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Abstract. The purpose of this paper is to present a new adaptive solution based
on a feed forward neural network (FNN) in order to improve the task of select-
ing cutting conditions for milling operations. From a set of inputs parameters,
such as work material, its mechanical properties, and the type of cutting tool, the
system suggests feed rate and cutting speed values. The four main issues related
to the neural network-based techniques, namely, the selection of a proper topol-
ogy of the neural network, the input representation, the training method and the
output format are discussed. The proposed network was trained using a set of in-
puts parameters provided by cutting operations manuals and tool manufacturers
catalogues. Some tests and results show that adaptative solution proposed yields
performance improvements. Finally, future work and potential applications are
outlined.

1 Introduction

Process planning is a function that establishes a set of manufacturing operations and
their sequence, and specifies the appropriate resources (machines, cutting tools, fix-
tures, inspection instruments, etc.) and process parameters in order to convert a blank
to a finished component expressed by an engineering drawing and other technical in-
formation. The use of computer tools to assist the process plan generation was firstly
reported by Niebel [2]. From that work, many other researchers have explored the use of
computer systems to obtain a coherent process plan in an automated manner. Recently,
the term CAPP (computer aided process planning) appears frequently in the technical
literature and can be considered as one of the most active fields of research in manufac-
turing. In computer integrated manufacturing environments, CAPP can be considered
as the link between the CAD phase and CAM. Many researchers have developed so-
lutions to close the gap between the design phase and the generation of manufacturing
instructions and/or machine control code. A primer reference in CAPP is Chang [1],
who classifies CAPP approaches into two categories, i.e. variant and generative. The
variant approach usually incorporates the use of group technology paradigm to recover
the most suitable process plan that corresponds to the most similar workpiece to that is
being planned. This first approach usually lacks in flexibility and does not consider rela-
tionship between features of workpiece. On the other hand, generative process planning
generates in an automated manner, a brand new process plan, only based on experience
and technical knowledge. According to Chang and Chang [3], most generative CAPP
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lack in learning ability for environmental changes. Because of that reason, recent re-
searches have being focused on integrating variant and generative CAPP with Expert
Systems-based techniques. A number of approaches have beenreported in literature
to solve the problems occurring in integrating process planning and other computer
aided manufacturing applications. Leung [4] published an extensive literature review
on CAPP. Other significant number of references was reportedby Marri et al. [5]. More
recently, Chang and Chang [3] reported artificial intelligence applications for CAPP
implementations. In an exploratory examination of the CAPPliterature it is easy to
conclude that ANN have been intensively used to solve problems such as tool selection,
cutting conditions definition, sequencing of operations, etc. Unlike the most published
applications of ANN in process planning, where neural networks are used as a means
to create optimization models, the proposed approach involves three key differences:
neural networks are capable of storing knowledge in a distributed manner, neural net-
works are capable of learning to recognize relationships between inputs and outputs,
while such relationships must be explicitly defined in optimization models, and neural
networks are capable of generalizing (i.e., giving a ”closest-fit” answer) when presented
with data not used in deriving the relationships learned. This paper presents a proposal
of artificial neural network for determining cutting parameters for milling operations.
The subsequent content is organized as follows: The second section discusses the pro-
cess of definition of cutting conditions and the use of Artificial Intelligence techniques
for this purpose; the third section presents the suggested approach, specifically it dis-
cusses the structure of the developed networks, the training data sets, and the details of
the training process. Furthermore, some aspects of the obtained output of the developed
networks are presented. Finally, in the last section some conclusions and future works
are drawn.

2 Artificial Intelligence and Determination of Cutting Para meters

A workpiece is composed by a set of surfaces or features. These surfaces are obtained
by a sequence of machining operations, such as turning, milling, boring and so on.
For each one of these features process planners must select adequate tools and optimal
cutting parameters. The choice at this stage may be tentative and has to be governed
by experience, intuition and based on information gatheredin machining handbooks.
Mainly, this step of process planning considers the selection of the following parame-
ters:

– The cutting speed (vc) and the rotational speed of the part orof the tool (N).
– The feed rate (fn) or the feed speed in translation of the machine elements (vf).
– The depth of cut (ap) or engagement determining the width of the material to be

removed.

