
TRIVIAL.GZ: A WEB-BASED COLLABORATIVE GAME TO
PROMOTE GALICIAN CULTURE

Miguel R. Luaces, Oscar Pedreira, Ángeles S. Places and Diego Seco
Databases Laboratory, University of A Coruña, 15071 A Coruña, Spain

Keywords: Web application, user interface, AJAX, collaborative software, e-learning.

Abstract: We present in this paper the architecture and some implementation details of a web-based version of a Trivial
game. Our implementation achieves such a high degree of interactivity between the players that they perceive
the game as being played real-time. More importantly, no plug-in or applet is used in the architecture of the
system. These properties are achieved by means of a carefully designed architecture that uses AJAX (Asyn-
chronous JavaScript and XML) for data exchange. Using this approach, it is possible to develop any type of
web-based collaborative software with few load on the web server. In the paper, we analyze traditional archi-
tectures for web-based applications and we show how our approach overcomes their limitations. Furthermore,
we proof the efficiency of our approach by means of an empirical comparison.

1 INTRODUCTION

The maturity of Internet users and the quality of con-
nections and services available are increasing the de-
mand of interactivity in web applications, not only
between the user and the system, but also between
the users themselves. However, the characteristics of
traditional web applications prevent developers from
building collaborative applications or games that re-
quire real-time interaction between the users (Paul-
son, 2005). This is due to two main reasons:
• Clients cannot Exchange Information. Connec-

tions in web applications are always established
between a client and the server, but never between
two clients. Hence, all data exchange must be
done through the server.

• A Web Server cannot Start Data Transfers. Web
servers can never communicate the information
received from one client to the others unless the
clients explicitly request it, thus restricting the in-
teraction possibilities between the clients.
As a consequence, applications where users col-

laborate or interact which each other in real-time to
perform a task have to be implemented using plug-
ins or a similar type of software for the web browser
that controls the exchange of messages between the
users. The only alternative without this type of soft-
ware is that each client requests frequent and periodic
updates from the server to retrieve the data that has

changed in any other client. However, if data change
frequently in the clients or the change has to be per-
ceived as real-time, the load in the web server will
be very high because many new pages will have to
be created and sent constantly. This results in a lim-
itation in the maximum number of users that can in-
teract. Nevertheless, this approach is better than the
previous one in the sense that users do not have to in-
stall any plug-in, which is an insuperable restriction
in application domains where users do not have the
required expertise level.

We have developed a software architecture specif-
ically designed to simulate interactivity between users
of a collaborative web application. Users perceive
their interaction as real-time, just like if they had a di-
rect connection between them. This architecture has
been used to implement a virtual version of the classic
board game Trivial Pursuit with two important advan-
tages over other applications of this type: it does not
require players to download and install any software
for the web browser, and a large number of games
with many players in each can be played simultane-
ously in an ordinary web server.

The rest of the paper is organized as follows. In
Sect. 2 the rules of Trivial.gz are described in order to
show the level of interactivity that can be reached with
this new approach of web application development.
Then, in Sect. 3, we present the differences between
the architecture of traditional web applications and

67
R. Luaces M., Pedreira O., S. Places Á. and Seco D. (2008).
TRIVIAL.GZ: A WEB-BASED COLLABORATIVE GAME TO PROMOTE GALICIAN CULTURE.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 67-73
DOI: 10.5220/0001524000670073
Copyright c© SciTePress



the architecture we propose, and we describe AJAX
in more detail, showing its advantages for the system-
atic development of interactive web applications. Af-
ter that, we present a detailed description of the ap-
plication architecture in Sect. 4. This development al-
lowed us to evaluate and compare our approach with
respect to traditional approaches to web application
development, which is presented in in Sect. 5. Fi-
nally, Sect. 6 presents our conclusions and some ideas
for future work.

2 TRIVIAL.GZ

Trivial.gz is an initiative of the Galician Socio-
Pedagogic Association (AS-PG, from the Galician
name Asociación Socio-Pedagóxica Galega (Galician
Socio-Pedagogic Association, 2007)) to increase the
usage of Galician language on the Internet and among
the young people, and it was sponsored by the Gali-
cian government. The game was presented dur-
ing the computer party XuventudeGaliza.Net, which
took place in Santiago de Compostela in April 2006.
The game can currently be played at the web server
of the Galician Socio-Pedagogic Association (http:
//www.as-pg.com/trivial.gz ). It currently has
more than 1500 registered users and more that 2700
questions. Figure 1 shows a screenshot of a game be-
ing played.

