
OFF-THE-RECORD SECURE CHAT ROOM

Jiang Bian, Remzi Seker, Umit Topaloglu and Coskun Bayrak
Department of Computer Science, University of Arkansas at Little Rock

2801 S. University Avenue, Little Rock, Arkansas, U.S.A.

Keywords: Off-the-Record, Chat room, Instant Messaging, Security, Group Diffie-Hellman.

Abstract: Group Off-the-Record (GOTR) (Bian et al., 2007) was proposed to address the privacy protection concerns
in online chat room systems. It extended the original two-party OTR protocol to support more users while
preserving the same security properties. A literature survey of different Diffie-Hellman (D-H) conference key
implementations will be given to justify that in an application like a chat room, the virtual server approach
is truly the most efficient way to establish a private communication environment among a group of people.
However, GOTR’s virtual server approach raises a trustworthiness concern of the chosen chair member. Since
the chair member has full control over all encryption keys, there is no constraint to prevent him / her from
altering the messages while relaying them. In this paper, we present a study of the GOTR protocol and
a solution to the virtual server’s trustworthiness problem via employing an additional MD5 integrity check
mechanism. Having such an algorithm, makes the GOTR protocol more secure, in that, it gives the other chat
members an opportunity to be aware of any potential changes made by the chair member.

1 INTRODUCTION

Chat room technologies started to surface in the
1970s. Initially, they was used in Unix systems to
help all the users who have logged on the same ma-
chine to communicate with each other. Then, it
quickly evolved into a network based system and be-
came much more popular with the growth of the mod-
ern Internet. The contemporary online chat room pro-
vides a real-time, text message based communication
mechanism over instant messaging (IM). It is fast,
flexible, expandable and is virtually cost free to users.
Users tend to prefer chat rooms to other conventional
communication tools like the telephone systems and
electrical emails, since it is less intrusive but more in-
teractive.

However, privacy concerns hinder the expansion
of the use of chat rooms as well as Instant Messag-
ing. Although, many studies have been conducted to
provide a secure IM system, however, few of them
achieve perfect secrecy, which is in high demand by
the public.

2004, Borisov (Borisov et al., 2004) et. al. pro-
posed a secure off-the-record IM system, OTR, which
has addressed most of the existing security issues. It
achieved perfect forward secrecy via short-lived en-

cryption keys, which ensures that the revealing of a
ephemeral key would not compromise the entire chat
session. Moreover, the OTR protocol accommodates
a degree of plausible deniability, so that a user could
later discredit what he / she has said.

GOTR designed by Bian et. al. (Bian et al., 2007),
is an extension of the two-pary OTR protocol, which
makes it possible for multiple users to talk securely
and off-the-record in an online chat room environ-
ment. The GOTR protocol introduced a idea of choos-
ing a chair member to act as a virtual server and to be
responsible for relaying all messages securely. The
communications between the virtual server and every
other user are guarded by the original OTR protocol.
In this way, a secure communication chain is created.

However, the trustworthiness of the chosen vir-
tual server remains a flaw. Since the virtual server
supervises all the communications in the chat room,
it is fairly easy for him / her to make changes while
repackaging messages. In order to prevent the mes-
sages from being altered by the virtual server, we
suggest to employ an MD5 integrity check mecha-
nism. Having a such mechanism will give other users
an opportunity to verify that the messages truly have
not been corrupted (i.e. the message could have been
changed by the virtual server, or due to a network fail-

54
Bian J., Seker R., Topaloglu U. and Bayrak C. (2008).
OFF-THE-RECORD SECURE CHAT ROOM.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 54-61
DOI: 10.5220/0001530500540061
Copyright c© SciTePress

ure.) during its transmission.
This paper consists of five sections. In Section 2,

we present the key features of the original OTR pro-
tocol. In Section 3, we conduct a literature survey to
show the general idea of conference key distribution
systems, and compare their efficiency and complex-
ity to justify the advantages of using the virtual server
approach. A case study of the GOTR protocol will be
presented in Section 4.2 along with the idea of em-
ploying an MD5 integrity check to prevent the trust-
worthiness failure of the chair member. Moreover, a
automated mechanism will be suggested to deal with
the membership alternation problem caused by net-
work failures. Conclusions will be given in Section 5,
followed by future work in Section 6.

