
A PROPOSAL OF SOFTWARE ARCHITECTURE FOR
MULTIPLATFORM ENVIRONMENT

APPLICATIONS DEVELOPMENT
A Quantitative Study

André Luiz de Oliveira
Computting Department, Federal University of São Carlos,Washington Luiz highway Km 235, São Carlos, Brazil

André Luis Andrade Menolli, Ricardo Gonçalves Coelho
Informatics Department, State University of the North of Paraná, Br 369 highway Km 54, Bandeirantes, Brazil

Keywords: Software architecture, multiplatform systems, patterns, metrics.

Abstract: Due to the problems caused by the increase of the complexity and dimension of the software systems,
becomes necessary the adoption of patterns and principles of software to deal with those problems. For this
reason, the software architecture appears as new discipline in the Software Engineering field that is already
being applied thoroughly in several areas. However there is a shortage of architectures proposals addressed
for the multiplatform systems development. In this work it is proposed a software architecture for
development of those systems. The project of that architecture model is based in the Data Access Object,
Facade and Singleton patterns. The validation process of that architecture model used the three layer
software architecture model as evaluation parameter, in which it was developed a quantitative assessment of
two implementations of an application, one using the three layer architecture model and other using the
proposed model. This study used strong software engineering attributes, such as separation of concerns,
coupling, cohesion and size like evaluation criteria. As results, it was verified that the adoption of the
architecture model presented in this work provides a better separation of concerns presents in the application
components in relation to implementation using the three layer architecture model.

1 INTRODUCTION

Even with the progresses of the Software
Engineering, every day many developers come
across with several project problems during the
software development process. Those problems arise
of the increase of the complexity and dimension of
the software systems (Shaw & Garlan 1994). All that
complexity causes situations that violate the borders
of the software project, negatively affecting the cost
and the quality of the developed software.

The development of multiplatform environment
applications raisin by this same problem, once that
the users’ requirements become more and more
complex (MacWilliams & Brügge 2003) and there is
a constant need of applications integration through
several platforms, with the purpose of making
possible the global access to the information. Due

this fact and to the progress of the mobile devices
technology, there is one crescent demand for the
software systems integration for mobile platforms,
seeking to expand the borders of those systems. The
development of those application types’ needs of
new patterns and development paradigms, seeking to
assist the demand for software’s more and more
complex.

Currently exist few proposals of methodologies
focalized in the specific characteristics for the
multiplatform systems development, like
(MacWilliams & Brügge 2003), that need of global
access to the information. Due to shortage of
software project practices turned for the
development of those systems types, becomes
necessary the development of new principles and
patterns destined to optimize the project process of

397
Luiz de Oliveira A., Luis Andrade Menolli A. and Gonçalves Coelho R. (2008).
A PROPOSAL OF SOFTWARE ARCHITECTURE FOR MULTIPLATFORM ENVIRONMENT APPLICATIONS DEVELOPMENT - A Quantitative Study.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 397-404
DOI: 10.5220/0001675103970404
Copyright c© SciTePress

those systems, reducing your complexity and
dimension.

Due to need of patterns and methodologies
turned for the multiplatform systems development,
the present work proposes a software architecture for
the development of those applications. The proposed
software architecture model is based on the Data
Access Object, Facade and Singleton patterns. In
agreement with Gamma et. al. (1995) and Sun
Microsystems (2002), the use of those patterns have
the purpose of to improve the general performance
of the application, reducing the consumption of
resources of memory and processing, avoids the
coupling between the data access and presentation
components, providing larger legibility and
modularity in the developed code, facilitating future
maintenance and extension process of the
application, optimizing the reuse of components,
besides of promoting the storage mechanism
independence used by the application, aiding the
migration process for other storage mechanism.

The software systems generally are not projected
to be connected to others platforms, becoming
necessary the adaptation of those systems every time
that is necessary make available its services to a
certain platform. That needs of adaptation harm the
processes of maintenance and extension of those
systems. Due to that problem, the proposed software
architecture model aim on provide a simple interface
of access to the functionalities of a application,
seeking to supply a better support to implantation of
those applications through several platforms, like the
web, mobile devices and desktop stations.

