
FINDING DISTINCT ANSWERS IN WEB SNIPPETS

Alejandro Figueroa and Günter Neumann
Deutsches Forschungszentrum für Künstliche Intelligenz - DFKI

Stuhlsatzenhausweg 3, D - 66123, Saarbrücken, Germany

Keywords: Web Mining, Question Answering, List Questions, Distinct Answers.

Abstract: This paper presents ListWebQA , a question answering system aimed specifically at discovering answers to
list questions in web snippets. ListWebQA retrieves snippets likely to contain answers by means of a query
rewriting strategy, and extracts answers according to their syntactic and semantic similarities afterwards. These
similarities are determined by means of a set of surface syntactic patterns and a Latent Semantic Kernel.
Results show that our strategy is effective in strengthening current web question answering techniques.

1 INTRODUCTION

In the last decade, the rapid increase in the num-
ber of web documents, in particular HTML pages,
has provoked a remarkable and progressive improve-
ment in the power of indexing of vanguard search
engines, such as MSN Search. The great success
of these search engines in linking users to nearly all
the sources that satisfy their information needs, has
caused an explosive growth in their number. Anal-
ogously, the demand of users for smarter ways of
searching and presenting the requested information
has also increased. Currently, one growing demand is
finding answers to natural language questions. Most
of the research in this area has been carried out under
the umbrella of Question Answering Systems (QAS),
specifically in the context of the Question Answering
track of the Text REtrieval Conference (TREC).

TREC encourages QAS to answer several kinds
of questions, whose difficulty has been systematically
increasing during the last few years. In 2001, TREC
incorporated list questions such as “What are 9 novels
written by John Updike?”. Simply put, answering this
sort of question consists chiefly in discovering a set
of different answers across several documents. How-
ever, QAS in TREC have obtained a modest success,
showing that dealing with this kind of question is par-
ticularly difficult (Voorhees, 2001; Voorhees, 2003).

This paper presents ListWebQA , a list question an-
swering system aimed at extracting answers only to
list questions exclusively from the brief descriptions
of web-sites returned by search engines, called web

snippets. The motivation behind the use of web snip-
pets as an answer source is three-fold: (a) to avoid the
costly retrieval and processing of full web documents,
(b) to the user, web snippets are the first view of the
response, thus highlighting answers would make them
more informative, and (c) answers taken from snip-
pets can be useful for determining the most promising
documents, that is, where most of answers are likely
to be. An additional strong motivation is, the absence
of answers across retrieved web snippets can force a
change in the search strategy of QAS or a request for
additional feedback at the user. On the whole, exploit-
ing snippets for list question answering is a key topic
in the research realm of QAS.

The roadmap of this paper is as follows: section
2 deals at greater length with the related work. Sec-
tion 3 describes ListWebQA in detail, section 4 shows
results, and section 5 draws conclusions.

2 RELATED WORK

In the context of TREC, many methods have been ex-
plored by QAS in order to discover answers to list
questions across the target collection of documents
(the AQUAINT corpus). QAS usually start by dis-
tinguishing the focus of the query. The focus is the
most descriptive noun phrase of the expected answer
type (Katz et al., 2003). It thus associates the ques-
tion with its answer type. Some QAS, hence, take
into account pre-defined lists of instances of several
foci, this way they find out right answers by match-

26
Figueroa A. and Neumann G. (2008).
FINDING DISTINCT ANSWERS IN WEB SNIPPETS.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 26-33
DOI: 10.5220/0001518900260033
Copyright c© SciTePress

ing elements of these lists with a set of retrieved pas-
sages. For example, (Katz et al., 2004) accounted for
a list of 7800 famous people extracted from biogra-
phy.com. They increased additionally their 150 pre-
defined and manually compiled lists used in TREC
2003 to 3300 in TREC 2004 (Katz et al., 2003). These
lists were semi-automatically extracted from World-
Book Encyclopedia articles by searching for hypon-
omyns. In TREC 2005, (Katz et al., 2005) gener-
ated these lists off-line by means of subtitles and link
structures provided by Wikipedia. This strategy in-
volved processing a whole document and its related
documents. The manual annotation consisted specif-
ically in adding synonymous noun phrases that could
be used to ask about the list. As a result, they found
that online resources, such as Wikipedia, slightly im-
proved the recall for the TREC 2003 and 2004 list
questions sets, but not for TREC 2005, despite the
wide coverage provided by Wikipedia. (Katz et al.,
2005) eventually selected the best answer candidates
according to a threshold.