2 OFF-THE-RECORD INSTANT
MESSAGING

Many studies have been conducted to secure IM
systems (Gaim-e, 2002) (Pidgin-Encryption, 2007)
(c©Secway, 2006). Most of them simply add extra
authentication and encryption layers above the public
IM protocols to ensure the authenticity and confiden-
tiality. However, perfect forward secrecy and denia-
bility are often omitted by these secure IM solutions.
Nikita Borisov et. al. introduced the Off-the-Record
Messaging (OTR) system (Borisov et al., 2004) at the
Workshop on Privacy in the Electronic Society, 2004.
The OTR protocol is a comprehensive security solu-
tion for public IM systems and it implements strong
cryptographic protection. Furthermore, two key fea-
tures of the OTR protocol are off-the-record commu-
nication and perfect forward secrecy protection.

2.1 The OTR Protocol

In an off-the-record chat room, a sender has the abil-
ity to deny what he/she has said in a previous chat ses-
sion. The conversations are not bound to any partici-
pant’s identity. However, the messages in an ongoing
conversation are still properly authenticated through
using Digital Signatures and Message Authentication
Codes (MAC).

There are four key security properties integrated
in the OTR protocol. These properties are briefly de-
scribed next.

Perfect Forward Secrecy. This has been archived
through the use of short-lived encryp-
tion/decryption key. After the completion of
transmitting one message, a new shared secret
will be generated and used to encrypt/decrypt the

next message. And the current key will be simply
discarded by both sender and receiver. As a
result, the revealing of current shared key will not
compromise the secrecy of previous messages.
Even if an attacker manages to capture the current
encryption/decryption key, it will soon be invalid
for the next message.

Digital Signature. The authentication issue is ad-
dressed via a digital signature system. Each user’s
digital signature in OTR acts as long-lived keys.
The keys are solely for authentication purposes
and are not used to encrypt the real messages.

MAC Code and Plausible Deniability. The MAC
(Stinson, 2002) code is introduced to retain the
deniability of an off-the-record conversation.
Unlike digital signatures, MACs are generated
and verified via the same secret key. Therefore, a
MAC value does not provide the non-repudiation
property offered by a digital signature.

Malleable Encryption and Forge-ability. In gen-
eral, malleability is an undesirable property in
encryption algorithms. However, for the OTR
protocol, it is an enhancement feature that enables
anyone to transform an encrypted message (m)
into another valid cipher text (m′) without the
knowledge of the plaintext. Such Homomorphic
Encryption scheme (Canetti et al., 1996) provides
an intensive degree of forge-ability.

2.2 Security Weakness in the OTR
Protocol

Mario Di Raimondo, et al. (Raimondo et al., 2005)
pointed out three major security flaws or vulnerabili-
ties in the OTR protocol.

First of all, OTR inherits a possible ”identity mis-
binding” attack from the D-H protocol. Suppose that
a malicious user, Eve, stands between two end-users,
Alice and Bob, and she has the ability to intercept
all the communications between them. If she attacks
properly (Diffie and Hellman, 1976), Eve could man-
age to make Alice think that she is talking to Bob,
but actually she is speaking to Eve. For a real life
example, Eve can use this authentication flaw to mis-
lead a customer, Alice, and a bank, Bob. One simple
solution is to include identity information in the digi-
tal signature, but it will surely dismiss the deniability
property.

Moreover, the revealing of an ephemeral private
key could cause an impersonation attack. An attacker
could use this piece of information to produce a valid
session key as long as the long-term keys are not re-
invoked. This attack could be defended by doing full

OFF-THE-RECORD SECURE CHAT ROOM

55

key refreshment periodically, which ensures that the
revealing of an ephemeral private key of one conver-
sation session will not affect the next fully refreshed
one.

Furthermore, the improper mechanism of reveal-
ing MAC keys weakens the secrecy of encryption
keys. Since the MAC keys are generated as a one-way
hash over the encryption key, the attacker can use this
knowledge to mount a ”dictionary attack”, although it
is probably computationally too expensive.

