
A CONSTRAINT-AWARE QUERY OPTIMIZER FOR WEB-BASED
DATA INTEGRATION

Jing Lu and Bernhard Mitschang
IPVS, University of Stuttgart, Universitaetsstrasse 38, Stuttgart, Germany

Keywords: XML, XQuery, Data Integration, Constraints, Semantic Query Optimization.

Abstract: Web has brought forth opportunities to connect information sources across all types of boundaries. Data inte-
gration is to combine data residing at different sources and providing the user with a unified view of these data.
Currently users are expecting more efficient services from such data integration systems. This paper describes
a query optimizer, which uses constraints to semantically optimize the queries. The optimizer first translates
constraints from data sources into constraints expressed at the global level and stores them in the constraint
repository. Then the optimizer can use semantic query optimization technologies including detection of empty
results, join elimination, and predicate elimination to generate a more efficient but semantically equivalent
query for the user. The optmizer is published as a web service and can be invoked by many data integration
systems. We carry out experiments and first results show that performance can be greatly improved.

1 INTRODUCTION

The rising of the web and its subsequent ubiq-
uity make it possible to connect information sources
across all types of boundaries (local, regional, orga-
nizational, etc). Integrating data scattered on the web
has been a challenge faced by many enterprises. It
is especially crucial in large enterprises where a large
variety of web-based applications demand access and
integration of up-to-date information from multiple
distributed and heterogeneous information systems.
Data integration system (DIS) provides the user with
a virtual view, called global schema, which is inde-
pendent from the model and the physical origin of
the sources. Integration wrappers are responsible to
translate the local schema into the global schema, a
global query into a local query and the local query re-
sult back into the result in the global schema. Nowa-
days people are expecting more efficient queries from
data integration systems where query optimization is
greatly different from that in the traditional database
context. First, since the sources are autonomous, the
optimizer may have no statistics about the sources,
or just unreliable ones. Hence, the optimizer cannot
compare between different plans, because their costs
cannot be sufficiently well estimated. Second, since
the sources may have different processing capabili-
ties, the query optimizer needs to consider the pos-

sibility of exploiting the query processing capabili-
ties of a data source. Finally, in a traditional system,
the optimizer can reliably estimate the time to transfer
data from the disc to main memory. But in a data inte-
gration system, data is often transferred over a wide-
area network, and hence delays may occur for a mul-
titude of reasons. Therefore, even a plan that appears
to be the best based on cost estimates may turn out to
be inefficient if there are unexpected delays in trans-
ferring data from one of the sources accessed early on
the plan.

The heterogeneity and web-orientation of mod-
ern applications have benefited from the flexibility of
XML and therefore, there appear many XML-based
data integration systems, among which are EXIP (Pa-
pakonstantinou and Vassalos, 2002), Xyleme (Abite-
boul et al., 2001), Silkroute (Fernandez et al., 2000),
XPERANTO (Carey et al., 2000), BEA AquaLogic
(Carey and the BEA AquaLogic Team, 2006), etc. A
major difficulty in optimizing queries here is that once
a query is submitted, control over its execution be-
comes no longer possible (Ouzzani and Bouguettaya,
2004). Under this situation, using semantic rules to
minimize the cost of communication becomes more
attractive. Semantic query optimization (SQO) has
been applied to relational and deductive databases
(Chakravarthy et al., 1990). SQO uses the integrity
constraints associated with a database to improve the