(Schone et al., 2005) also cut-off low-ranked an-
swers according to a threshold. These answers were
obtained by interpreting a list question as a tradi-
tional factoid query and finding its best answers after-
wards. Indeed, widespread techniques for discovering
answers to factoid questions based upon redundancy
and frequency counting tend not to work satisfactorily
on list questions, because systems must return all dif-
ferent answers, and thus the less frequent answers also
count. Some systems are, therefore, assisted by sev-
eral deep processing tools, such as co-reference reso-
lution. This way complex noun phrase constructions
and relative clauses can be handled (Katz et al., 2005).
All things considered, QAS are keen on exploiting the
massive redundancy of the web, in order to mitigate
the lack of redundancy of the AQUAINT corpus and
increase the chance of detecting answers, while at the
same time, reducing the need for deep processing.

In the context of TREC 2005, (Wu et al., 2005)
obtained patterns for detecting answers to list ques-
tions by checking the structure of sentences in the
AQUAINT corpus, where previously known answers
occurred. They found that the semantic of the lexico-
syntactic constructions of these sentences matches the
constructions observed by (Hearst, 1992) for recog-
nising hyponomic relations. These constructions,
which frequently occur within natural language texts
(Hearst, 1992), are triggered by keywords like “in-
cluding”, “include”, “such as” and “like”. Later,
(Sombatsrisomboon et al., 2003) took advantage of
the copular pattern “X is a/an Y” for acquiring hyper-
nyms and hyponyms for a given lexical term from web
snippets, and suggested the use of Hearst’s patterns

for acquiring additional pairs hypernym–hyponym.
(Shinzato and Torisawa, 2004a) acquired hypo-

nomic relations from full web documents based on
the next three assumptions: (a) hyponyms and their
hypernym are semantically similar, (b) the hypernym
occurs in many documents along with some of its hy-
ponyms, and (c) expressions in a listing are likely
to have a common hypernym. Under these assump-
tions, (Shinzato and Torisawa, 2004b) acquired hy-
ponyms for a given hypernym from lists in web doc-
uments. The underlying assumption of their strategy
is, a list of elements in a web page is likely to contain
hyponyms of the hypermyn signalled on the heading
of the list. (Shinzato and Torisawa, 2004b) ranked
hypernym candidates by computing some statistics
based on co-occurrence across a set of downloaded
documents. They showed that finding the precise
correspondence between lists elements and the right
hypernym is a difficult task. In addition, many hy-
ponyms or answers to list questions cannot be found
in lists or tables, which are also not necessarily com-
plete, especially with respect to online encyclopedias.

(Yang and Chua, 2004b) also exploited lists and
tables as sources of answers to list questions. They
fetched more than 1000 promising web pages by
means of a query rewriting strategy that increased
the probability of retrieving documents containing an-
swers. This rewriting was based upon the identifi-
cation of part-of-speech (POS), Name Entities(NEs)
and a subject-object representation of the prompted
question. Documents are thereafter downloaded and
clustered. They also noticed that there is usually a
list or table in the web page containing several po-
tential answers. Further, they observed that the title
of a page, where answers occur, is likely to contain
the subject of the relation established by the submit-
ted query. They then extracted answers and projected
them on the AQUAINT corpus afterwards. In this
method, the corpus acted as a filter of misleading and
spurious answers. As a result, they improved the F1
score of the best TREC 2003 system.

(Cederberg and Windows, 2003) distinguished pu-
tative pairs hyponomy-hypernym on the British Na-
tional Corpus by means of the patterns suggested by
(Hearst, 1992). Since a hyponym and its hypernym
are expected to share a semantic similarity, the plau-
sibility of a putative hyponomic relationship is given
by its degree of semantic similarity in the space pro-
vided by Latent Semantic Analysis (LSA). Further-
more, they extended their work by inferring hypo-
nomic relations by means of nouns co-occurring in
noun coordinations. As a result, they proved that LSA
is an effective filter when combined with patterns and
statistical information.

FINDING DISTINCT ANSWERS IN WEB SNIPPETS

27

3 MINING WEB SNIPPETS FOR
ANSWERS

ListWebQA receives a natural language query Q as
input and performs the following steps. Firstly,
ListWebQA analyses Q in order to determine its noun
phrases and focus as well as verbs (section 3.1). Sec-
ondly, it retrieves web snippets that are likely to con-
tain answers by means of four purpose-built queries
(section 3.2). Thirdly, ListWebQA discriminates an-
swers candidates in these web snippets on the ground
of a set of syntactic patterns (section 3.3). Lastly, it
chooses answers by means of a set of surface patterns,
Google n-grams1, coordinations of answers, and a
Latent Semantic Kernel (LSK) (section 3.4).