Consequently, Mario Di Raimondo, et al. sug-
gested three alternate Authentication Key Exchange
(AKE) algorithms, SIGMA, SKEME (Krawczyk,
1996) (i.e. which is an early voice of a protocol de-
signed to provide deniability to IPsec’s IKE proto-
col.) and HMQV, and discussed both the advantage
and disadvantage of using these three protocols.

This discussion resulted in a second version of the
OTR protocol (Borisov et al., 2004), where:

1. fixed the identity-binding flaw (the impersonate
attack vulnerability) simply by adding an addi-
tional identification message at the beginning of
the conversation session.

2. No longer revealing the users’ public keys to pas-
sive eavesdroppers and this helps in privacy pre-
serving for the internal application’s OTR mes-
sages

And, additionally, they provide a support of fragmen-
tation OTR messages, since a lot of Instant Messaging
protocols have limitation on the size of each message.

Despite the security advantages it offers, the OTR
project has a missing key feature, a support of chat
room conversations.

3 GROUP DIFFIE-HELLMAN
AND THE CONFERENCE KEY
SYSTEM

In order to create a secure communication environ-
ment over insecure channels (public Internet infras-
tructure), it essentially falls into a problem that how
to distribute the encryption/decryption keys securely.
The OTR protocol uses the most familiar Diffie-
Hellman (D-H) (Diffie and Hellman, 1976) key agree-
ment for this purpose. The D-H protocol allows two
users to establish a shared secret over an unprotected
channel. It is believed that the most efficient way
to break the D-H protocol is to solve the underlined
mathematic problem, the discrete logarithm problem.
However, there is no computationally feasible ap-
proach has been found.

When a group of people demand to talk privately
over an unsecure environment, a conference key dis-
tribution system (CKDS) is required. Many papers
(Ingemarsson et al., 1982) (Burmester and Desmedt,
1994) (Bellare and Rogaway, 1995) (Steiner et al.,
1996) (Bresson et al., 2001) (Bresson et al., 2007)
have been presented to solve such a conference key
distribution problem. And our goal is to find an ef-
ficient group D-H conference key system that is suit-
able to be used in securing chat room systems, while
preserving off-the-record and perfect forward secrecy.

Basically, as a group D-H system, it has to col-
lect contributions from each communication mem-
ber (gri), compute the conference key (centralized or
independently), and distribute the common secret to
each member securely.

Ingemarsson et. al. proposed a conference key
system wheren members needs to be arranged in a
logical ring (Ingemarsson et al., 1982). During one
key establishing round, one userUi raises the inter-
mediate key value received previously fromUi−1, and
passes the result to the next participant,Ui+1. In
(n−1) rounds, all members will compute the same

K = gr1r2+r1r3+...+r1rn+r2r3+r2r4+...+r2rn+...+rn−1rn mod p

Burmester and Desmedt (Burmester and Desmedt,
1994) proposed a cyclic based conference key dis-
tribution system and claimed that their protocol was
much more efficient. This protocol runs 2n + 1
rounds, and eventually, all users will agree on a con-
ference key

K ≡ gr1r2+r2r3+...+rnr1 mod p

Michael et. al. (Steiner et al., 1996) introduced
a ”natural” extension to the two-party D-H protocol.
Its key features are summarized as follows: 1).n +1
rounds of message exchanging; 2). constant message
sizes; 3). small number of exponentiations required.
Also, they have provided a solution to the problem of
member addition and deletion, which ensures that the
alteration of group membership will not compromise
the group’s secrets.