In order to prove the foundations of the proposed
software architecture model, it was developed a
quantitative assessment between two
implementations of an application, one using the
three layer architecture model and other using the
proposed software architecture model. That process
used strong software engineering attributes, such as
separation of concerns, coupling, cohesion and size
as evaluation criteria. The reason of the choice of the
three layer architecture model for this comparison is
justified by the fact of this model to be one of the
architecture models more used on the applications
development currently.

With the objective of explicit the proposed
software architecture model, this study is structured
in seven sections. The section 2 presents the
definition of the proposed software architecture
model. The section 3 approaches a case study in
which it was applied the proposed software
architecture model. In the sections 4 and 5 are
presented the metrics and the assessment procedures

used in the validation of the proposed model. The
section 6 exhibits the outcomes obtained by the use
of this architecture. And finally, the section 7
exposes the conclusions and the future works
proposes.

2 THE PROPOSED SOFTWARE
ARCHITECTURE MODEL

The proposed architecture model proposed in this
work is based on the Data Access Object, Facade
and Singleton patterns and on the N-tier architecture
model (Malveau & Mowbray 2004), due to fact of
this model to be the ideal for the complex software
systems development. The objective of the proposed
architecture ponders on getting better the general
performance of the application, through the adoption
of mechanisms that reduce the consumption of
memory and processing resources, and flexibility the
processes of maintenance and extension of the
system, providing larger modularity and legibility in
the development code, facilitating the reuse of
several systems components.

The proposed software architecture model
provides a simple interface of access to the
functionalities of an application, facilitating the
implantation process of that application through
several platforms, once that this interface
encapsulates all the services supplied by the
application, what facilitates the distribution of those
services for web interfaces, mobile devices, desktop
stations, among others. This architecture model is
constituted by the Gui, Facade, Beans, Daos and
DBConnection layers, as illustrates the Figure 1.

Figure 1: The proposed software architecture model.

The Gui layer is responsible by all process of
interaction with the user. The components belonging
to this layer can be Java Swing objects, servlets,
JSP, PHP, ASP pages or a J2ME application. That
layer is a data client, or be she just contains
mechanisms of data presentation for the final user.

The Facade layer encapsulates all the business
logic of the application, supplying one access

ICEIS 2008 - International Conference on Enterprise Information Systems

398

interface to the complex data access layer for the
Gui layer. Its purpose is impede that components
belonging to the Gui layer, directly access the data
access mechanisms, once this cause a high coupling
between Gui and Daos layer, harming the reuse of
several components. The objective of this layer
basically consists on making available a simple
interface of access to the complex functions of the
subsystems, or be, the data access functions of the
application, to the presentation components. On the
proposed architecture model, the Facade pattern
(Gamma et. al, 1995) is applied in this layer, in
virtue of this pattern to structure the system in
subsystems, reducing its complexity, providing a
simple interface of access to its functionalities,
making them more reusable and maintained,
reducing the coupling between the clients classes
and the subsystems, promoting a larger
independence and portability of those subsystems.

The Beans layer is responsible for encapsulating
every the business model of the application. The
business model corresponds to the information
model that an application will manipulate. The
reason of the existence of that layer is based in
isolate the business vocabulary of the application of
the others layers, facilitating future processes of
extension of the system. Those components only
possess attributes and get and set methods
declarations to manipulate your information.

The Daos layer is responsible for all the data
access functions of the application. This layer is the
place where is the whole insert, update, delete and
query code, executed by the Database Management
System (DBMS). The existence of this layer is
justify by the reason of that the data access
mechanisms vary conform the chosen storage
system, affecting futures maintenance and extension
processes of the system, once that without this layer,
a change in the storage system carts alterations in the
data access functions of the application, that meet
dispersed by several modules of the application.
The addition of this layer provides a better
separation of concerns, isolating the data access
functions of the others functions of the application.
The Data Access Object pattern was used to
implement the belonging components to this layer,
in virtue of this pattern to isolate all the data access
functions of the others functions of the application
and of providing a independence of selected storage
mechanism, avoiding the coupling and facilitating
future maintained and migration processes for others
storage systems. This layer is constituted through
classes of data access that possess a group of
operations that make the persistence and the

recuperation of information in the storage
mechanism of the application.

