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Abstract: The procedure of system identification of multi-mass servo system using different methods is described in 
this paper. Different black-box models are identified. Previous experimental results show that a model 
consisting of three-masses connected by springs and dampers gives an acceptable description of the 
dynamics of the servo system. However, this work shows that a lower order black-box model, identified 
using off-line or on-line experiments, gives better fit. The purpose of this contribution is to present 
experimental identification of a multi-mass servo system using different algorithms. 

1 INTRODUCTION 

An important step in designing a control system is 
proper modeling of the system to be controlled. An 
exact system model should produce output responses 
similar to those of the actual system. The complexity 
of most physical systems makes the development of 
exact models infeasible. Therefore, in order to 
design a controller that is reliable and easy to 
understand in practice, simplified system models 
should be obtained around operating points and\or 
model order reduction (Ziaei, 2000). 

System identification is an established modeling tool 
in engineering and numerous successful applications 
have been reported. The theory is well developed 
(Ljung, 1999; Soderstrom, 1989), and there are 
powerful software tools available, e.g., the System 
Identification Toolbox (SIT) (Ljung, 1997). 

Different physical models of electromechanical 
servo systems based on multi-mass representation 
were discussed in (Abou-Zayed, 2008). Using grey-
box off-line identification, inertial parameters and 
parameters describing flexibilities were identified. 
The physical parameters estimates showed no 
variations in the mechanical parameters, and 
acceptable variations in the electrical parameters. 
Experimental results in (Abou-Zayed, 2008) show 
that a model consisting of three masses connected by 

springs and dampers gives an acceptable description 
of the dynamics of the servo system. However, this 
model is a six-order state-space model. 

The objective of this paper is to present our recent 
experimental studies on black-box open-loop and 
closed-loop identification of a three-mass 
electromechanical system. The closed-loop tests are 
performed using a local-optimal controller.  

The paper is organized as follows. In section 2, 
the servo system is described briefly. In Section 3, 
the results of black-box off-line identification are 
presented. On-line open-loop and closed-loop 
identification of the studied system is discussed in 
section 4. Finally, Section 5 contains some 
conclusions. 

2 EXPERIMENTAL SETUP  

A view from the experimental setup is shown in 
Fig.1. The DC servo mechanism setup to be studied 
operates at ±10V input voltage with a permissible 
output motor shaft speed of 2200 r.p.m. The shaft is 
connected to an inertial load through a coupling gear 
with ratio (r=1/30).The load shaft carries an absolute 
position sensor with linear range ±10V. A personal 
computer PC (Pentium III, 700 MHz, 256 MB 
RAM), running the MATLAB software, is 
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connected to the servo system setup through a data 
acquisition card. This PC is used as a signal 
generator for the servo system input. It also used as a 
data logger to store the relevant system parameters 
at fixed sample time. The third function is a digital 
controller for closed-loop identification purposes. 

 
Figure 1: Experimental setup. 

The DC servo system setup, shown in Fig.1 can be 
viewed as single input single output (SISO) for the 
present case, where the motor armature voltage av  
is the input, while the output is the angular position 
of the load Lθ . Since the measurement noise is 
fairly small, a reasonable estimate of the load 
angular speed Lω  is obtained for the identification 
purpose. Therefore, the load angular speed will be 
used as the output signal. 

3 OFF-LINE IDENTIFICATION 
OF SERVO SYSTEM 

This section presents the results of the study and 
realization of the off-line identification of servo 
systems for different types of models with different 
excitations. First, some dynamical properties of the 
system are obtained using the process reaction curve 
method. Then, black-box models, describing the 
system, are identified. 

3.1 Process Reaction Curve 
Identification 

It is one of the widely used approaches to 
predetermine the dynamic behaviour of a system 

before performing the data collection for system 
identification. An input step signal change is applied 
to the system, and the output response is measured. 
Rise time, settling time, bandwidth, time constant, 
time delay, and type of response can be determined 
using the Process reaction curve (Ziegler, 1942). 