However, in a chat room system, every message
will be multicast to each user automatically by the
underlined chat room protocol. So, it is hardly pos-
sible to create such a logical ring without heavy over-
heads. Even if a user only meant to send a intermedi-
ate key toUi, the chat room system will automatically
send a copy to every other user as well. This is a
waste of effort, and since this value has no meaning
to the rest of the group, each user will simply discard
it. Moreover, in all three aforementioned CKDSs, a
userUi needs to raise a previously received interme-
diate key to the power of its own private key,ri, and

WEBIST 2008 - International Conference on Web Information Systems and Technologies

56

pass it to the next member or broadcast to everyone
else. Exponentiation is computationally expensive in
a computer system. Even in Michael et. al.’s system,
which has the minimal number of exponentiations of
all three protocols, still requires 5n− 6 exponentia-
tions. Moreover, recall that in order to achieve the
perfect forward secrecy, a short-lived key scheme is
used in the OTR protocol. If we simply applied one
of these CKDSs, it would create a tremendous amount
of overhead. It would require the exchange of at least
2n−1 messages and taken + 1 rounds to compute a
common secret, when only encrypting one small text
message. Obviously, as the number of chat member
increases, the bandwidth used to establish the shared
channel will be hundreds of times bigger than the real
message payloads.

4 GROUP OFF-THE-RECORD IM
PROTOCOL

Group Off-The-Record (Bian et al., 2007) is an ex-
tension of the original bipartite OTR protocol. In the
GOTR protocol, the member who initiates the GOTR
chat room will be chosen to act as a virtual server.
Then, the virtual server starts a two-party OTR key
exchange to establish a private, off-the-record chan-
nel with each other member pair-wise. Since two chat
members do not share a common secret directly, the
virtual server is responsible for routing all messages
from one user to another. When the virtual server re-
ceives a message, he / she will need to index through
his / her key table to find the proper decryption key,
decrypt the message and re-encrypt it with the key he
/ she shares with the designated receiver. All com-
munications between a user and the virtual server are
guarded by the two-party OTR protocol. In such a de-
sign, a secure communication chain, from one user to
another, has been created.

The GOTR’s virtual server approach, avoids the
trap of dealing with the complexity of generating a
conference key among many users, and instead uses
a router based concept: a trusted member is chosen
as a router to relay all messages, and is responsible
for managing all the encryption/decryption keys. As
we can see, the GOTR protocol still creates overheads
such as sending encrypted messages to a user who
would not be able to read it, however, it reduces the to-
tal number of exponentiations used in computing the
shared keys. According to the D-H protocol, for each
new key, all the users except the virtual server needs
to do the exponentiation twice (i.e. once to compute
its public key,gri , the other one is used to compute the
shared key between he / she and the virtual server.),

while only the virtual server needs to do 2(n−1) ex-
ponentiations. However, the total number is still much
less than any existing conference key distribution sys-
tems discussed above.

4.1 A Case Study of the GOTR Protocol

Let us suppose there are three users, Alice, Bob and
Carol, who want to have an off-the-record chat room
conference in a secure manner. This scenario can be
seen in Figure 1:

Figure 1: GOTR communication scheme.

Alice and Bob as well as Alice and Carol would
establish the two-party OTR communication channel
(i.e. in other words, Alice and Bob share a common
secretSSAlice&Bob (SSAlice&Carol for Alice and Carol)
and follow the OTR protocol for further conversa-
tions. Therefore, the channel between them is se-
cure and off the record.). Since Bob and Carol do
not have shared key, they cannot talk to each other di-
rectly. They have to go through the virtual server, Al-
ice. Bob first sends Alice the message encrypted with
key SSAlice&Bob; Alice deciphers it usingSSAlice&Bob
and repacks it with keySSAlice&Carol; then she relays
the new message to Carol. Now Carol has no problem
reading this message. Alice, in this configuration, acts
like an interpreter.

In the proposed system, there remains a security
vulnerability that needs to be addressed: there is al-
ways a chance that a virtual server can be attacked.
Since the virtual server is privileged to fully control
all the encryption keys, it would be relatively easy
for an attacker to change the content of a message
and broadcast to other chat room members. There-
fore, we suggest creating a mechanism for the users
to verify the integrity of the messages received by the
virtual server. The other flaw, which exists in the pre-
vious GOTR product, is that in the case of a virtual
server encountering a network failure, all the subse-
quent conversations in this chat room will be unread-
able since the rest of the users are not sharing any
common secrets (i.e. shared encryption keys). There-

OFF-THE-RECORD SECURE CHAT ROOM

57

fore, in this paper, we purpose an improved version of
the GOTR protocol, which solves these two problems
and provides some other enhancements to the GOTR
Pidgin plug-in.