The main objective when the development started
was to create a web-based game similar to the Triv-
ial Pursuit board game which could be played on any
web browser without having to download any plug-in
or applet. Our version of the game has some differ-
ences with respect to the original board game in order
to get the most out of the virtual environment and to
minimize the effects caused by the players not sharing
the same physical space during the game. Moreover,
a big effort was devoted to simulate in a web page the
interaction between the players and the actions like
rolling the die, moving the tokens, watching the posi-
tions and movements of the other players, etc.

In a rough description, the goal of Trivial.gz is
answering correctly questions of three different dif-
ficulty levels and six different subjects: Culture and
Show Business, Geography, History, Language and
Literature, Science and Our World. All questions
have three possible answers of which only one is cor-
rect. The board is an hexagon divided into squares of
different colors, each representing one of the subjects
of the questions. When the game starts, all players
start from the central square. The player who has the
turn throws the die (by clicking on an animation of
the die rolling) and moves on the board in any direc-

tion as many squares as the number in the die. When
a square is chosen, the same question is showed to all
players who can try to answer the question before the
time ends. If the question is answered right points are
awarded to the player independently of whether the
player had the turn or not. If the player with the turn
fails the question, the turn passes to the next player.
To win the match, the player first has to collect the six
wedges that are awarded when the question on a ver-
tex of the board is answered right. Then, the player
has to proceed to the center square and answer cor-
rectly a question from a random subject.

A detailed description of the game rules is outside
the scope of this paper. However, we think it is inter-
esting to discuss the modifications that were done to
the original rules of the game in order to improve the
experience of the players:

• The Game Board is updated in Real Time. A
player can see all the tokens, the die value, who
has the turn, and the points of each player. This
creates the sensation that the players share the
same virtual space.

• Players can Talk. A chat was added to the game
page so that players can communicate. It simu-
lates the verbal interaction between players.

• Wedges can be Lost. If a player fails the question
in one of the squares where wedges are awarded,
the player looses the wedge. This makes the game
more dynamic and enables players that are losing
to recover.

• It is Easier to Win Wedges. There is a special
square in each side of the board that moves the
token to one of the special squares. This makes
games faster.

• Everybody Plays. When the player with the turn
chooses a square, the question is presented to all
players. Everybody can try to answer the question
and points are awarded to everybody that gives the
right answer. Furthermore, it can be seen who has
already answered the question right or wrong in
order to increase the perception of playing with
more people.

• Limited Time. There is a time limit of 30 seconds
to answer for the player that has the turn. The
time for all the other players is limited to the time
required by the player with the turn. This avoids
long waits.

• Player History. The server keeps track of all the
games played, the points achieved by each player,
and the statistic of questions answered right for
each subject. This gives the game an additional
dimension because players can compete not only

WEBIST 2008 - International Conference on Web Information Systems and Technologies

68



Figure 1: Screenshot of the game.

to win one game, but also to be the one with
more games won, with more points, or with better
statistics.

• Solitaire Game. The game can be played by a sin-
gle player.

3 DIFFERENCES WITH
TRADITIONAL WEB
APPLICATIONS

The architecture of traditional web applications fol-
lows one of these two philosophies:

• Server-side Applications. All processing is per-
formed on the web server. Each client request im-
plies a processing time in the server and sending
a complete web page to the client. This architec-
ture is not very scalable because the number of
pages that the server has to process and send to
the clients grows with the interactivity of the ap-
plication and the number of simultaneous clients.

• Client-side Applications. In this type of architec-
ture as much processing as possible is performed
in the client, thus minimizing the information ex-
change with the server. This type of applica-
tions are usually implemented by means of web
browser plug-ins that have to be downloaded, in-
stalled and configured. Another approaches use
Java applets that require the Java Virtual Machine
to be installed and configured. In any case, this
philosophy requires some level of expertise from
the users, which limits its general use.

An intermediate approach uses scripts in the web
pages so that the client-side of the application has a
certain amount of processing capabilities without hav-
ing to install a plug-in or the Java Virtual Machine.
AJAX (Asynchronous JavaScript and XML (Garrett,

2005)) is the name of a new philosophy in the field of
web application development. In fact, AJAX is not a
new technology but rather a combination of a number
of already existing different technologies. The cen-
tral element is the asynchronous usage of the XML-
HttpRequest API present in all web browsers of the
current generation. This allows a web page that is
being visualized at the client-side to use a script lan-
guage function to request some information from a
web server without blocking the user activity. The
web server returns the information requested using
short XML (World Wide Web Consortium, 2006)
messages and the web browser invokes a specific
script function that can process the response and mod-
ify the web page accordingly. Google has been a pi-
oneer in the use of AJAX, as can be seen in Google
Suggest, Google Maps or GMail (Google, 2007).