87
Lu J. and Mitschang B. (2008).
A CONSTRAINT-AWARE QUERY OPTIMIZER FOR WEB-BASED DATA INTEGRATION.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 87-92
DOI: 10.5220/0001516400870092
Copyright c© SciTePress



efficiency of query evaluation. With SQO more ef-
ficiency can be achieved than by only using syntac-
tic query optimization techniques, because syntactic
optimizer does not understand semantic knowledge,
and thus leads to a suboptimal execution for the given
query. Certain queries, which can be answered with-
out any table scan in the database, cannot be detected
by a syntactic optimizer, thus resulting in unneces-
sary database access. Furthermore, syntactic opti-
mizer cannot detect and eliminate semantically re-
dundant restrictions or joins in the queries or intro-
duce some useful restrictions and joins into the query
to reduce the overall cost of query execution, either
(Cheng et al., 1999). Here, we demonstrate that SQO
can also be adapted to XML-based data integration
system. Our contributions include:

• We provide the architecture of the optimizer and
show how queries to different data integration sys-
tems are optimized by the optimizer.

• We explain how constraints are integrated into
the constraint repository and managed by the op-
timizer. We describe the details of the query
adapter, which is the kernel of the optimizer.

• We implement three SQO techniques of in the op-
timizer: detection of empty results, join elimina-
tion and predicate elimination. We carry out ex-
periments and analyze the performance.

The structure of this paper is: Section 2 presents the
architecture of the semantic query optimizer. Section
3 explains each component in the optimizer. Section
4 discusses three SQO techniques which are imple-
mented in the semantic query optimizer. Experiments
and performance analysis are in section 5. Related
work is presented in section 6. Section 7 gives the
conclusion.

2 ARCHITECTURE

The optimizer should be designed as not being spe-
cific to a particular data integration system, but be-
ing applicable to different ones. It should have ease
of integration with and adaptation to a data integra-
tion system. To support this, we use Service-Oriented
Architecture (SOA) (Huhns and Singh, 2005). The ar-
chitecture of the semantic query optimizer is shown in
Figure 1. There are altogether three parties which in-
teract with the optimizer: the user of data integration
system, the administrator of the data integration sys-
tem and the administrator of the data sources. They
can call the web services of our semantic query op-
timizer to register constraints, manage constraints, or
optimize queries.

User


DataSource

Admin


DIS

Admin


Data

Integration


System


Constraint

Repository


Query

Adapter


Constraint

Wrapper


Message

Generator


3


7


8


2


5
 6


4


1


9


Figure 1: Architecture of the Semantic Query Optimizer.

The data sources can register their constraints to
the optimizer through constraint wrappers (Step 1).
The administrator of the data integration system can
also add or delete global constraints (Step 2). The
constraint wrappers will translate the local constraints
into constraints in global schema with the help of the
schema mapping information. The translated con-
straints will be added into the constraint repository
(Step 3). The data sources can also deregister con-
straints and the constraint wrappers will delete the
corresponding constraints from the constraint repos-
itory. The user can submit the query to the opti-
mizer and the query adapter will accept the query
(Step 4). Then the query adapter will consult the con-
straint repository (Step 5) and check whether there
are constraints related to the query (Step 6). If the
query adapter finds that there are some applicable
constraints in the constraint repository, the constraints
will be fetched out and compared with the query con-
dition. When the query adapter finds that there is con-
flict between the query condition and the constraints
so that the query will return empty result, a message
will be generated (Step 8) and the user will be in-
formed (Step 9). When there is no conflict, the query
adapter will try to find whether there is possibility to
optimize the query using the constraint information.
If there exists the possibility, the query adapter will
generate a new query and send it to the query pro-
cessor of the data integration system (Step 7). More
details about the query adapter will be given in section
3.3.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

88



3 COMPONENTS

3.1 Constraint Wrapper

In order to make the semantic query optimizer under-
stand, the constraints from typically heterogeneous
data sources should be translated into constraints ex-
pressed at a global level in a global schema. Our con-
straint wrappers borrow the ideas from data integra-
tion wrappers. We have relational constraint wrapper
for relational constraint mapping, XML wrapper for
XML files, etc. We also provide a special way for
those data sources which lack constraint mechanisms
to submit constraints. These data sources include web
services, HTML files, text files, etc. We permit them
to submit predicate-like constraints. Constraint map-
ping depends on schema mapping. When translating
constraints, the data integration system must provide
schema mapping information. After the translation by
the constraint wrapper, the constraints are expressed
in the global schema. The details of the constraints
in a global schema are given in (Lu and Mitschang,
2007).