Moreover, a network failure of the virtual server
raises another issue. Since the users do not have a
shared key other than with the virtual server, if the vir-
tual server drops off, the communication chain cannot
be established. In this paper, we propose a solution to
the virtual server’s honesty problem using MD5 hash
functions and provide a mechanism to deal with the
problem of virtual server network failure.

4.2 GOTR Enhancement: MD5
Integrity Check and Network
Failure Handling

4.2.1 MD5 Integrity Check

Even though the GOTR communication scheme
seems to be a good solution for the security needs de-
scribed before, it still has a security flaw. Since there
exists a centralized controller (the Virtual Server), a
failed or hacked controller will cause the GOTR sys-
tem to fail. Therefore, the degree of our security
mode is coupled with the trustworthiness or the se-
curity level of the virtual server. The previous version
of GOTR does not provide an integrity check for the
messages relayed over the virtual server. Ideally there
should be a mechanism to warn Carol that a message
has been modified during its transmission.

Consider the previous GOTR example, in which
Alice, Bob, and Carol were having a GOTR chat
room conference. Alice has been dedicated as the
virtual server. The two way communications be-
tween Alice—Bob and Alice—Carol are guarded by
the original OTR protocol. But OTR does not pro-
vide an assurance that Alice, the virtual server, did not
change the content of any message during the repack-
ing process.

Redundancy check mechanisms are well-known
and often used in network applications for the pur-
poses of error detection and correction. Redundancy
checks, although slightly increases the size of each
message, can provide an integrity check for the whole
message. If only error detection is required, the
checksum algorithm is obviously the most widely
used and simplest method. It works by adding up
basic components of data, typically the asserted bits,
and sending the result along with the original mes-
sage. Anyone who receives this message plus its
checksum can later perform the same operation and
compare the resulting value with the checksum. The
receiver can conclude that the message has not been

corrupted during its transmission. Some other redun-
dancy check methods include parity checks, check
digits, and cyclic redundancy check (CRC), etc. For
instance, a CRC function often takes a stream of vari-
able length data as input and produces a fixed size
code as output. Compared to checksum, CRC pro-
vides more precise error detection while maintain-
ing a plausible execution time. Basically, any kind
of (cryptographic) hash function can be used to pro-
duce a message digest, which can be used to verify the
message’s integrity (W.W.Peterson and D.T.Brown,
1961).

In the proposed protocol, since Bob (Carol) en-
crypts messages with keys that are only known by him
(her) and Alice, it is not possible for Carol (Bob) to
decrypt these messages. Therefore, we need the help
from the virtual server, Alice. Following our GOTR
protocol, Alice decrypts the message originated from
Bob and re-encrypts it with the key (SSAlice&Carol)
shared between her and Carol. Under such a sys-
tem, there is no way we can prevent Alice from al-
tering the messages. However, we can provide a ver-
ification mechanism, which will give Carol a chance
to check the integrity of messages. In order to as-
sure the integrity of the message, Bob will produce a
hash valueHb of the message and send it to Carol in a
straight line. After receiving both the hash value from
Bob and the repacked message from Alice, Carol can
check whether the message has been altered or not.
She simply just needs to reproduce the hash value
upon the received message and compare the result
with the one from Bob.

The aforementioned integrity check method has
been implemented in the GOTR protocol. In this ex-
perimental work, a 128-bit MD5 algorithm (Rivest,
1992) has been employed, and it is possible to use
any existing one-way hash function. By using a hash
algorithm that has a higher collision rate, it may al-
low a malicious user to be able to alter the content
of a message, but still produce the same message di-
gest. MD5 takes an arbitrary number of characters as
input but produces a fixed length output. This prop-
erty assures a minimal amount of overhead to each
message. Moreover, MD5 functions are widely avail-
able as libraries in almost all the major programming
languages such as C, C++, Java, PHP, etc. The OTR
library uses libgcrypt (Koch, 2005) to provide the ba-
sic cryptographic functionalities and it also has MD5
algorithm support. Therefore, no extra programming
effort will be required to provide MD5 services.