Figure 2 shows a sequence diagram represented
with UML that describes this behaviour. In both fig-
ures a user invokes three actions in the user interface
of the web application. Figure 2(a) shows the be-
haviour in the case of traditional web applications. In
this case, the user has to wait until the action ends
before invoking the following one. Furthermore, the
processing time in the server and the amount of infor-
mation exchanged between the client and the server is
usually quite high. Figure 2(b) shows the behaviour
in the case of using AJAX. In this case users per-
ceive a higher response speed. They do not have to
wait for an action to end before invoking another ac-
tion because the data exchange is performed asyn-
chronously and long operations do not block the user
interface. Moreover, in traditional web applications
each content update requires a complete reload of the
web page, whereas in a web application using AJAX
the information in the XML message is used to re-
draw the appropriate section of the user interface. Ad-
ditionally, the processing time in the server and the
amount of information exchanged is smaller because

TRIVIAL.GZ: A WEB-BASED COLLABORATIVE GAME TO PROMOTE GALICIAN CULTURE

69



(a) Traditional web application (b) AJAX web application

Figure 2: Client-server interaction in different application models.

the server does not have to create and trasfer complete
web pages, but only short XML messages.

Furthermore, given that the processing time in the
server and the amount of information exchanged be-
tween the server and the clients is reduced, AJAX-
based web applications can include more interactiv-
ity than traditional applications because the remaining
processing time and bandwidth can be used to handle
a higher number of simultaneous requests.

A number of development tools have appeared
around AJAX to make its usage more easy. One of
them is Direct Web Remoting (DWR) (Direct Web Re-
moting (DWR), 2007). This open source library has
two advantages over the direct use of AJAX. First, it
enables the JavaScript code in the client-side to use
transparently Java classes in the server-side. That is,
it enables the developer to use AJAX in a similar way
to CORBA or RPC. This is achieved by dynamically
generating JavaScript code that encapsulates AJAX-
based calls to the Java classes in the server. The sec-
ond advantage is that DWR provides the developer
with a number of tools to make easier the update of
the web page contents in the client-side.

These two technologies are the center of the ar-
chitecture of our application. However, they do not
solve the problem of creating web applications that
allow users to interact in real time. Even though it
speeds up data exchange between the server and the
clients, it does not change the architecture of web ap-
plications. That is, data exchange is still performed
between the clients and the server and never between
clients, and the server still cannot take the initiative of
sending the data it has just received from a client to
the other ones.

In order to achieve a high degree of interactiv-
ity between the users, in our architecture each client

issues frecuent periodical requests to the server and
receives the relevant information regarding the state
of the game and the other players, which is used to
change the user interface accordingly. To keep track
of the current state of the game, the server implements
a state-machine that is controlled with the information
sent by the player that has the turn. Requests to the
server can be issued more in response to some actions
of the player (such as throwing the dice or answering
a question).

This approach cannot be implemented with the
traditional architecture of web applications because
the amount of information that had to be exchanged
between the server and the clients is too high. In
order to minimize the processing time in the server
and the traffic between the clients and the server, we
use AJAX for the communication between the clients
and the server. By exchanging information by means
of short XML messages, AJAX frees the web server
from the creation of complete web pages when the
clients requests arrive. Furthermore, the logic of the
application is split between the client and the server in
such a way that the processing time in the server and
the traffic between the server and the clients is mini-
mized. Finally, the functionality in the client-side can
be implemented using only JavaScript, thus no special
software has to be downloaded or installed.

4 DETAILED SYSTEM
ARCHITECTURE

Figure 3 presents a general view on the architecture of
the application. Just like in any web application, one
can find two different parts: the server-side module
of the application that runs in a web server and it is

WEBIST 2008 - International Conference on Web Information Systems and Technologies

70



implemented using Java Server Pages (JSP), and the
client-side module that runs in the web browser of the
client and it is implemented using JavaScript and dy-
namic HTML. There is a part of the application that
deals with functionality such as user registration, con-
figuration of lists of friends, or querying and browsing
statistics of the players, which is implemented as an
ordinary web application whose description is out of
the scope of this paper. Instead, we will focus on the
description of the game control and the simulation of
real-time interactivity.