3.2 Constraint Repository

Constraint repository is the general constraint stor-
age, where the local constraints expressed in global
schema (translated by the constraint wrapper), the
global domain constraints and the global referential
constraints are stored. The global domain constraints
which spread multiple data sources and the global ref-
erential constraints between the data sources are de-
fined, for example, by the data integration system ad-
ministrator.

3.3 Query Adapter

Query adapter consists of four components: query
decomposer, constraint fetcher, conflict detector, and
query reformulator, as illustrated in Figure 2. Gener-
ally, the query adapter accepts an XML query from
the user as input. Then it uses the semantic knowl-
edge stored in the constraint repository to generate a
semantically equivalent but more efficient query.

Query Decomposer. The query decomposer takes
an XML Query from the user as input and decom-
poses the query into three parts: condition part, data
source part and result return part. It forwards the
query condition part and the data source part to con-
straint fetcher (Step 1), the query condition part to
conflict detector (Step 2), and the whole query to
query reformulator (Step 3).

Query


Constraint

Repository


Optimized

Query


Query De-

composer


Conflict

Detector


Constraint

Fetcher


Query Re-

formulator


1


5


7


4


2


3


Message

Generator


6


Figure 2: Components and Processing of Query Adapter.

Constraint Fetcher. The constraint fetcher
searches the constraint repository to find the related
constraints (Step 4) and forwards the constraints to
conflict detector (Step 5).

Conflict Detector. The conflict detector takes query
condition and the constraints as input. The constraints
and the query condition can be arbitrary literals. Both
the query condition part and the constraints are trans-
formed into DNF (Disjunctive Normal Form). Con-
flict detector builds a constraint DNF tree. Then it
uses the constraint DNF tree to evaluate the query
condition. If there is a conflict, it will inform the mes-
sage generator and an error message is sent to the user
(Step 6). If there is no conflict, query reformulator
will be invoked (Step 7).

Query Reformulator. If the conflict detector finds
no conflict, the query reformulator will check whether
there exist possibilities to eliminate joins or predi-
cates. Query reformulation rules are discussed in sec-
tion 4.

4 QUERY REFORMULATION
RULES

There are five SQO techniques most often discussed
in literature: predicate introduction, join introduction,
predicate elimination, join elimination, and detection
of empty results (Cheng et al., 1999). The first two

A CONSTRAINT-AWARE QUERY OPTIMIZER FOR WEB-BASED DATA INTEGRATION

89



are based on the index mechanism of RDBMS. Due
to the fact that in an XML-based data integration sys-
tem the data sources are often non-relational and most
of them do not have an indexing mechanism, these
two techniques are not considered. Join elimination,
predicate elimination and detection of empty results
are used as the premier query reformulation rules in
our optimizer.

Detection of Empty Results. When the conflict de-
tector detects that there is a conflict between con-
straints and the query so that the query will return an
empty result set, the messager generator will inform
the user about the detection result.

Predicate Elimination. The main idea of predicate
elimination is that if a predicate is known by the con-
straints to be true, it can be eliminated from the query.
We use the constraint DNF tree and the query condi-
tion DNF tree again to test whether there exists possi-
bility to eliminate predicates. If the domain predicate
of query condition is subsumed as true by each leaf in
the constraint DNF tree, we can eliminate the domain
predicate from the query condition.