The tests and mathematical proofs have shown
that the probability of retrieving the plaintext from its
hash value is negligible (Bishop, 2002). Hence, it is
not an infringement of security requirements to trans-

WEBIST 2008 - International Conference on Web Information Systems and Technologies

58

mit the hash values for messages through unsecured
channels.

Since the proposed protocol uses existing internet
infrastructure and requires time to encrypt the mes-
sage, there will be latency. It is not possible to es-
timate the message and hash arrival order. Different
arrival times of the hash and message might cause a
false positive. In order to resolve the issue, a message
identification (?ID?) is attached to each message. In
the GOTR protocol, the unique ID is the UNIX (or
POSIX) time when the message was created. UNIX
time is the number of seconds elapsed since midnight
UTC of January 1, 1970, not counting the leap sec-
onds. Collisions rarely occur if we extend the times-
tamp to include microseconds.

From the application point of view, every time
Bob wants to communicate, he will send out the en-
crypted message along with a message digest (i.e.
hash value generated by the MD5 algorithm) and the
unique identifier (i.e. timestamp). In chat room proto-
cols, messages will be broadcast to everyone. Hence,
Alice has no way to prevent Carol from receiving the
message digest directly from Bob. Later, Carol could
use this information to verify this message’s integrity,
when she receives the re-encrypted copy from Alice.
In detail, she needs to perform the following steps: 1)
decrypt the message from Alice and save the unique
ID (UID); 2) calculate the MD5 value over the plain-
text message; 3) look up the MD5 value associated
with this UID from all the MD5s she gathered from
Bob; 4) compare these two MD5s and make the con-
clusion. If they are the same, Alice has not changed
the message originated by Bob; otherwise, Alice has
corrupted it. This approach will cause more over-
head network traffic. However, an automated way of
checking the integrity of messages would have more
benefits than drawbacks.

Figure 2: Enhanced GOTR protocol diagram with MD5 in-
tegrity check.

As shown in Figure 2, the communication chan-
nels between the virtual server and the other chat
room members are secure and off-the-record. How-
ever, the messages exchanged between Bob and

Carol, are not encrypted and vulnerable to attack.
Although we cannot transfer confidential messages
through this unprotected channel, we can still use it
for transferring message digests. When Bob wants
to talk to Carol in the GOTR chat room, he would
send the encrypted contents through the private chan-
nel (i.e. which passes through the virtual server) along
with a unique identifier:

Message 1: Bob→ Alice, Carol:

?RECV?Alice@hotmail.com?ENDRECV?
+ ?SEND?Bob@hotmail.com?ENDSEND?
+ ?UID?unix_timestamp?ENDUID?
+ <Enc Msg with SSAlice&Bob>

Carol will discard this message since it is not read-
able for her. Meanwhile, Bob computes the message’s
MD5 digest and sends it to Carol in a straight line
along with the UID too for verification.

Message 2: Bob→ Carol, Alice:

?RECV?MD5_value?ENDRECV?
+ ?UID?unix_timestamp?ENDUID?

Alice, the virtual server, will repack Bob’s mes-
sage with a proper key and pass it on.

Message 3: Alice→ Carol, Bob:

?RECV?Carol@hotmail.com?ENDRECV?
+ ?SEND?Bob@hotmail.com?ENDSEND?
+ ?UID?unix_timestamp?ENDUID?
+ <Enc Msg with SSAlice&Carol>

Eventually, Carol gets both the relayed message
from Alice and the message digest from Bob, and
then pairs them according to the UID. She computes
the MD5 value on the message from Alice and com-
pares it with the one she received from Bob. These
two values are supposed to be the same because they
are calculated upon the same message with the same
predefined hash function. They will not match, only if
Alice has changed the message or the network pack-
age has been corrupted. No matter the reason, Carol
should not trust this message. She can instead, open a
new OTR channel and verify this message with Bob.
Now that the problem of assuring the message’s in-
tegrity is addressed, the solution for handling the vir-
tual server’s drop-off will be discussed next.