There are two different types of players in the
game: the one that currently has the turn, and all the
others. The first one has the control of the game and
generates events that produce the update of the game
state (e.g., rolling the die, choosing the square, or an-
swering the question). The other players only gen-
erate an event when they answer the question. The
server controls each game being played by means of
a state-machine. During the game, the server goes
through the states according to the actions invoked by
the player that has the turn. The other players do not
have any effect on the state-machine, they just query
the server periodically to retrieve the current state of
the game in order to update their user interface.

Figure 3: Application architecture.

The states in the state-machine of the server are
the following:

• Initial State. Just before the player that has the
turn rolls the die. There is no information to be
sent to the other players.

• Dice Thrown. The player with the turn rolls the
die and gets a number. The other players receive
this number when they request the game state in
order to update their user interface.

• Square Chosen. The player with the turn chooses
a square to move and receives a query for that
square that is selected randomly by the server.

The rest of the players receive the square selected
and the question when they request the game state.

• Answering a Question. Whenever a player with-
out the turn answers a question, the server updates
the points of that player and informs the other
players of the result. Therefore, all the other play-
ers can now whether one player has answered the
question right or wrong. When the player with the
turn answers the question, the time for answering
ends. If the player gave a wrong answer, the turn
passes to the following player.

Internally, the server-side module keeps a list of
the games that are being played at any given time.
Each game consists of a list of players and a list
of questions ready to be sent to the players. For
each player, the server keeps in memory the points
achieved, the wedges won, and the statistic of ques-
tions answered right for each subject. The list of
questions acts like a memory cache to reduce the fre-
quency of database accesses. Hence, instead of issu-
ing a query to the database each time a question is
needed, there is only one database access to retrieve a
set of questions that are used during the game. Only
when all the questions are used a new database access
is performed.

The client-side modules consists of a Dynamic
HTML page with JavaScript code. Its operation is
based on a JavaScript timer that requests the game
state every four seconds and updates the user interface
accordingly. When the user invokes actions on the
user interface, the JavaScript code informs the server
of the event and modifies the user interface with the
information retrieved. The time between updates can
be easily configured. A longer time reduces the real-
time perception of the game but allows for a longer
number of simultaneous games in the server. On the
other hand, a shorter time improves the real-time per-
ception but requires more computing power on the
server side. The time that is currently being used has
been empirically chosen to achieve a real-time per-
ception of the game while using an average computer
as the web server.

Figure 4 shows the development of a game turn.
The numbers in the figure match the following enu-
meration and represent a temporal-ordering of the
event sequence. First, the JavaScript timer determines
the moment to request information from the server
(1). After that, a JavaScript function in the client-
side module that requests the current game state from
the server is invoked (2). The server receives the
request and delegates its fulfillment in the business
model (3). The business model implements the state-
machine that controls the game and computes the in-
formation to be answered according to the current

TRIVIAL.GZ: A WEB-BASED COLLABORATIVE GAME TO PROMOTE GALICIAN CULTURE

71



Figure 4: Communication protocol.

state and the current event (4). Then, the server re-
sponse is encapsulated and sent to the client. An ob-
ject is built with the information retrieved from the
business model and sent to the client (5). The client
receives the response, extracts the information from
the object, and uses the information to update the user
interface content (6). Finally, a new turn starts by
showing the animated picture that represents the die
(7).

5 EXPERIMENTAL EVALUATION

The Trivial.gz is installed in a 3.2 Ghz Pentium IV
with one gigabyte RAM. During its presentation at the
XuventudeGaliza.Net party, the web server received
almost a million hits (web server requests) and more
than 600 visits (defined as a set of consecutive hits
originating from the same computer). Most of the re-
quests were concentrated in the hour when a Trivial.gz
competition took place. More than 200 players com-
peted to achieve more points than the rest. During this
hour, more than 800 games were played with an av-
erage of three players per game. Exactly 776 games
were played completely. The games that did not end
because all the players left the board were not regis-
tered.

Table 1 shows some figures regarding the amount
of information transferred by the web server execut-
ing Trivial.gz and a comparison to the amount of in-
formation transferred if the application were built us-
ing a traditional web architecture.

The HTML code of the web page occupies 35
kilobytes without taking into account neither the im-
ages nor the JavaScript code that sends the messages
to the server using DWR. On the other hand, the DWR

object that the web server sends to each client oc-
cupies 313 bytes, i.e. 0.31 kilobytes. As it was ex-
plained in Sect. 4, the game information must be up-
dated by each client frequently in order to achieve a
real time perception of the game. If we consider an
update time of 4 seconds, just like it is currently con-
figured in the application, a traditional web applica-
tion would require the web server to send the 35 KB
of the web page 15 times per minute. This means a
total of 525 KB per minute and player, whereas with
Trivial.gz this amount of information is reduced to 4.7
KB per minute and player.