3.1 Query Analysis

ListWebQA starts similarly to (Yang and Chua,
2004b), by removing head words (i. e. “What are”)
from Q. From now on, Q refers to this query without
head words. Next, it uses part-of-speech (POS) tags2

for extracting the following information from Q:

• Verbs are terms tagged as VBP, VBZ, VBD,
VBN and VB as well as VBG. For instance,
“written” in “novels written by John Updike”.
Stop-words are permanently discarded.

• Foci are words or sequences of words tagged as
NNS, apart from stop-words. In particular, “nov-
els” in “novels written by John Updike”. In some
cases, the focus has a complex internal structure,
because nouns can occur along with an adjective
that plays an essential role in its meaning. A good
example is “navigational satellites”, in this sort of
case, the adjective is attached to its corresponding
plural noun (NNS).

• Noun Phrases are determined by following the
next two steps:

– A sequence of consecutive NNs and NNPs are
grouped into one NN and NNP respectively.

– Any pair of consecutive tags NN - NNS, NNP
- NNPS and NNP - NN are grouped into one
NNS, NNPS and NNP, respectively. This pro-
cedure is applied recursively until no further
merge is possible.

Accordingly, sequences of words labelled as
NNPS and NNP are interpreted as noun phrases.
This procedure offers some positive advantages

1http://googleresearch.blogspot.com/2006/08/all-our-n-
gram-are-belong-to-you.html

2http://nlp.stanford.edu/software/tagger.shtml

over chunking to the posterior processing, be-
cause some noun phrases are not merged, remain-
ing as simpler constituents, helping to fetch some
of its common variations. For example, “Ben and
Jerry” remains as “Ben” and “Jerry”, which helps
to match “Ben & Jerry”. Another vital thing is,
reliable and efficient POS taggers for public use
currently exist, contrary to chunkers, which still
need improvement.

Additionally, we briefly tried the subject-object
representation of sentences, like (Yang and Chua,
2004b), provided by MontyLingua3. However, some
difficulties were encountered, while computing the
representation of some queries.

3.2 Retrieving Web Snippets

On the one hand, (Yang and Chua, 2004a) observed
that web pages, where answers to list questions occur,
contain a noun phrase of Q in the title. On the other
hand, state-of-the-art search engines supply a feature
“intitle” that assists users to fetch web pages, in which
their title matches a given input string. ListWebQA
makes allowances for this feature to bias the search
in favour of pages that are very likely to contain an-
swers, more precisely, web pages predominantly en-
titled with query NNPSs and/or NNPs. Accordingly,
if several noun phrases occur within Q, they are con-
catenated with the disjunction “or”. The reason to
prefer the disjunction to the conjunction “and” is that
the latter brings about a low recall. We call this con-
catenation a title clause.

Search engines also provide a special feature
for matching words in the body of the documents
(“inbody” in MSN Search and “intext” in Google).
ListWebQA takes advantage of this feature to bias the
search engine in favour of documents containing the
focus of Q, especially within the snippet text. In the
case of queries with several NNSs, they are concate-
nated with the disjunction “or”. Since ListWebQA
looks for web pages containing both, the desired ti-
tle and body, they are linked with the conjunction
“and”. The following search query corresponds to
Q =“novels written by John Updike”:
• intitle:(“JOHN UPDIKE”) AND inbody:(“NOVELS”

OR “WRITTEN”)

This query unveils another key aspect of our web
search strategy: query verbs are also added to the
body clause. A snippet retrieved by this query is:

• IMS: John Updike, HarperAudio
Author and poet John Updike reads excerpts from his
short story “The Persistence of Desire”. ... Updike’s

3http://web.media.mit.edu/∼hugo/montylingua/

WEBIST 2008 - International Conference on Web Information Systems and Technologies

28

other published works include the novels “Rabbit Run”,
“Couples”, and “The Witches of ...

Certainly, TREC list question sets have questions
that do not contain any NNPS or NNP, especially
the query “Name 6 comets” provides only the clause
inbody:(“COMETS”). In fact, ListWebQA prefers
not adding NNSs to the title clause, because they
lead the search to unrelated topics. We see this as
a consequence of the semantic/syntactic flexibility of
some NN/NNS, especially to form compounds. For
example, pages concerning the sport team “Hous-
ton Comets” are retrieved while searching for inti-
tle:comets. However, this ambiguity is lessened if
the NN/NNS occurs along with an adjective or if
it represents a merged sequence of NNS/NNS (sec-
tion 3.1). In this case, ListWebQA generates a title
clause instead of a body clause, which also accounts
for the corresponding lemma. To neatly illustrate, the
query “What are 6 names of navigational satellites?”
supplies the clause intitle:(“NAVIGATIONAL SATEL-
LITES” OR “NAVIGATIONAL SATELLITE”).