4.2.2 Network Failure Handler

When a user is using an IM service, assume that the
MSN server and the user encounter a network prob-
lem, the MSN service will be cut off and close all the
active sessions it has established with the user. When
a user reconnects to the MSN server at a later time,
the previous chat sessions will not be restored. There
are two possible scenarios regarding network failure

OFF-THE-RECORD SECURE CHAT ROOM

59

during a GOTR chat room session:

1. One or more chat room members other than the
virtual server lose their connections. In this case,
the remaining users can still talk securely and off-
the-record. However, when those disconnected
users recover and rejoin the chat room, the subse-
quent conversations would not be secure anymore.
Continuing with our previous example, suppose
Carol had a system error and restarted her com-
puter. After she rejoins the GOTR chat room, the
connection between Alice and Bob are still secure
but the one between Alice and Carol has no more
protection. As a part of the exception handling
system, a GOTR system should recreate the pri-
vate channel between Alice and Carol automati-
cally in order to watch over the entire chat room.
In our GOTR Pidgin plug-in, upon receiving the
event message that Carol has rejoined the chat
room, Alice, as the virtual server, will start over
the entire GOTR chat room session. Even though
this is not necessary for Bob, a periodic key re-
freshment will make the GOTR session more se-
cure.

2. In case of the virtual server drops from the GOTR
session (e.g. the virtual server loses its network
connection), all private channels established for
that session will be lost. The other chat room
members will be talking in an unprotected envi-
ronment. In this case, the GOTR system would
randomly pick a user from the existing members
and make him/her the new virtual server. Then
the GOTR chat session will be restarted. The con-
versation tunnels between the new virtual server
and the rest of chat users will be private again.
By doing so, a new secure and off-the-record chat
session will be created. If the prior virtual server
reconnects and rejoins the chat room, the GOTR
system will treat him/her as a new joining member
and react the same way as in the first scenario

4.3 Performance Evaluation of GOTR
Protocol

One question would be how many users a GOTR chat
room could hold. Although there is no practical limit
on the number of users who might join a GOTR ses-
sion, more users will cause more overhead and net-
work traffic, which eventually will cause noticeable
delays. In addition, since the GOTR protocol uses a
virtual server to route all messages, increasing num-
ber of users will increase the burden on the virtual
server. Hence, with increased number of users, prob-
lems may arise not only because of the limitation of

the network bandwidth but also the computational re-
sources of the virtual server. We have not performed
any formal performance test such as comparing tran-
sit time of each message, counting how many extra
packets are caused by the GOTR protocol etc. We
have tested our Pidgin GOTR plug-in with up to ten
users in a single chat room and there was no notice-
able delay. The number of users in a GOTR chat room
session is limited by the number of users allowed in an
MSN chat room session. However, having extra net-
work bandwidth and computational power will pro-
vide faster off-the-record chat room service.

5 CONCLUSIONS

An off-the-record secure chat room is a much-needed
product for the public and the business community.
Although the GOTR protocol has improved the orig-
inal two-party OTR protocol, it was far from perfect.
Therefore, through our continued work that is pre-
sented in this paper, the virtual servers trustworthi-
ness problem was addressed by employing a MD5
integrity check mechanism. This scheme provides
the remaining chat members the ability to identify
any message alterations if ever made by the virtual
server. Although, the MD5 integrity checking mech-
anism would increase the overhead of each message,
with the initial tests, the network delays are not no-
ticeable. Furthermore, a few enhancements have been
suggested to deal with network failures. No matter
who is disconnected from a GOTR chat room, a full
key refreshing process is required to secure the whole
communication chain. Moreover, as discussed, pe-
riodically refreshing the private channels of the entire
chat room session makes the GOTR protocol more se-
cure.