Despite the fact that such machining parameters are calculated according to practi-
cal values found in handbooks or from experience, they have to be updated or refined to
adapt the values to match a specific situation for extractingthe best performance of the
cutting resources. Influence diagrams have been developed for representing complex
decision problems based on incomplete and uncertain information from a variety of
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sources. Nestler and Shulz [8] presented a simple example ofan influence diagram for
machining optimizations and discussed their use in optimization of cutting conditions
(Fig1).

Data from machining handbooks were separated into different types of machining
process, such as turning, drilling, boring, end milling, etc. and classified according to
the workpiece material. As it is well known, workpiece materials are classified in var-
ious groups covering a wide range of materials according to their hardness: ferrous,
non-ferrous, etc. The machining handbooks provide the machining parameters for dif-
ferent tool-work-piece combinations. A comprehensive review of the information ob-
tained from the literature, and from industry, has indicated that the recommended cut-
ting speeds and feed rates for any machining operation may vary considerably [6]. In
addition to the proper selection of cutting speeds and feed rates, the optimum condition
depends on variables such as part configuration, condition of the machine and fixtur-
ing, tolerances and surface quality. Because the effects ofthese variables on tool life
are not always precisely known, it becomes difficult to recommend optimum conditions
for a machining operation. Therefore, the recommendationspresented in the machining
handbooks are nominal ones and should be adjusted by a certain order of processing
approach [7].
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Fig. 1. An influence diagram for determining machining parameters.

Among the applications to determine cutting conditions using an intelligent ap-
proach, one must distinguish the systems that perform the task in an off-line mode
and the systems that operate in an on-line mode. Off-line calculation of cutting condi-
tions consists in defining all the necessary parameters for execute a workpiece before
the process is initiated. According Nestler and Shulz [8], at present, neural networks
are especially used to solve sophisticated problems such asdetermining and modeling
correlations between input and output parameters. Hashmi et al. [7] points to other di-
rection to use AI tools for defining cutting conditions, the use of fuzzy logic models for
representing knowledge extracted from catalogues or handbooks. According Hashmi
et al. [7] fuzzy logic strategy can simulate an operator’s ‘experience and expertise’ in
decision-making process to facilitate the operator to select drilling parameters from ex-
pert database which can be incorporated in computerized automated systems. On the
other hand, the on-line approach corresponds to an automated attempt to adapt and op-
timize the machining parameters based on sensor information on machining responses
in real time. One of the main differences between off-line and on-line determination
of cutting conditions is the need of information of temperature and acoustic emissions.
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Table 1.Subset of training data.

Operation Work Mat Hardness Mill Vc Vf
type Code HB type m/min mm/min

1 30,22 90 1 1000 1910,8
2 30,22 90 1 1100 4904,4
3 30,22 90 1 1250 26871,0
4 30,22 90 1 130 4968,1
1 1,10 125 1 155 288,0
2 1,10 125 1 200 891,7
3 1,10 125 1 375 8061,3
4 1,10 125 1 690 26369,4
1 1,10 125 3 145 450,2
2 1,10 125 3 160 1452,2
1 1,20 150 1 135 257,0
1 7,10 150 1 135 257,9

Fig. 2.Types of operations considered in the experiment.

Hence any on-line intelligent system has to be integrated with a sensing device sys-
tem for extracting in real time conditions of cutting processes. AI techniques allows
modeling the information coming from the sensors systems and optimizing machining
parameters by learning from machining events such as tool wear, machine breakdowns
and other failures.

3 Neural Network Model

Several papers recommend that feed forward multilayer backpropagation nets with one
or two hidden layers with 10 to 30 neurons each are appropriate for handling cutting
data selection problems [8]. The approach suggested here isto use two neural networks
one for the selection of cutting speed and the second one for the selection of the feed
speed. Both networks use the same set of inputs. Therefore, the same training and test-
ing sets were used for each one of the nets. There is just one difference between the
two training sets: the second network uses the set of training data plus the correspon-
dent cutting speed values. Thus, the propose here is to link both networks to work in
an integrated manner to produce cutting parameters from thesame set of input data,
namely, workpiece material and type of milling operation and cutter. Most of the in-
formation used in the preparation of learning and testing data was extracted from a
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Table 2.Alternative Configurations tested and their performance indicators.