From this first purpose-built query, ListWebQA
derives the second and third queries. Following the
observation that sometimes answers are likely to be
signalled by some hyponomic words like “such as”,
“include”, “including” and “include”. ListWebQA ap-
pends these words to the focus as follows:
• intitle:(“JOHN UPDIKE”) AND inbody:(“NOVELS

LIKE” OR “NOVELS INCLUDING”) AND in-
body:(“WRITTEN”)

• intitle:(“JOHN UPDIKE”) AND inbody:(“NOVELS
SUCH AS” OR “NOVELS INCLUDE”) AND in-
body:(“WRITTEN”)

Two search queries are generated from these key-
words, because of the query limit imposed by search
engines (150 characters). It is also worth pointing
out that, unlike the first query, they do not consider
lemmas, and the verbs are concatenated in another
body clause. In brief, these two purpose-built queries
bias search engines in favour of snippets that are very
likely to contain coordinations with answers.

In addition, ListWebQA generates an extra search
query which aims specifically at exploiting the con-
tent of on-line encyclopedias. To achieve this,
ListWebQA takes advantage of the feature “site” pro-
vided by search engines to crawl in Wikipedia and
Answers.com. In our working examples, this fourth
search query looks as follows:
• inbody:(“NAVIGATIONAL SATELLITES”) AND

(site:en.wikipedia.org OR site:www.answers.com)

In particular, a retrieved snippet by this query is:

• GPS: Information from Answers.com
GPS Global Positioning System (GPS) is a navigation
system consisting of a constellation of 24 navigational
satellites orbiting Earth, launched and

This snippet highlights how our query strategy ex-
ploits the indexing power of search engines. Many an-
swers occur in many documents belonging to on-line
encyclopedias, which are not straightforwardly reach-
able by matching query with topic-document key-
words. This sort of document usually contains a para-
graph or a couple of sentences relevant to the query,
and hence, in order to find this piece of text, it is nec-
essary to download, process the entire topic-related
document, and what is more, some of its related docu-
ments. In the example, the answer “GPS” is contained
in the body of a document related to “navigational
satellites” titled by the answer. ListWebQA retrieves
the relevant sentences without downloading and pro-
cessing this document. Lastly, it is also worth noting
that each submission retrieves the first 20 snippets.

Pre-processing
Once all snippets are retrieved, ListWebQA splits
them into sentences by means of truncations and
JavaRap4. Every time ListWebQA detects a truncated
sentence that fulfils two conditions, it is submitted to
the search engine (in quotes), and the newly fetched
sentence replaces the old one. These two conditions
are: (a) it contains a coordination of elements, and
(b) this coordination is indicated by some hyponomic
keywords. Accordingly, sentences are also identified
in these fetched extensions.

3.3 Answer Candidate Recognition

One of the major problems of answering list ques-
tions is the fact that the type of the focus varies widely
from one question to another. For instance, the query
“Name 10 countries that produce peanuts” has coun-
tries (locations) as foci, but the question “What are
9 novels written by John Updike?” names of books.
This variation plays a crucial role in determining an-
swers, because state-of-the-art NERs do not recognise
all types of foci, and furthermore, their performance is
directly affected by truncations on web snippets. For
these reasons, ListWebQA mainly distinguishes enti-
ties by means of two regular expressions grounded on
sequences of capital letters surrounded by stop-words
and punctuation:
1. (#|S|L|P)((N|)(C+)(S{0,3})(C+)(|N))(L|S|P|#)

2. (S|L|P)C(L|S|P)

4http://www.comp.nus.edu.sg/∼qiul/NLPTools/
JavaRAP.html.

FINDING DISTINCT ANSWERS IN WEB SNIPPETS

29

where “S”, “P”, “N” stand for a stop-word, a
punctuation sign, and a number, respectively. “C”
stands for a word, which starts with a capital letter,
“L” for a lower-cased word, and eventually, “#” marks
a sentence limit. The first pattern aims at names of
persons, places, books, songs, and novels, such as
“The Witches of Eastwick.” The second pattern aims
at a single isolated word which starts with a capital
letter (i. e. country names).

