Laura Măruşter, Niels R. Faber, René J. Jorna, Rob J. F. van Haren



Designing and personalising systems for specific user groups encompasses a lot of effort with respect to analysing and understanding user behaviour. The goal of our paper is to provide a new methodology for determining navigational patterns of behaviour of specific user groups. We consider agricultural users as a specific user group, during the usage of a decision support system supporting cultivar selection - OPTIRasTM . Combining process mining techniques with insights from decision making theories, we provide a method of analysing logs resulted from usage of decision support systems. For instance, farmers show difficulties in fulfilling the goal of OPTIRas, while other agricultural users seems to manage better. The results of our analysis can be used to support the redesign and personalization of decision support systems.


  1. Balajinah, B. and Raghavan, S. (2001). Intrusion detection through learning behavior model. Computer Communication, 24:1202-1212.
  2. Bollini, L. (2003). Web interface design based on cognitive maps: Generative dynamics in information architecture. The 6th Generative Art Conference - GA2003.
  3. Chang, S. E., Changchien, S. W., and Huang, R.-H. (2006). Assessing users' product-specific knowledge for personalization in electronic commerce. Expert systems with Applications, 30:682-693.
  4. Ernst, N. A., Story, M.-A., and Allen, P. (2005). Cognitive support for ontology modeling. International Journal of Human-computer Studies, 62(5):553-577.
  5. Faber, N., Jorna, R., van Haren, R., and Maruster, L. (2006). Knowledge and knoweldge use for sustainable innovation: the case of starch potato production. In Proceedings of ISMICK'06, Stellenbosch, South Africa.
  6. Fountas, S., Wulfsohn, D., Blackmore, B., Jacobsen, H., and Pederson, S. (2006). A model of decision-making and informations flows for infomation-intensive agriculture. Agricultural Systems, 87:192-210.
  7. Herder, E. (2002). Metrics for the adaptation of site structure. In Proc. of the German Workshop on Adaptivity and User Modeling in Interactive Systems ABIS'02, Hannover, pages 22-26.
  8. Herder, E. and Juvina, I. (2005). Discovery of individual user navigation styles. In Proc. of the Workshop on Individual Differences - Adaptive Hypermedia, Eindhoven 2005.
  9. Holsapple, C., W. A. (1988). Distributed Decision Making: A Research Agenda. ACM SIGOIS Bullentin.
  10. Johnson, G., Halter, A., Jensen, H., and Thomas, D. (1961). A Study of Managerial Processes of Midwestern Farmers. Iowa State Press, Ames, Iowa.
  11. Juvina, I. and Herder, E. (2005). Individual differences and behavioral aspects involved in modeling web navigation. In Proc. of User-centered interaction paradigms, volume LNCS 3196, pages 77-95. Springer.
  12. Klein, M. and Methlie, L. (1995). Knowledge-based decision support systems: with applications in business. John Wiley & Sons, Chichester.
  13. Lee, K. and Lee, S. (2003). A cognitive map simulation approach to adjusting the design factors of the electronic commerce web sites. Expert Systems with Applications, 24:1-11.
  14. Menasalvas, E., Millan, S., Perez, M., Hochsztain, E., Robles, V., Marban, O., a, J. P., and Tasistro, A. (2003). Beyond user clicks: an algoritm and an agent-based arhitecture to discover user behavior. In Proceedings of ECML/PKDD.
  15. Mintzberg, H., Raisingham, D., and Thoreˆt, A. (1976). The structure of 'unstructured' decision process. Administrative Science Quarterly, 21:246-275.
  16. Mobasher, B. (2006). The Adaptive Web: Methods and Strategies of Web Personalization, chapter Data Mining for Personalization. Berlin: Springer-Verlag.
  17. Ohlmér, B., Olson, K., and Brehmer, B. (1998). Understanding farmers' decision making process and improving managerial assistance. Agricultural Economics, 18:273-290.
  18. (2007). The ProM www.processmining.org.
  19. Simon, H. (1977). The new science of management decision. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, revised edition.
  20. Song, Q. and Shepperd, M. (2006). Mining web browsing patterns for e-commerce. Computers in Industry, 57:622-630.
  21. Spiliopoulou, M. and Pohle, C. (2001). Data Mining to Measure and Improve the Success of web Sites. Data Mining and Knowledge Discovery, 5(1-2):85-114.
  22. Turban, E. and Aronson, J. (2001). Decision Support Systems and Intelligent Systems. Prentice-Hall, Upper Saddle River, N.J.
  23. van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., and Weijters, A. (2003). Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering, 47(2):237-267.
  24. van der Aalst, W. and Weijters, A. (2004). Process Mining, volume 53 of Special Issue in Computers in Industry. Elsevier Science Publishers,Amsterdam.
  25. Weijters, A. and Aalst, W. (2003). Rediscovering workflow models from event-based data using Little Thumb. Integrated Computer-Aided Engineering, 10:151-162.
  26. Weijters, A., van der Aalst, W., and de Medeiros, A. A. (2006). Process mining with the heuristics mineralgorithm. BETA Working Paper Series WP 166, Eindhoven University of Technology.

Paper Citation

in Harvard Style

Măruşter L., R. Faber N., J. Jorna R. and J. F. van Haren R. (2008). A PROCESS MINING APPROACH TO ANALYSE USER BEHAVIOUR . In Proceedings of the Fourth International Conference on Web Information Systems and Technologies - Volume 2: WEBIST, ISBN 978-989-8111-27-2, pages 208-214. DOI: 10.5220/0001526002080214

in Bibtex Style

author={Laura Măruşter and Niels R. Faber and René J. Jorna and Rob J. F. van Haren},
booktitle={Proceedings of the Fourth International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,},

in EndNote Style

JO - Proceedings of the Fourth International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,
SN - 978-989-8111-27-2
AU - Măruşter L.
AU - R. Faber N.
AU - J. Jorna R.
AU - J. F. van Haren R.
PY - 2008
SP - 208
EP - 214
DO - 10.5220/0001526002080214