System step response is shown in Fig.2. The sample 
time chosen for this step test is 0.01sec to observe 
the system dynamical behaviour. An 8V input 
voltage (dashed line) is applied to the system. The 
output response (solid line) acts like a first order 
plus time delay system with average steady state 
output 7.18V, rise time about 1.4sec, and bandwidth 
around 1.6rad/s. Using the process reaction curve 
method the system can be modeled as in the classical 
case: 

( )
1

T sdKe
G s

sτ

−
=

+
                          (1) 

where K is the steady state gain (K = 0.898), Td is 
the time delay (Td = 10 ms), and τ is the time 
constant (τ = 0.73sec). 

 

Figure 2: Output response of a step input change. 

3.2 Experiment Design 

The results of the identification experiments 
reported here are based on two data sets where the 
excitation signal has different character: 

Set 1: A sum of 16 sinusoids with amplitude 1.8 and 
equidistant spacing in frequency, between 0.1 and 
6.1 rad/sec. The resulting crest factor (Ljung, 1999) 
is 1.8 due to the Schroeder phase choice (Schroeder, 
1970). The time response and power spectrum of the 
set are shown in Fig.3. 

Set 2: A linear swept-frequency sinusoidal signal 
with amplitude 9 and time-varying frequency over a 
certain band ranges from 0.1 to 6.1rad/sec over a 
certain time period 100sec. The resulting input 
signal has a crest factor 1.42, and shown in Fig 4. 
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Figure 3: Multi-sine signal time response and power 
spectrum. 

 

 
Figure 4: Chirp sine signal time response and power 
spectrum. 

3.3 Black-box Transfer Function 
Model Identification  

The starting point is the general linear model 
structure (Ljung, 1999), 

, ( , ) ( )y(t)=G(q )u(t)+H q e tθ θ                    (2) 

where q denotes the shift operator. 
Two different model structures will be studied, and 
these are the ARX structure, defined by: 

( , ) ( , ) ( , ) ,

( , ) 1 ( , )

G q B q A q

H q A q

θ θ θ

θ θ

=

=
                  (3) 

and the OE structure, where: 

( , ) ( , ) ( , ) ,

( , ) 1

G q B q F q

H q

θ θ θ

θ

=

=
                 (4) 

For the two model structures mentioned above, the 
estimation of the model parameters will be carried 
out generally using prediction error method (PEM). 
The identification experiments are carried out using 
the SIT (Ljung, 1997). 

Tables 1, and 2 show the results of the estimated 
models using data set1 for ARX and OE model 

structures respectively. Both data sets show nearly 
similar estimates. The notation (ModelStructure pzd) 
denotes the pth order model with ‘z’ zeroes and 
delay‘d’. The comparison is carried out using two 
different quantities. The first is MSE as: 

( )1 2ˆ( ) ( )
1

N
MSE y t y t

N t
= −∑

=
                   (5) 

The second is the FIT: 

( ) ( )( ) ( )( )2 2ˆFIT 1 100%
1 1

N N
y t y t y t y

t t

⎛ ⎞⎛ ⎞
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  (6) 

y  is the mean value of the measured output. 

Using k-step ahead predictors ˆ ˆ ( | ; )y y t t kk θ= − .The 
two extreme predictors is defined as: 

( ) ( ) ( ) ( ) ( )1 1ˆ ( ) 11y t H q G q u t H q y t− −⎡ ⎤= + −⎢ ⎥⎣ ⎦
          (7) 

( ) ( )ˆ ( )y t G q u t=∞                        (8) 

Table 1: Comparison of black-box ARX models. 

fit (cross validation ) %Model MSE×10-3 

k=1 k=∞ 
ARX 211 5.95 96.01 85.80 
ARX 311 2.29 97.72 80.25 
ARX 411 0.76 98.44 84.28 
ARX 511 0.58 98.76 83.00 
ARX 611 0.35 99.03 82.50 

Table 2: Comparison of black-box OE models. 