Since the generalisation process given by
these regular expressions causes too much noise,
ListWebQA filters out some misleading and spurious
entities by removing entities whose frequencies are
greater than a frequency threshold determined by
Google n-grams counts. In order to avoid discard-
ing some possible answers, we manually checked
high-frequent Google n-grams referring to country
names like “United States” and “Germany”, and
organisations or person names such as “George
Bush” and “Jim Clark”. Then, ListWebQA maps
every entity to a place holder “entityX”, where “X” is
assigned according to each individual entity.

The next step is replacing all query verbs with a
place holder. Here, ListWebQA also considers mor-
phological variations of verbs. For example, the
words “write”, “writing”, and “written” are mapped
to the same place holder “qverb0”, where the zero
indexes the respecting verb within Q. ListWebQA
then does a similar processing with foci in Q. In
this case, plural and singular forms are mapped to the
same place holder. For instance, “novel” and “novels”
are mapped to “qfocus0”, where “0” is accordingly
the corresponding index. Consequently, ListWebQA
follows the same strategy for noun phrases within
the query. In addition, ListWebQA maps substrings
within query noun phrases to the same place holder
“qentity”. The next snippet sketches this abstraction:

• entity0: qentity0, entity1
Author and poet qentity0 reads excerpts from his short
story “entity2”. ... qentity0’s other published works in-
clude the qfocus0 “entity3”, “entity4”, and “entity5.”

From this snippet abstraction, ListWebQA distin-
guishes a set A of answer candidates according to the
patterns in table 1. It is worth remarking that π3 and
π7 are only used for matching snippet titles, while π1
is aimed at the patterns proposed by (Hearst, 1992),
and π4 is aimed at the copular pattern.

3.4 Selecting Answers

First of all, ListWebQA determines a set P ⊆ A con-
sisting of all answers matching at least two different
patterns in Π. Second, it constructs a set C ⊆ A by
examining whether any answer candidate occurs in

two different coordinations triggered by patterns π1
and π8. Third, ListWebQA discriminates a set E ⊆ A
of answers on the ground of their syntactic bonding
with the query by inspecting their frequency given by
Google 5-grams as follows:

a. Trims query entities by leaving the last two words.
For example: “Frank Lloyd Wright” remains as
“Lloyd Wright”.

b. Appends punctuation signs to these trimmed
query entities, in such a way that match patterns
shown in Π:
• Lloyd Wright (’s|:|‘|“)

c. Searches for 5-grams matching this pattern.

d. Partially aligns the beginning of each answer
candidate with the context yielded by every
(matched) Google 5-grams.

Fourth, ListWebQA determines a set F ⊆A of an-
swers by aligning answers in A with the context con-
veyed by Google 5-grams that match the next pattern:

• qfocus (like|include|including|such)

Fifth, ListWebQA scores each coordination sig-
nalled by patterns π1 and π8 according to its set γ of
conveyed answers candidates and the next equation:

H(γ) = 2(| γ∩E |+ | γ∩B |)+ | γ∩F |+
3(| γ∩P |+ | γ∩C |)+

ListWebQA initialises B as /0, and adds answers to B
by bootstrapping coordinations. At each iteration, this
bootstrapping selects the highest scored coordination,
and finishes when no coordination fulfils H(γ)≥| γ |.
Every previously selected coordination is unconsid-
ered in the next loops. Consequently, this bootstrap-
ping assists ListWebQA to infer some low frequent an-
swers surrounded by reliable answers.

Sixth, ListWebQA ranks all answers in A exclud-
ing those only matching π1 and π8, by measuring
the semantic similarity to Q of every context where
these answers occur. (Cederberg and Windows, 2003)
tested the degree of semantic relationship between
two terms by means of LSA. Conversely, ListWebQA
determines the semantic similarity of every snippet
abstraction to the corresponding abstraction of Q (see
section 3.3), that is the similarity between two sets of
terms, making use of the LSK proposed by (Shawe-
Taylor and Cristianini, 2004). ListWebQA weights
accordingly the respective frequency matrix with tf-
idf and normalises the kernel. The rank of an answer
candidate is hence given by the sum of all the dif-
ferent contexts, where it occurs, that match π2 to π7.
Eventually, ListWebQA builds a set K from the high-
est 40% ranked answers, whose rank values are also

WEBIST 2008 - International Conference on Web Information Systems and Technologies

30

Table 1: Set of Syntactic Patterns Π for recognising Answer Candidates at the sentence level.

Π Pattern
qfocus (such as|like|include|including) (entity,)+ (and|or) entity

π1 qentity0’s other published works include the qfocus0 “entity3”, “entity4”, and “entity5”. ⇒
Updike’s other published works include the novels “Rabbit Run”,“Couples” and “The Witches of Eastwick”.
\w* (qentity|qfocus) \w* (“entity”|‘entity’) \w*.