And finally, the DBConnection layer is
responsible by the connectivity functions with
DBMS (Database Management System), or other
storage mechanism. This layer possesses
mechanisms that control the amount of instances of
access components to the database resources,
impeding the existence of redundant components to
access a same resource, avoiding the waste of
memory and processing resources, improving the
general performance of the application. The reason
of the existence of that layer is based in isolate the
functions that interact with the storage mechanism of
the others systems components. This layer use the
Singleton pattern for control the instantiation of
those components, once that this pattern (Gamma et.
al. 1995) assure that a class has only a unique
instance during the system execution, and guarantee
a global point of access to them. In situations of
concurrent access can be adopt the strategy of
creation of a pool of components that interact with
the storage mechanism using the Singleton pattern.

3 CASE STUDY

With the finality of demonstrating the foundations of
the proposed software architecture model, this
section presents the three layer implementation and
the implementation that use the proposed software
architecture model of a real application that makes
the control of the laboratories reservation process of
the Computer Science Department of the State
University of the North of the Paraná, campus
Bandeirantes.

The applications developed using the three layer
architecture model are implemented commonly
through of the Model-View-Controller (MVC)
pattern (Sun Microsystems 2000). This pattern is
used to develop applications that need to support
multiple clients, or be, applications that need make
available the access to its services through of several
interfaces (HTML, Swing, WML for mobile
devices).

The application of the MVC pattern provides a
better separation of the business model of the
presentation functionalities and of the control logic
of the application (Sun Microsystems 2000). Such
separation allows that multiples views share the
same information model, what makes possible the
support to multiples clients easy to implement,
maintain and to test. This pattern divides the
application implementation in three layers: model,
view and control. The model represents the data and

A PROPOSAL OF SOFTWARE ARCHITECTURE FOR MULTIPLATFORM ENVIRONMENT APPLICATIONS
DEVELOPMENT - A Quantitative Study

399

the business rules that govern the access and the
updating of those data. The view renders the content
of the model, access the data and specifies the way
like those data are presented. This layer is
responsible by maintain the consistence in the
presentation when occur changes in the model
components. The control layer is entrusted of
convert the interactions of the view layer in actions
to be executed by the model. Those operations
correspond to the activations of business process or
in the state change of the model, as illustrates the
Figure 2.

Figure 2: The Model-View-Controller design pattern.

The three layers application implementation
presented in this study is constituted by the Beans,
that represent the model, Gui, that represent the view
and Daos layers, that represent the control, as
illustrate the Figure 3. The Gui layer possesses a
group of components responsible by the interaction
process with the user. Already the Beans layer
contains a group of components that implement the
business rules of the application. And finally, the
Dao layer possesses the components responsible by
the business and data access logic of the application.

Figure 3: Class diagram of the three layer implementation
of the application.

The three layers implementation of the
reservation system presented in the Figure 3

provides a good separation of the functions of the
application, isolating the business rules
implementation, the control logic and presentation
logic in modules, facilitating future maintenance and
extension processes of the application. However in
spite of the good modularization that this
implementation seemingly provides, she not
possesses the capacity of completely isolate the
concerns of the application, once that inside of the
ClientGUI component implementation are presents
the concerns that implement the business logic and
data access logic instead of only containing the
presentation and user interaction functions, as
illustrates the code space shaded of the Figure 4.
That whole dependence harms the distribution of the
application for several platforms, in virtue of the
need to redraft code that implements those concerns
every time that is added a new interface of access to
the services of that application.

Figure 4: ClientGui class implementation in the three layer
model.

Observing the ClientGui component
implementation in the Figure 4, can be ended that
the use of the three layer architecture model don’t
get entirely modularize the present concerns in the
application, taking to the development of the
components of weak cohesion and highly coupled,
in that the ClientGUI component implements as the
data access concerns as the business logic, besides of
the concern for which that component was really
projected, that corresponds to the interaction and
data presentation functions to the user. The
implementation of that component is strongly
coupled to the business and data access components,
to implement its functionalities, harming futures
processes of maintenance and extension of the
application, reducing the potential of reusability of
the components and hindering the application
distribution process to others platforms.

ICEIS 2008 - International Conference on Enterprise Information Systems

400

The project of the software architecture model
proposed in this work arose during the development
of a laboratories reservation system, destined to
attend the needs of the Computer Science
Department of the State University of the North of
the Paraná, campus Bandeirantes.