6 FUTURE WORK

The protection of chat history files would be a nice
feature to include. Currently, there is no way to pre-
vent a user from saving the chat histories. Efficient
ways of attaching list of permissions to each chat his-
tory file would be beneficial. The mechanism could
be implemented such that every member in a GOTR
chat room would have a synchronized chat history file
with a unified access control list attached. Also, the
identity-pertaining information associated with each
message saved in the chat history should be sanitized,
so it will not compromise the off-the-record property
of the GOTR protocol.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

60

ACKNOWLEDGEMENTS

This work was funded, in part, by grants from the Na-
tional Science Foundation #0619069 and #0701890
and Department of Defense #H98230-07-C-0403.

REFERENCES

Bellare, M. and Rogaway, P. (1995). Provably secure ses-
sion key distribution: the three party case. InSTOC
’95: Proceedings of the twenty-seventh annual ACM
symposium on Theory of computing, pages 57–66,
New York, NY, USA. ACM.

Bian, J., Seker, R., and Topaloglu, U. (2007). Off-the-record
instant messaging for group conversation. In2007
IEEE International Conf. on Information Reuse and
Integration, Las Vegas, NV, USA.

Bishop, M. (2002). Computer Security: Art and Science.
Addison Wesley Professional.

Borisov, N., Goldberg, I., and Brewer, E. (2004). Off-
the-record communication, or, why not to use pgp.
In WPES ’04: Proceedings of the 2004 ACM work-
shop on Privacy in the electronic society, pages 77–
84, New York, NY, USA. ACM Press.

Bresson, E., Chevassut, O., and Pointcheval, D. (2007).
Provably secure authenticated group diffie-hellman
key exchange.ACM Trans. Inf. Syst. Secur., 10(3):10.

Bresson, E., Chevassut, O., Pointcheval, D., and Quisquater,
J.-J. (2001). Provably authenticated group diffie-
hellman key exchange. InCCS ’01: Proceedings of
the 8th ACM conference on Computer and Commu-
nications Security, pages 255–264, New York, NY,
USA. ACM.

Burmester, M. and Desmedt, Y. (1994). A secure and ef-
ficient conference key distribution system (extended
abstract). InEUROCRYPT, pages 275–286.

Canetti, R., Dwork, C., Naor, M., and Ostrovsky, R. (1996).
Deniable encryption. Cryptology ePrint Archive, Re-
port 1996/002. http://eprint.iacr.org/.

Diffie, W. and Hellman, M. E. (1976). New directions in
cryptography.IEEE Transactions on Information The-
ory, IT-22(6):644–654.

Gaim-e (2002). Gaim-e, encryption plug-in for gaim.
http://gaim-e.sourceforge.net/.

Ingemarsson, I., Tang, D. T., and Wong, C. (1982). A con-
ference key distribution system.IEEE Transactions
on Information Theory, 28(5).

Koch, W. (2005). Libgcrypt - cryptographic library.
http://directory.fsf.org/security/libgcrypt.html.

Krawczyk, H. (1996). Skeme: a versatile secure key ex-
change mechanism for internet.sndss, 00:114.

Pidgin-Encryption (2007). Pidgin-encryption. http://pidgin-
encryption.sourceforge.net/.

Raimondo, M. D., Gennaro, R., and Krawczyk, H. (2005).
Secure off-the-record messaging. InWPES ’05: Pro-
ceedings of the 2005 ACM workshop on Privacy in the

electronic society, pages 81–89, New York, NY, USA.
ACM Press.

Rivest, R. (1992). The md5 message-digest algorithm.
Technical Report RFC 1321, MIT Laboratory for
Computer Science and RSA Data Security, Inc.

c©Secway (2006). Simppro: Instant messengers, instant se-
curity. http://www.secway.fr/us/products/simppro/.

Steiner, M., Tsudik, G., and Waidner, M. (1996). Diffie-
hellman key distribution extended to group commu-
nication. InCCS ’96: Proceedings of the 3rd ACM
conference on Computer and communications secu-
rity, pages 31–37, New York, NY, USA. ACM Press.

Stinson, D. R. (2002).Cryptography Theory and Practice,
Second Edition. CRC Press, Inc.

W.W.Peterson and D.T.Brown (1961). Cyclic codes for er-
ror detection. InProceedings of the IRE.

OFF-THE-RECORD SECURE CHAT ROOM

61