π2 \w* (“entity”|‘entity’) \w* (qentity|qfocus) \w*.
qentity0 wrote the qfocus0 “entity6”. ⇒ John Updike wrote the novel “Brazil”.
:qentity:(\w+:){0,1}entity

π3 :entity:(\w+:){0,1}qentity
Amazon.com:entity10:Books:qentity0 ⇒ Amazon.com:Terrorist:Books:John Updike
entity is \w+ qfocus \w*

π4 (entity,)+ and entity are \w+ qfocus \w*
entity1 is . . . qentity0’s qfocus0 brand. ⇒ Chubby Hubby is . . . Ben and Jerry’s ice cream brand.
qentity’s entity

π5 qentity’s (entity,)+ (and|or) entity
qentity0’s entity9 or entity11. ⇒ Frank Lloyd Wright’s Duncan House or The Balter House.
(qentity|pronoun|qfocus) \w{0,3} qverb \w{0,3} entity

π6 entity \w{0,3} qverb \w{0,3} prep \w{0,3} qentity
qentity0 qverb0 his native entity16. ⇒ Pope John Paul II visited his native Poland.

π7 entity qfocus
entity15 qfocus. ⇒ The Cincinnati Subway System.
qentity0 \w* qfocus (:|,) (entity,)+ (and|or) entity

π8 Six qentity0 . . . qfocus0: entity3, entity1, entity7, entity13, entity1, and entity9. ⇒
Six Nobel Prizes . . . categories: Literature, Physics, Chemistry, Peace, Economics, and Physiology & Medicine.

greater than an experimental threshold (0.74). If | K
|< 10, K is extended to the ten top ranked answers.

ListWebQA builds a set E ′ ⊆E of answers that are
closely (semantically) related to Q, by ensuring a sim-
ilarity greater than the experimental threshold (0.74).
Last, if B = /0, it outputs E ′ ∪K , otherwise B ∪E ′

.

4 EVALUATION

ListWebQA 5 was assessed by means of the list ques-
tion sets supplied by TREC from 2001 to 2004. Ac-
cordingly, errors in query analysis are discussed in
section 4.1, and section 4.2 highlights the increase in
recall obtained by our snippet retrieval strategy. In
addition, section 4.3 remarks the accuracy of patterns
in table 1, and eventually, section 4.4 compares our
results with other systems.

4.1 Query Rewriting

Stanford POS Tagger outputted significant mistag-
gings for one question in the TREC 2002 and 2003
data sets, while answering two questions in the TREC
2004 list question set. The main problem was caused
by words like “agouti” and “AARP”, which were

5In all our experiments, we used MSN Search:
http://www.live.com/

interpreted as RB. Since ListWebQA does not con-
sider RBs while it is rewriting Q, these mistaggings
brought about misleading search results.

4.2 Answer Recall

ListWebQA increases the recall of answers by retriev-
ing a maximum of 80 snippets (see section 3.2). Ac-
cordingly , a baseline (BASELINE) was implemented
that also fetches a maximum of 80 snippets by sub-
mitting Q to the search engine. The achievements for
the four TREC datasets, are shown in table 2.

Table 2: TREC Results (Answer Recall).

2001 2002 2003 2004
BASELINE (Recall) 0.43 0.49 0.4 0.65
ListWebQA (Recall) 0.93 0.90 0.56 1.15
BASELINE (NoS) 77.72 77.33 80 78.87
ListWebQA (NoS) 59.83 53.21 51.86 46.41
BASELINE (NAF) 2 4 8 12
ListWebQA (NAF) 6 2 8 11

In table 2, NoS signals the average number of
retrieved snippets per query, and NAF the number
of questions in which there was no answer in these
fetched snippets. This involved a necessary manual
inspection of the retrieved snippets, because they do
not necessarily contain the same answers supplied by
TREC gold standards. Overall, ListWebQA retrieved

FINDING DISTINCT ANSWERS IN WEB SNIPPETS

31

significantly less snippets and markedly increased the
recall of distinct answers. This recall was computed
as the average ratio of the number of answers re-
trieved by the system to the number of answers pro-
vided by TREC. The reason to use this ratio is two-
fold: (a) TREC provides at least one answer to ev-
ery question, this way undefined ratios are avoided,
and (b) additional answers are rewarded according
to the size of the reference set, that is one extra an-
swer is rewarded higher if the reference set contains
less answers for the respective question. ListWebQA
fetched a larger number of answers than the num-
ber provided by TREC gold standards in 41 out of
the 142 questions. In particular, in 11, 9, 5, and 16
questions corresponding to TREC 2001, 2002, 2003
and 2004, respectively. It is also worth highlighting,
TREC gold standard considers all answers found in
the AQUAINT corpus by the assessors and also in-
cludes new answers found by the different systems.
The major difference exists in the 32nd question of
TREC 2004 “Wiggles’ songs”. Here, ListWebQA re-
trieved 62 distinct answers, whereas TREC gold stan-
dards only supplied four.