During the modeling project of that system
happened some problem situations, where it was
verified that the use of several instances of the same
object to access database resources, harms all the
performance of the application, once those instances
occupy larger memory space and demand more
processing resources. It was verified also that the
data access mechanisms can vary conform the
chosen storage system. This can affect futures
maintenance processes of the system, besides of
impeding the reuse of several components. Another
important point verified during the modeling process
was the possibility of the presentation components
(system interfaces) access directly the complex data
access layer, causing a high coupling between those
components.

In order to solve the found difficulties in the
project of the application, it was used one
combination among the Data Access Object, Facade
and Singleton patterns, as illustrates the Figure 5. A
complete description of each one of those patterns
can be found in Sun Microsystems (2002) and
Gamma et. al. (1995).

Figure 5: Class diagram of the solution.

In the proposed solution, the Singleton pattern is
used for guarantee the existence of one only instance
of the SingletonConnection and
SingletonGenericDAO classes, getting better
application performance. The SingletonConnection
encapsulates the DataSource and the
SingletonGenericDAO supply an access interface to
the SingletonConnection. To separate the application
code of the data access code, it was applied the Data
Access Object pattern (DAO), where was adopted
the creation of one generic DAO strategy, that works
as a Singleton access interface. Each SpecificDAO

accesses the present functionalities in the generic
DAO and use a TransferObject to make the data
transport. And finally, to avoid that the presentation
components access directly the data access layer, the
use of the Facade pattern was stipulated, once that it
encapsulates the whole complex interface of the
subsystem and supply one simplified interface to
access its functionalities.

The application developed aims to automate and
activate the laboratories reservation process made by
teachers and supply larger access mobility to the
users of the reservations service through several
interfaces, where it was developed a J2SE
application, acting as Bluetooth server, a J2ME
application, acting as Bluetooth client, a Web page,
using the J2EE technology and a J2ME application
of Web access.

4 METRICS

This study selected a group of metrics of separation
concerns, coupling, cohesion and size (Chidamber &
Kemerer 1994) to evaluate the foundations of the
software architecture model proposed in this work.
These metrics have already been used in four
different studies (Garcia et. al. 2005; Garcia 2004;
Garcia et. al. 2004; Soares 2004).

The separation of concern metrics measures the
degree to which a single concern in the system is
mapped for the design components (classes and
aspects), operations (methods and advices), and lines
of code (Sant’anna et. al. 2003). The Table 1
presents a brief definition of each metric applied to
this study, and associates them with the attributes
measured by each one. More detailed information
about these metrics can be found in Chidamber and
Kemerer (1994).

5 ASSESSMENT PROCEDURES

With the purpose of explicitly the foundations of the
proposed software architecture model, it was
elaborated a quantitative assessment of the proposed
architecture model and of the three layer architecture
model. In this evaluation, both the application
versions, presented in the case study, implement the
same functionalities, with the same codification
style. A few modifications happened on the
implementation that uses the proposed software
architecture model in relation to the implementation
that use the three layer architecture model, in that

A PROPOSAL OF SOFTWARE ARCHITECTURE FOR MULTIPLATFORM ENVIRONMENT APPLICATIONS
DEVELOPMENT - A Quantitative Study

401

Table 1: Metrics.

some attributes and methods were removed of some
classes and others classes were added, seeking to
provide larger modularity, legibility and reuse of the
application components.

In that measurement process, the data were
gathered with base on the code analysis, using the
Eclipse 3.3 tool. The measures of separation of
concerns (CDC, CDO and CDLOC) were preceded
by the shading of all classes in both application
implementations. That shading it was accomplished
with the roles found in the implementation of the
classes of the application. The Figures 3 and 5
exemplify the shading of some classes in both
applications implementations, considering the
Business Logic and Data Access roles. The Business
Logic role is responsible by all control of the
business logic of the application, that means, it treats
the input data before those data be passed into the
call of a data access function, besides manipulating
the obtained data of a data access function, to
summarize that role is a data client (Sun
Microsystems 2002). Already the Data Access role
represents the object that abstracted the underlying
data access implementation (Sun Microsystems
2002) to the Business Logic role, enabling
transparent access to the data source that means, it
provides all functionalities of access and data
storage to the Business Logic role.

Likewise to the Hannemann & Kiczales (2002)
study, in this study each role found in the application
was treated as a concern, once that roles are primary
sources of crosscutting structures (Garcia et. al.
2005). After the shading, the separation of concerns
data metrics was manually collected.