Model MSE×10-3 fit % 
OE 211 39.90 85.53 
OE 311 38.20 84.99 
OE 321 38.30 84.98 
OE 421 37.60 85.66 
OE 611 37.70 85.72 
OE 621 34.70 86.17 

 

It is clear that for OE models, there is no difference 
between both predictors. Otherwise, there is 
considerable difference between them. The one-step 
ahead predictor can give fits that “look good,” even 
though the model may be bad. Therefore, the 
simulation fit can be used for invalidating the bad 
models. 
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4 ON-LINE IDENTIFICATION OF 
SERVO SYSTEM 

4.1 Open-loop System Identification 

Experiments are performed to find the discrete-time 
model that can best represent the system using RLS 
method. Let the system model is given in the form: 

1 1( ) ( ) ( ) ( 1)A z y t B z u t− −= −                (9) 

where z-1 is the back shift operator, and  

1 1 2( ) 1 1 2

1 1 2( ) 1 2

naA z a z a z a zna
nbB z b b z b z b zo nb

−− − −= + + + +

−− − −= + + + +
   (10) 

A model of the system in (9) can be presented in the 
form of 

( ) ( )Ty t tϕ θ=                            (11) 

where θ is a vector of unknown parameters defined 
by: 

, , , , ,1
T

a a b bn o na bθ ⎡ ⎤= ⎣ ⎦              (12) 

and φ is a vector of regression which consists of 
measured values of inputs and outputs 

( ) ( 1), , ( ), ( 1), , ( 1)T t y t y t n u t u t na bϕ ⎡ ⎤= − − − − − − −⎣ ⎦   (13) 

The model given in (11) presents an accurate 
description of the system. However, in this 
expression the vector of system parameters θ is 
unknown. It is important to determine it by using 
available data in signal samples at system output and 
input. For that purpose a model of the system is 
supposed 

ˆˆ ( ) ( ) ( 1)Ty t t tϕ θ= −                       (14) 

For the RLS algorithm to be able to update the 
parameters at each sample time, it is necessary to 
define an error. The model prediction error, ε(t) is a 
key variable in RLS algorithm and is defined as 

ˆˆ( ) ( ) ( ) ( ) ( ) ( 1)Tt y t y t y t t tε ϕ θ= − = − −       (15) 

The error ε(t) is the difference between the system 
output and the estimated model output. This model 
prediction error is used to update the parameter 
estimates as 

ˆ ˆ( ) ( 1) ( ) ( ) ( )t t P t t tθ θ ϕ ε= − +                  (16) 

where the estimator covariance matrix P(t) is 
updated using 

1 ( ) ( ) ( 1)( ) ( 1)
( ) ( 1) ( )

Tt t P tP t P t I p T t P t t

ϕ ϕ
λ λ ϕ ϕ

⎡ ⎤−⎢ ⎥= − −
⎢ ⎥+ −⎣ ⎦

        (17) 

where the subscript ‘p’ is the dimension of the 
identity matrix, p=na+nb+1, λ is the forgetting 
factor, 0<λ≤1. The property of the forgetting factor, 
λ, is that λ controls the speed of parameter 
convergence: λ=1 yields the slowest speed, but 
provides the best robustness towards noise, and 
decreasing values of λ result in increasing speed of 
parameter convergence. In general, choosing 
0.98<λ<0.995 gives a good balance between 
convergence speed and noise susceptibility 
(Alexander, 2001). 

Application of RLS method demands supposition of 
the initial values of P(t) and ˆ( )tθ . The technique 
which is chosen as estimates and then allowed to 
settle to their final values as the program goes 
through several iterations. There is no unique way to 
initialize the algorithm. One suggestion is using a 
supposition that the system is an integrator of the 
first order with unit gain to set ˆ(0)θ . While, a 
standard choice of P(0) is the unit matrix scaled by a 
positive scalar α, (i.e. P(0)=αIp ), where α is 
recommended to be chosen 1<α<103 depending on 
the existence of prior knowledge about the system 
parameters (Wellstead, 1991). 