Join Elimination. The main idea of join elimina-
tion is that when a query contains a join for which
the result is known a priori, it does not need to be
evaluated, for example, when the two attributes of the
join are related by a referential integrity constraint.
The query transformer takes the selected referential
constraints and the query condition as input to see
whether there exist redundant joins. The first step is
to extract the attributes in the query condition part.
Then the query reformulator will find all the data
sources that have these attributes. The query refor-
mulator will search the constraints which are filtered
out according to the query condition and result part.
When there are referential constraints, the query re-
formulator will build a reference chain, where the fa-
ther source is the source the primary key belongs to,
and the child source is the data source the foreign key
belongs to. The query reformulator will search the
reference chain and extract all the attributes from the
query return part. If there is no attribute from the first
data source in the query return part and there is no
attribute from the first data source in the query condi-
tion part except the primary key in the join, the join
between the primary key and the foreign key will be
eliminated.

Table 1: Performance of Detection of Empty Results.

Q DV OrT(s) OpT(s) RB
Q1 1000 0.059 0 90.77%

5000 1.112 0 95.77%
15000 2.234 0 97.90 %

Q2 1000 0.875 0 94.06%
5000 3.906 0 98.67%
15000 12.469 0 99.58 %

5 EXPERIMENTS

We used BEA Weblogic as the application server,
BEA LiquidData as the data integration system
(BEA-Systems-Inc, 2003), Tamino XML Server
(Software-AG, 2006) as constraint repository, Apache
Tomcat (The-Apache-Software-Foundation, 2006) to
run the web service. We used DB2 as relational data
source and XML files as another non-relational data
source to carry out our experiments. Five data sources
are used to participate in the whole experiments:

• A DB2 databaseCSCO, with two tables:
EuropeCustomer and EuropeCustomerOrder,
referenced byCustomerID;

• A DB2 database CSC, with one ta-
ble EuropeCustomerR, the replication of
EuropeCustomer in CSCO;

• A DB2 database CSO, with one tabble
EuropeCustomerOrderR, the replication of
EuropeCustomerOrder in CSCO. There is a
global referential constraint: two replication
tables are referenced byCustomerID.

• An XML file AmericanCustomer.xml.

• An XML file AmericanCustomerOrder.xml.
There is a global refential constraint: two XML
files are referenced byCustomerID.

5.1 Performance

We use 1000, 5000, and 15000 records respectively
in the data sources for testing. We use the following
abbreviations in the performance tables: Q: Query;
DV: Data Volume; OrT: Original Time(s); OpT: Opti-
mized Time(s); RB: Relative Benefit(%).

We design two queries,Q1 and Q2, which
are built to return empty result by our optimizer.
Q1 is queried over only the relational database
CSCO, while Q2 is queried over only the XML file
AmericanCustomerOrder.xml. The performance re-
sults are shown in Table 1.

We design three queries:Q3, Q4 and Q5,
whose joins are eliminated by our optimizer.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

90



Table 2: Performance of Join Elimination.

Q DV OrT(s) OpT(s) RB
Q3 1000 0.922 0.314 50.65%

5000 1.982 0823 51.36%
15000 5.712 2.609 51.86 %

Q4 1000 1.687 0.272 75.52%
5000 4.489 0.92 76.36%
15000 11.953 2.588 77.17 %

Q5 1000 1.86 0.797 48.92%
5000 7.672 3.714 49.60%
15000 23.266 11.487 49.97 %

Table 3: Performance of Predicate Elimination.

Q DV OrT(s) OpT(s) RB
Q6 1000 0.731 0.603 11.35%

5000 1.724 1.412 15.49%
15000 2.812 2.241 18.71 %

Q7 1000 1.02 0.812 15.39%
5000 4.945 3.701 24.13%
15000 15.301 10.885 28.53 %

Q3 is queried only over the relational database
CSCO, Q4 is queried over two relational
databases,CSC and CSO, and Q5 is queried
over two XML files, AmericanCustomer.xml and
AmericanCustomerOrder.xml. The performance
results are shown in Table 2.

We design two queries,Q6 andQ7, whose pred-
icates are partially eliminated by our optimizer.Q6
is queried over the relational databaseCSC and Q7
is queried over the XML fileAmericanCustomer.xml.
The performance results are shown in Table 3.

