is partially supported by the ESFINGE
project of the General Research Council (Dirección
General de Investigación) of the Spanish Ministry of
Education and Science and FEDER (TIC 2003-
02737-C02-02)

REFERENCES

Arisholm, E., Briand, L. C. & Føyen, A. (2004) Dynamic
Coupling Measurement for Object-Oriented Software.
IEEE Transactions on Software Engineering, 30, 491-
506.

Briand, L. C., Wüst, J. & Lounis, H. (2002) Using
Coupling Measurement for Impact Analysis in Object-
Oriented Systems. Science of Computer
Prtogramming, 45, 155-174.

Cabrero, D., Garzás, J. & Piattini, M. (2007) Maintenance
Cost of a Software Design. A Value-Based Approach.
In 9th International Conference on Enterprise
Information Systems (ICEIS), Funchal, Madeira.
Portugal,

Cleland-Huang, J., Zemont, G. & Lukasik, W. (2004) A
Heterogeneous Solution for Improving the Return on
Investment of Requirements Traceability. In
Requirements Engineering Conference, 12th IEEE
International (RE'04), IEEE Computer Society

Clements, P. & Northrop, L. (2001) Software Product
Lines: Practices and Patterns, Addison-Wesley.

Chaumun, M. A., Kabaili, H., Keller, R. K. & Lustman, F.
(1999) A Change Impact Model for Changeability
Assessment in Object-Oriented Software Systems In
European Conference on Software Maintenance and

Reengineering, Washington, DC, USA IEEE
Computer Society.

Chen, K. & Rajlich, V. (2001) RIPPLES: tool for change
in legacy software. In International Conference on
Software Maintenance, Florence, Italy, IEEE
Computer Society.

Chidamber, S. R., Darcy, D. P. & Kemerer, C. F. (1998)
Managerial Use of Metrics for Object-Oriented
Software. IEEE Transactions on Software
Engineering, 24, 629-639.

Fowler, M. (1999) Refactoring: Improving the Design of
Existing Code, Menlo Park, California, Addison
Wesley.

Girba, T., Ducasse, S. & Lanza, M. (2004) Yesterday's
Weather: Guiding Early Reverse Engineering Efforts
by Summarizing the Evolution of Changes. In 20th
IEEE International Conference on Software
Maintenance Washington, DC, USA IEEE Computer
Society.

Gotel, O. C. Z. & Finkelstein, A. C. W. (1994) An
analysis of the requirements traceability problem. In
1st International Conference on Requirements
Engineering, Colorado Springs, CO, USA, IEEE
Computer Society.

Keepence, B. & Mannion, M. (1999) Using patterns to
model variability in product families. IEEE Software,
16, 102-108.

Kung, D., Gao, J., Hsia, P., Wen, F. & Toyoshima, Y.
(1995) Class firewall, test order, and regression testing
of object-oriented programs. Object Oriented
Programming, 8, 51-65.

Sharafat, A. R. & Tahvildari, L. (2007) A Probabilistic
Approach to Predict Changes in Object-Oriented
Software Systems. In International Conference in
Software Maintenance and Reengineering,
Amsterdam, IEEE Computer Society.

Srikanth, H. & Williams, L. (2005) On the economics of
requirements-based test case prioritization. In 7th
international workshop on Economics-driven software
engineering research St. Louis, Missouri ACM Press

Tsantalis, N., Chantzigeorgiou, A. & Stephanides, G.
(2005) Predicting the Probability of Change in Object-
Oriented Systems. IEEE Transactions on Software
Engineering, 31, 601-614.

Wiederhold, G. (2006) What is your Software Worth?
Communications of the ACM, 49, 65-75.

Wilkie, F. G. & Kitchenham, B. A. (2000) Coupling
Measures and Change Ripples in C++ Application
Software. Systems and Software, 52, 157-164.

COMBINING DIFFERENT CHANGE PREDICTION TECHNIQUES

63