6 RESULTS

This section presents the measurement process
results. The data have been collected with base on
the metrics defined in section 4. The objective of
that measurement process is describe the results of
the metrics application in the three layer
implementation and in the implementation that uses
the proposed software architecture model, of a real
application, with the finality of compare and prove
the foundations of the proposed software
architecture model. This analysis is divided in two
parts. The section 6.1 focus on the analysis of what
extent in that both solutions provide support to the
separation of the application-related concerns. The
section 6.2 presents the results toward the coupling,
cohesion and size metrics.

In the exhibition of the results of this study
graphics are used to represent the data gathered of
the measurement process. The results of the graphs
present the data obtained from both applications
implementations. The Y- axis of the graphic presents
the absolute values gathered by the metrics. Each bar
pair, that corresponds to the metric values gathered
from both applications implementations, is attached
to a percentage value, which represents the
difference between the results of the
implementations that use the three layer model and
the proposed architecture model. A positive
percentage means that the implementation of the
proposed architecture model was superior, while the
negative percentage means that the implementation
of the proposed architecture model was inferior.
Those graphics support the analysis toward how the
introduction of new classes affects both solutions in
relation to the selected metrics.

ICEIS 2008 - International Conference on Enterprise Information Systems

402

In order to obtain the separation concerns metric
values of both the application implementations,
firstly it was verified the presence of two roles in the
application implementation, the Business Logic role,
that consists basically in the business rules of the
application, and the Data Access role, that
corresponds to the data access functionalities of the
application.

6.1 Separation of Concerns

The Figure 6 presents the separation concerns
metrics results for both application implementations.
As it is observed in the Figure 6, the most of the
measurements significantly the implementation that
uses the proposed software architecture model in this
work. This solution reduced the coupling of the
classes that play the Business Logic role, and
consequently the number of operations for
implementing that role, besides demanding few
concerns switches between the components that play
the Business Logic and Data Access roles.

Figure 6: Results of separation of concerns metrics.

An analysis of the Figure 6 shows that those
improvements was reached through of the separation
of concerns related to the application in a additional
layer of Facade classes, that possess the finality of
provide a simplified interface of access to the
services of the application. The definition of the
Data access and Business Logic roles demanded 2
classes in the three layer implementation, while that
the use of the proposed software architecture model
reduced this number for 1, providing a better
separation of those roles in relation to the three layer
solution. This improvement is equivalent to the 50%
of superiority of the proposed architecture model
with relation to the three layer implementation. The
results were even better for the concern diffusion
over operations (CDO) and concern diffusion over
lines of code (CDLOC) metrics on the
implementation of the Business Logic role, which
reached optimizations of 87,5% in relation to the
three layer implementation.

In addition, it can be observed that good results
were reached in the modularization of the Business

Logic role. After that analysis, is ended that the
implementation that uses the proposed software
architecture model optimized about 74,6% the
isolation of the implemented concerns by the
Business Logic role in comparison with the use of
the three layer architecture model.

One of the reasons for the superiority of the
proposed architecture model over the three layer
architecture model is that in the three layer solution
there are several operations implementations mixed
with the specific code of the role.

6.2 Coupling, Cohesion and Size

In this section are presented the results of the
coupling, cohesion and size metrics. It was used
graphs for the representation of the gathered results,
which represents the metric values associates with
all the classes for each application implementation,
with the exception of the DIT metric. The results of
DIT represent the maximum value of this metric for
all the implementation.

In the implementation of the application that uses
the proposed software architecture model, the
improvements were reached in the CBC and NOA
metrics, as illustrates the Figure 7. The use of the
proposed architecture model increased in 12,52% the
LOC metric value in relation to the three layer
implementation. This happen due to the addition of a
component that makes the manipulation of the
business logic of the application in this solution.

Figure 7: Coupling, cohesion and size metrics results.

In relation to the NOA metric results, the
implementation using the proposed architecture
model obtained 33% of superiority in relation to the
three layer solution. This happen in virtue of in the
three layer solution, the classes that carry out the
presentation logic possess a reference to the data
access object and make all the manipulation of the
business logic of the application, that in the project
that uses the proposed architecture model was
retired. The use of this model also provides a
reduction of 33% of the coupling between
components (CBC) metric value in relation to the
traditional solution in three layers.