A square wave perturbation signal with a frequency 
of approximately 0.2 of the system bandwidth 
ensures that most of the square wave power, 
associated with the first three harmonic components, 
is inside the system bandwidth. A square wave 
perturbation signal with a frequency of f=0.05Hz 
that is superimposed on a step signal was applied to 
the system input. The RLS algorithm is implemented 
for experimental tests using SIMULINK and real-
time windows target. 

Table 3: MSE for different estimated models.  

Order 1st 2nd 3rd 4th 5th 

MSE 0.00617 0.00368 0.00357 0.00355 0.00392

 

For comparison purposes, Table 3 shows the MSE 
calculated for different model orders. Third order 
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model appears to be suitable for describing the 
system. Further increase in the model order brought 
no significant improvement. 

The performance of the estimated parameters and 
the model output error for a third-order model are 
shown in Fig. 5. Estimated parameters converge 
after a certain time. The speed of parameter 
convergence depends on the forgetting factor used. 
Faster parameter convergence can be obtained if the 
value of the forgetting factor is reduced, but noise 
amplification. The measured system output and 
predicted model output is shown in Fig. 6. It can be 
seen that both output signals are in good agreement. 
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Figure 5: Open-loop estimated parameters for 3rd order 
model. 

 
Figure 6: Measured and predicted speed for 3rd order 
model. 

4.2 Closed-loop System Identification 

Closed-loop identification using direct method is 
considered in this section. Knowledge of the 
controller or the nature of the feedback is not a 
certain requirement. A local-optimal controller 
(Abou-Zayed, 2008) that provides stable closed-loop 
servo operation is implemented, using SIMULINK 
and real-time windows target. 

The estimated parameters for the third-order model 
are shown in Fig. 7. The parameters converge faster 

than open-loop identification. Further, the variations 
in the estimated parameters are smaller than that 
obtained from the open-loop identification. This 
phenomenon is due to the closed-loop feedback 
control since the local-optimal controller filters high 
frequency signal components and limits the 
bandwidth. 
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Figure 7: Closed-loop estimated parameters for 3rd order 
model. 

Table 4: Estimated parameters of third-order model for 
open-loop and closed-loop experiments. 

Open-loop Closed-loop 
Parameters

Magnitude Variation Magnitude Variation

a1 -1.821 0.204 -1.855 0.082 

a2 1.065 0.172 0.942 0.136 

a3 -0.122 0.144 -0.131 0.080 

b1 0.132 0.025 0.125 0.008 

b2 -0.105 0.029 -0.113 0.009 

Table 4 shows the third-order parameters estimates 
for both open-loop and closed-loop experiments. It 
shows smaller variations for all parameters 
estimated using closed-loop experiment. That comes 
due to the closed-loop local-optimal control which 
filters high frequency signal components and limits 
the bandwidth 

5 CONCLUSIONS 

This paper presents theoretical and experimental 
identification of a three-mass electromechanical 
servo system using different algorithms. The aim of 
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this research is also to highlight some of the more 
practical implications of plant identification and to 
describe the well-established algorithm, recursive 
least squares, used to perform system identification. 

On-line open-loop and closed-loop identification of 
the studied system is discussed. A real-time 
implementation of the RLS estimator is presented 
using SIMULINK and real-time windows target. 
The application of the RLS method is also 
demonstrated on a real-time experimental set-up 
such that it is practical and easy to use. A third-order 
discrete-time linear model is shown to be flexible 
enough to fit the observations well. It also became 
apparent that the order of the suitable linear model 
was lower than the theoretical one. Closed-loop 
identification gives faster parameters convergence 
than open-loop identification. Further, the variations 
in the estimated parameters are smaller than that 
obtained from the open-loop identification. This 
phenomenon is due to the closed-loop local-optimal 
control which filters high frequency signal 
components and limits the bandwidth. 
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