A second point to consider is that, the three
sets of answers radically differ. For example, three
of Edgar Allan Poe’s works retrieved by BASELINE
are “Annabel Lee”, “Landor’s Cottage” and “The
Haunted Palace”. In this case, neither the TREC gold
standard or the output of ListWebQA contained all
these works. Therefore, it was computed the ratio of
common answers to the number of all distinct answers
in both retrieved snippets. Overall, an average of 0.21
was obtained. To sum this up, ListWebQA retrieved a
smaller set of snippets with more distinct answers,
and we hypothesise that both strategies could be com-
bined to achieve a higher recall.

4.3 Answer Candidate Recognition

Table 3: Patterns Accuracy.

π1 π2 π3 π4 π5 π6 π7 π8
0.35 0.36 0.15 0.34 0.22 0.26 0.14 0.19

Table 3 indicates the accuracy of each pattern in Π.
One reason for this low accuracy is uncovered by the
question “countries other than the United States have
a vehicle emission inspection program” and the fol-
lowing fetched snippet:
• February 16, 2005: China Replacing the United States

as World’s ...
CHINA REPLACING THE UNITED STATES AS
WORLD’S LEADING CONSUMER Lester R. Brown
... Strategic relationships with resource-rich countries
such as Brazil, Kazakhstan, Russia, Indonesia ...

This snippet matches π1 and its title contains the
noun phrase “United States”, but it is regarding a topic
unrelated to “vehicle emission inspection programs”.
Consequently, this kind of semantic mismatch sup-
plies incorrect answers. This illustrative mismatch,
provided four wrong answers (according to TREC
gold standards). All in all, ListWebQA recognised an
average of 60% of the retrieved distinct answers.

4.4 Answer Selection

QAS in the list question subtask of TREC have been
assessed with different measures. In 2001 and 2002,
the measure of performance was accuracy (Acc.),
which was computed as the number of distinct in-
stances returned by the system divided by the target
number of instances (Voorhees, 2001). Since accu-
racy does not account for the length of the response, it
was changed to the F1 score in 2003 (Voorhees, 2003).
Accordingly, Table 4 highlights the average accuracy
and F1 score obtained by ListWebQA .

Table 4: TREC Final Results.

2001 2002 2003 2004
ListWebQA (F1) .35/.46 .34/.37 .22/.28 .30/.40
ListWebQA (Acc.) .5/.65 .58/.63 .43/0.55 .47/.58
Top one (Acc.) 0.76 0.65 - -
Top two (Acc.) 0.45 0.15 - -
Top three (Acc.) 0.34 0.11 - -
Top one (F1) - - 0.396 0.622
Top two (F1) - - 0.319 0.486
Top three (F1) - - 0.134 0.258

Two scores are shown for each measure and data
set. The lower value concerns all questions in the
set, and the higher value only questions for which
at least one correct answer in the retrieved snippets,
existed. Contrary to the AQUAINT corpus, there is
uncertainty as to whether or not at least one answer
can be found on the web for every question. Since
accuracy does not account for the length of the re-
sponse, it was calculated considering the set A of an-
swer candidates. Conversely, the F1 score was de-
termined from the set after answer selection. Inde-
pendently of taking into account all questions or not,
ListWebQA ranks between the top one and two sys-
tems in the first two question sets, while between
the second and the third in the last two data sets.
These results are encouraging, due to the next two
reasons: (a) ListWebQA did not use any specific pre-
defined or compiled list of instances of foci, and
(b) ListWebQA makes allowances for web snippets,
not for full documents. These two reasons remark
our highly promising results especially considering

WEBIST 2008 - International Conference on Web Information Systems and Technologies

32

other approaches (Yang and Chua, 2004a; Yang and
Chua, 2004b), which download and process more
than 1000 full web documents, or submit more than
20 queries to different search engines, finishing with
an F1 score of .464 ∼ .469 on TREC 2003. Our strat-
egy can strengthen their strategy, specially their clas-
sification and clustering of full documents.