From the performance tables we can see that the
larger the data volume is, the more improvement we
obtain.

5.2 Discussion

When the queried data sources are only RDBMSs,
it is possible that after join elimination or predicate
elimination the eliminated joins or predicates include
attributes which are indexed in the RDBMSs. Ex-
ploiting the index typically enhances query perfor-
mance. If that predicate or join is eliminated, this
efficient access might not be chosen anymore. Our
optimizer might generate a suboptimal query. Again
in the experiments we find that when the query is re-
lated only to one RDBMS and we submit the same
query for many times, the query execution becomes
always quicker. This is because of the caching mech-
anism of RDBMS. So we conclude that when the un-
derlying data source of the query is only one RDBMS,

applying our optimizer might decrease the execution
efficiency.

We conclude, that it is not worth applying our op-
timizer when the data volume is small and when the
query execution cost is expected to be low. However,
when the data volume is large or when the query ex-
ecution cost is expected to be high, our optimizer be-
comes very useful. Normally in the data integration
system, most of the data sources are not RDBMSs,
so our optimizer works very well. The reason is that
the non-relational data sources typically lack indexing
mechanism and normally the query execution cost is
very high.

6 RELATED WORK

In (Shenoy and Ozsoyoglu, 1989) a user specified
query is optimized by describing a scheme to utilize
semantic knowledge. The semantic is represented as
function-free clauses in predicate logic. The scheme
uses a graph theoretic approach to identify redun-
dant joins and restrictions in a given query. An opti-
mization algorithm is presented which eliminates re-
dundant nonprofitable specifications. Relationships
among entity schema, semantics and query form the
basis of the algorithm. This work uses subset con-
straints and implication constraints, while we use in-
tegrity constraints. This work uses the index of a
database while we do not rely on indexes.

An implementation of predicate introduction and
join elimination in DB2 universal database is de-
scribed in (Cheng et al., 1999). Only referential con-
straints and check constraints are used. This work is
targeted to DB2 and ours is to XML-based DIS. In ad-
dition, it depends on the indexing mechanism of DB2.

A system focusing on semantic query optimiza-
tion for query plans of heterogeneous multi database
systems is presented in (Hsu and Knoblock, 2000).
This approach reduces the cost of query plans gen-
erated by an information mediator by eliminating un-
necessary joins in a conjunctive query of arbitrary join
topology. The optimization here is targeted to query
plan generated by the mediator while ours is targeted
to the query generated by the users. This optimizer
must be embedded in the query mediator while ours
is built on top of the query mediator and thus provides
better extendability and flexibility.

An intelligent system using tool-supported tech-
niques to optimize mediated queries is proposed by
(Beneventano et al., 2001). The techniques rely on the
availability of integration knowledge including: local
source schemata, a virtual mediated schema and its
mapping descriptions while we rely on the integrity

A CONSTRAINT-AWARE QUERY OPTIMIZER FOR WEB-BASED DATA INTEGRATION

91



constraints.
An approach in which an ontology with a database

is exploited to capture semantics for the query trans-
formation process is proposed by (Necib and Freytag,
2005). A set of rewriting rules relying on seman-
tic information extracted from the ontology associ-
ated with the database are developed. This approach
allows to rewrite a query into another one which is
not necessary equivalent but can provide more mean-
ingful result satisfying the user’s intention while our
approach aims at providing a semantically equivalent
query. This approach can only be applied in a single
database while ours can be used in a data integration
system.