We can suppose that 100 games with an average
of three players were played during 10 minutes in
the party where the Trivial.gz was presented. In fact,
more than 800 games were played in an hour, so our
supposition is quite conservative. Considering this ac-
tivity, 1.5 Gigabytes of information would be trans-
ferred through the network in a traditional web ap-
plication, whereas only 14 Megabytes were sent in
Trivial.gz. This represents that a traditional web ap-
plication requires 107 times more space for the same
information. As a consequence of this amount of in-
formation, a traditional web application would require
a bandwidth of 2.56 MBytes/s in the best case (as-
suming that the traffic distribution is uniform). How-
ever, Trivial.gz only needed a bandwidth of 23.50
KBytes/s.

6 CONCLUSIONS AND FUTURE
WORK

We have presented in this paper the architecture of a
web application that implements a trivial-like game

WEBIST 2008 - International Conference on Web Information Systems and Technologies

72



Table 1: Empirical data.

Traditional Application Trivial.gz
1 message, 1 game, 1 player 35 KBytes 0.31 KBytes
1 game, 1 minute, 3 players 1575 KBytes 14.1 KBytes
100 games, 10 minutes, 3 players 1538.09 MBytes 13.77 MBytes
Network traffic during these 10 minutes 2.56 MBytes/s 23.50 KBytes/s

where players can follow the game in real time. This
was achieved without using any plug-in or applet,
which means that the game can be played in almost
any computer without the common problems associ-
ated to the instalation of these components.

We have described how the AJAX philosophy is
used in the implementation for the data exchange
between the server and the clients. Moreover, the
message exchange protocol designed for Trivial.gz
and a general architecture for collaborative web ap-
plications are also described. These three improve-
ments over traditional web applications minimize the
amount of information that has to be transferred be-
tween the clients and the server. We believe that this
approach can be used to develop any type of collab-
orative software using a web application with a small
load on the web server.

Finally, we have performed an empirical compari-
son between Trivial.gz and a web application based
on a traditional web application architecture. This
comparison shows the advantages of using our archi-
tecture in terms of network bandwith and processing
capabilities of the web server.

The application has been a success. The game has
a solid player base and it is being used to promote
the use of the Galician language among young peo-
ple. New questions are submitted by player regularly
and a board version of the game is being developed.
As lines of future work, we are currently working on
the improvement of Trivial.gz to allow games with a
larger number of players. Another improvement that
is currently being implemented is the adaptation of
the application to make it completely configurable by
the final users. When this is achieved, any user will
be able to install the application, decide the subjects,
and define the questions. A possible field where this
application can be used is in education with teachers
configuring Trivial.gz games with the questions of the
lessons they teach in the classroom.

A different line of future work is the study of the
requirements of other types of collaborative web ap-
plications, such as distance education or collabora-
tive work, and the adaptations that the architecture
requires. In this sense, a web-based version of the

popular game Scrabble is being developed with the
same goals in mind.

ACKNOWLEDGEMENTS

This work has been partially supported by “Minis-
terio de Educación y Ciencia” (PGE y FEDER) ref.
TIN2006-16071-C03-03, by “Xunta de Galicia” ref.
PGIDIT05SIN10502PR and ref. 2006/4, by “Minis-
terio de Educación y Ciencia" ref. AP-2006-03214
(FPU Program) for Oscar Pedreira, and by “Dirección
Xeral de Ordenación e Calidade do Sistema Universi-
tario de Galicia, da Consellería de Educación e Or-
denación Universitaria-Xunta de Galicia” for Diego
Seco.

REFERENCES

Direct Web Remoting (DWR) (2007). Web Site. Retrieved
from http://getahead.org/dwr in October 2007.

Galician Socio-Pedagogic Association (2007). Web Site.
Retrieved from http://www.as-pg.com/ in October
2007.

Garrett, J. (2005). Ajax: A New Approach
to Web Applications. Retrieved from
http://www.adaptivepath.com/publications/essays/
archives/000385.php in October 2007.

Google (2007). Google Tools Web Site. Retrieved
from http://www.google.com/intl/en/options/ in Octo-
ber 2007.

Paulson, L. D. (2005). Building rich web applications with
ajax. IEEE Computer, 38(10):14–17.

World Wide Web Consortium (2006). Extensi-
ble Markup Language (XML). Retrieved from
http://www.w3.org/XML/ in October 2007.

TRIVIAL.GZ: A WEB-BASED COLLABORATIVE GAME TO PROMOTE GALICIAN CULTURE

73