In contrast to the observations in TREC 2001
(Voorhees, 2001), duplicate answers have a consid-
erable impact on the performance, because answers
are taken from many different sources. One singular
case is the several spellings and misspellings of an an-
swer. For instance, ListWebQA retrieved three differ-
ent spellings/misspellings for the Chuck Berry’s song
“Maybelline” (also found as “Maybellene” and “May-
beline”). Additionally, inexact or incomplete answers
also have an impact on the performance. For exam-
ple, John Updike’s novel “The Poorhouse Fair” was
also found as “Poorhouse Fair”.

5 CONCLUSIONS AND FUTURE
WORK

This paper presented ListWebQA , a question answer-
ing system which aimed specially at extracting an-
swers to list questions from web snippets. Our results
indicate that it is feasible to discover answers in web
snippets. We envisage that these answers will help to
select the most promising documents, and afterwards,
detecting the portions where these answers are.

Additionally, we envision that dependency trees
can be used to increase the accuracy of the recognition
of answer candidates, and extra search queries can be
formulated in order to boost the recall of answers in
web snippets. For this last purpose, we deem that
Google n-grams and on-line encyclopaedias would be
tremendously useful.

ACKNOWLEDGEMENTS

This work was partially supported by a research grant
from the German Federal Ministry of Education, Sci-
ence, Research and Technology (BMBF) to the DFKI
project HyLaP (FKZ: 01 IW F02) and the EC-funded
project QALL-ME.

REFERENCES

Cederberg, S. and Windows, D. (2003). Using lsa and noun
coordination information to improve the precision and

recall of automatic hyponymy extraction. In Confer-
ence on Natural Language Learning (CoNLL-2003),
pages 111–118, Edmonton, Canada.

Hearst, M. (1992). Automatic acquisition of hyponomys
from large text corpora. In Fourteenth International
Conference on computational Linguistics, pages 539–
545, Nantes, France.

Katz, B., Bilotti, M., Felshin, S., Fernandes, A., Hilde-
brandt, W., Katzir, R., Lin, J., Loreto, D., Marton, G.,
Mora, F., and Uzuner, O. (2004). Answering multiple
questions on a topic from heterogeneous resources. In
TREC 2004, Gaithersburg, Maryland.

Katz, B., Lin, J., Loreto, D., Hildebrandt, W., Bilotti, M.,
Felshin, S., Fernandes, A., Marton, G., and Mora, F.
(2003). Integrating web-based and corpus-based tech-
niques for question answering. In TREC 2003, pages
426–435, Gaithersburg, Maryland.

Katz, B., Marton, G., Borchardt, G., Brownell, A., Felshin,
S., Loreto, D., Louis-Rosenberg, J., Lu, B., Mora, F.,
Stiller, S., Uzuner, O., and Wilcox, A. (2005). Ex-
ternal knowledge sources for question answering. In
TREC 2005, Gaithersburg, Maryland.

Schone, P., Ciany, G., Cutts, R., Mayfield, J., and Smith, T.
(2005). Qactis-based question answering at trec 2005.
In TREC 2005, Gaithersburg, Maryland.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel meth-
ods for pattern analysis, chapter 10, pages 335–339.
Cambridge University Press.

Shinzato, K. and Torisawa, K. (2004a). Acquiring hy-
ponymy relations from web documents. In HLT-
NAACL 2004, pages 73–80, Boston, MA, USA.

Shinzato, K. and Torisawa, K. (2004b). Extracting hy-
ponyms of prespecified hypernyms from itemizations
and headings in web documents. In COLING ’04,
pages 938–944, Geneva, Switzerland.

Sombatsrisomboon, R., Matsuo, P., and Ishizuka, M.
(2003). Acquisition of hypernyms and hyponyms
from the www. In 2nd International Workshop on Ac-
tive Mining, Maebashi, Japan.

Voorhees, E. M. (2001). Overview of the trec 2001 ques-
tion answering track. In TREC 2001, pages 42–51,
Gaithersburg, Maryland.

Voorhees, E. M. (2003). Overview of the trec 2003 ques-
tion answering track. In TREC 2003, pages 54–68,
Gaithersburg, Maryland.

Wu, L., Huang, X., Zhou, Y., Zhang, Z., and Lin, F. (2005).
Fduqa on trec2005 qatrack. In TREC 2005, Gaithers-
burg, Maryland.

Yang, H. and Chua, T. (2004a). Effectiveness of web page
classification on finding list answers. In SIGIR ’04,
pages 522–523, Sheffield, United Kingdom.

Yang, H. and Chua, T. (2004b). Web-based list question an-
swering. In Proceedings of COLING ’04, pages 1277–
1283, Geneva, Switzerland.

FINDING DISTINCT ANSWERS IN WEB SNIPPETS

33