7 CONCLUSIONS

In this paper we present a semantic query optimizer
for XML-based data integration systems. Constraints
from different data sources are translated into con-
straints expressed in global schema through con-
straint wrapper and stored in the constraint reposi-
tory. Global constraints can be defined and stored too.
Queries submitted by the users will be optimized se-
mantically in the semantic query optimizer using con-
straints in the constraint repository. We implement
three semantic query optimization techniques: detec-
tion of empty results, join elimination, and predicate
elimination. We carry out experiments to test the per-
formance. The results are very promising. We ana-
lyze the performance issues and conclude that the se-
mantic query optimizer works best when the underly-
ing data sources are mixed, i.e., not purely relational
DBMSs, and when the data volume is large, as typi-
cally is the case in real world scenarios.

REFERENCES

Abiteboul, S., Segoufin, L., and Vianu, V. (2001). Rep-
resenting and querying xml with incomplete informa-
tion. InProceedings of the Twentieth ACM Symposium
on Principles of Database Systems. ACM Press.

BEA-Systems-Inc (2003). Bea liquiddata for we-
blogic, building queries and data views. In
http://edocs.bea.com/liquiddata/docs81/
querybld/index.html.

Beneventano, D., Bergamaschi, S., and Mandreoli, F.
(2001). Extensional knowledge for semantic query
optimization in a mediator based system. InInterna-
tional Workshop on Foundations of Models for Infor-
mation Integration.

Carey, M., Florescu, D., Ives, Z., Lu, Y., Shanmugasun-
daram, J., Shekita, E., and Subramanian, S. (2000).

Xperanto: Publishing object-relational data as xml. In
Proceedings of the Third International Workshop on
the Web and Databases (WebDB).

Carey, M. and the BEA AquaLogic Team (2006). Data de-
livery in a service-oriented world: The bea aqualogic
data services platform. InProc. of ACM SIGMOD
Conf. on Management of Data. ACM Press.

Chakravarthy, U., Grant, J., and Minker, J. (1990). Logic-
based approach to semantic query optimization. In
ACM Transactions on Database Systems (TODS).
ACM Press.

Cheng, Q., Gryz, J., Koo, F., Leung, T. Y. C., Liu, L., Qian,
X., and Schiefer, K. B. (1999). Implementation of two
semantic query optimization techniques in db2 univer-
sal database. InProceedings of the 25th International
Conference on Very Large Data Bases.

Fernandez, M., Tan, W., and Suciu, D. (2000). Silkroute:
Trading between relations and xml. In9th Interna-
tional World Wide Web Conference.

Hsu, C. and Knoblock, C. A. (2000). Semantic query
optimization for query plans of heterogeneous multi-
database system. InIEEE Transactions on Knowledge
and Data Engineering, VOL. 12, NO. 6. IEEE Press.

Huhns, M. and Singh, M. (2005). Service-oriented comput-
ing: Key concepts and principles. InIEEE Internet
Computing, 1(9). IEEE Press.

Lu, J. and Mitschang, B. (2007). Dis-cs: Improving enter-
prise data integration by constraint service. InISCA
20th International Conference on Computer Applica-
tions in Industry and Engineering (CAINE 07).

Necib, C. B. and Freytag, J. C. (2005). Semantic query
transformation using ontologies. In9th International
Database Engineering and Application Symposium
(IDEAS 2005). IEEE Press.

Ouzzani, M. and Bouguettaya, A. (2004). Query process-
ing and optimization on the web. InDistributed and
Parallel Databases. Kluwer Academic.

Papakonstantinou, Y. and Vassalos, V. (2002). Architecture
and implementation of an xquery-based information
integration platform. InBulletin of the IEEE Com-
puter Society Technical Committee on Data Engineer-
ing, vol. (25). IEEE Press.

Shenoy, S. T. and Ozsoyoglu, Z. M. (1989). Design and im-
plementation of a semantic query optimizer. InIEEE
Transactions on Knowledge and Data Engineering.
Vol 1, No 3. IEEE Press.

Software-AG (2006). Number one in xml management:
Tamino xml server. InTechnical Factsheet.

The-Apache-Software-Foundation (2006). Apache tomcat
6.0. Inhttp://tomcat.apache.org.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

92