A PROPOSAL OF SOFTWARE ARCHITECTURE FOR MULTIPLATFORM ENVIRONMENT APPLICATIONS
DEVELOPMENT - A Quantitative Study

403

With relation to the cohesion metrics, its values
continued constant in both solutions, once they use
 the same operations and references to the attributes.
The value of the WOC metric was the only in which
the proposed architecture model obtained result
inferior to the three layer solution. This inferiority
corresponds to the 200%. The reason of this is based
on the fact that the proposed architecture model adds
a component, called Facade that is responsible by
the manipulation of the business logic of the
application. This component has declarations of
methods with many parameters, increasing the value
of this metric.

7 CONCLUSIONS

The present work approaches a proposal of the
software architecture based in the Data Access
Object, Facade and Singleton patterns, addressed to
the multiplatform systems development. This
architecture optimized the following aspects of the
software systems: the general performance of the
application, once that were eliminated several
redundant instances of data access components of
the application, reducing the consumption of
memory and processing resources; brought larger
flexibility in the maintenance and extension process
of the application, reducing the complexity of the
software components; and provides larger
modularity and flexibility of the developed software
components, favoring the reuse of several
components of the application.

The positive results obtained by the application
of that architecture confirmed its efficiency and
effectiveness in the multiplatform environment
systems development process, could be applied in
others similar application projects.

As proposed of future works can be placed a
study about the approaches of formal specifications
of software architectures approaches, the calls ADLs
(Architecture Description Language), in order of
selecting one of those approaches and apply her in
the specification of the software architecture
proposed in this work.

Like another proposal of future work is the study
of the use of the aspect oriented abstractions in the
project of software architectures, due to
effectiveness of the aspect oriented methodology in
the modularization of crosscutting concerns that
meet tangling and scattering for several modules of
the application, with the purpose of providing an
improvement still larger in the separation of the
concerns presents in the application.

REFERENCES

Chidamber, S. & Kemerer, C., 1994, ‘A Metrics Suite for
OO Design’. IEEE Trans. on Soft. Eng., 20-6, 476-
493.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1995.
Design patterns: elements of reusable object-oriented
software, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA.

Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U.,
2005, ‘Modularizing Design Patterns with Aspects: A
Quantitative Study’, International Conference on
Aspect-Oriented Software Development (AOSD'05),
Chicago, USA. ACM Press. Pages 3-14.

Garcia, A., 2004, ‘From Objects to Agents: An Aspect-
Oriented Approach’, Doctoral Thesis, PUC-Rio, Rio
de Janeiro, Brazil.

Garcia, A. F., Sant’'anna, C., Chavez, C., Silva, V.,
Lucena, C. J. P. de. & Staa, A. V., 2004, ‘Separation
of Concerns in Multi-Agent Systems: An Empirical
Study’, In Software Engineering for Multi-Agent
Systems II, Springer, LNCS 2940.

Hannemann, J. & Kiczales, G., 2002, ‘Design Pattern
Implementation in Java and AspectJ’, Proc.
OOPSLA’02, 161-173.

MacWilliams, A. & Brügge, B., 2003, ‘Self-Extending
Systems for Context-Aware Mobile Computing’,
International Conference on Software Engineering,
Portland, Oregon, USA.

Malveau, R. & Mowbray, T. J., 2004, ‘Software
Architecture: Basic Training’, Prentice Hall PTR,
viewed 25 October 2007, http://www.phptr.com/article

s/article.asp?p=169547&seqNum =12&rl=1.
Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C., Staa,

A. V., 2003, ‘On the Reuse and Maintenance of
Aspect-Oriented Software: An Assessment
Framework’, Proc. of Brazilian Symposium on
Software Engineering (SBES’03), Manaus, Brazil, 19-
34.

Shaw, M. & Garlan D., 1994, ‘An Introduction to
Software Architecture’. School of Computer Science
Carnegie Mellon University Pittsburgh, PA.

Soares, S., 2004, ‘An Aspect-Oriented Implementation
Method’, Doctoral Thesis, Federal Univ. of
Pernambuco.

Sun Microsystems 2002, ‘Core J2EE Patterns: Data
Access Object’, viewed 01 November 2007,
http://java.sun.com/blueprints/corej2eepatterns/Pattern

s/DataAccessObject.html.
Sun Microsystems 2000, ‘Model-View-Controller’,

viewed 27 October 2007, http://java.sun.com/blueprint
s/patterns/MVC-detailed.html.

ICEIS 2008 - International Conference on Enterprise Information Systems

404