ID of Num.of Num. of Num. of Num. of MAD GF
ANN cfg. hidden layers layer 1 layer 2 layer 3 (mm/min) %

1 3 10 10 10 31,0 100,00
5 2 7 7 0 18,5 90,91
2 3 11 11 11 11,3 85,46
4 3 6 7 8 13,0 83,64
3 2 8 8 0 1,3 83,64

16 2 10 10 0 23,5 80,00
6 2 9 10 0 30,1 78,18

13 2 6 6 0 47,4 74,55
7 2 7 8 0 31,8 74,55
9 3 6 6 6 95,4 72,73

19 2 11 11 0 15,3 72,73
14 3 7 7 7 14,2 72,73
10 3 9 10 11 25,3 69,09
11 3 8 9 10 10,8 69,09
12 3 9 9 9 8,1 69,09
17 2 6 7 0 46,1 67,27
20 2 9 9 0 47,2 65,46
15 2 8 9 0 3,2 63,64
8 3 7 8 9 5,0 60,00

18 3 8 8 8 34,5 58,18

Table 3.Configuration parameters selected for each network.

Network Output Num. of Num. of Num. of Num. of Num. of
ID parameter Inputs Hidden Layers Neurons Lay.1 Neurons Lay.2 Neurons Lay.3
1 Vc 4 3 7 sig 7 sig 7 lin
2 Vf 5 2 8 sig 8 sig -

Sandvik Coromant Catalog. The collected information is in the form of tables, which
show the recommended cutting conditions for different types and geometries of cutters
and materials of workpieces depending on factors affectingmachinability. As the orig-
inal information on cutting conditions is given in the form of intervals representations,
the midpoints of such intervals were used as the representative values to construct the
training and testing data sets. In addition, two machining specialists refined these data.
The specialist adapted the data sets assuming a potentiallyreal situation and a given and
known machine tool. By doing so, it will be feasible to incorporate empirical knowledge
to the training process. It was considered for this experiment four types of operations,
as shown in (Fig.2).

The selected input parameters were: milling operation type, workpiece material,
workpiece material hardness and type of mill. Table 1 shows asubset of the used train-
ing data. As can be noticed in table 2, the desired output dataare distributed in a wide
interval. This is due to the large number of different types of workpiece materials. This
situation may be seen as a rather complex problem to be handled by any neural net-
work. This situation leads the authors to choose the strategy of two networks, the first
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Table 4.Percent error according to the operation type.

Operation network 1 network 2
type % %

1 1,44 15,11
2 3,27 24,76
3 2,06 1,91
4 0,44 35,34

Table 5.Percent error according to the workpiece material.

Material network 1 network 2
type (%) (%)

High Alloy Steel 1,37 8,38
Hardened Steel 3,09 18,26
Titanium alloys 0,91 24,11

Aluminium alloys 0,25 1,92

with a single output to estimate the cutting speed and the second one to estimate the
feed speed. The first column represents the operations type,namely, the relation be-
tween the depth of cut (ap) and cutting width (ae), as shown inFigure 2. The second
and the third columns in table 1 represent workpiece material and its Brinell hardness.
Different workpieces materials were represented using theCoromant Material Code. In
a similar way, the type of mill was represented as an integer that regards the material
and geometrical configuration of the milling tool. In the experiment four types of com-
mercial end mills were considered. As it was commented previously, network designers
have to test several configurations, including different numbers of hidden layers and
different number of neurons in each one of the hidden layers.There can be any number
of hidden layers in a neural network. In common use most neural networks will have
only one hidden layer. It is very rare for a neural network to have more than two hidden
layers. The number of neurons for the hidden layer(s) depends on the complexity of
the problem and should be set empirically. With too few neurons the network may not
converge in training, whilst with too many hidden-layer neurons the network starts to
lose generalization ability [9]. In this work, we compare the performance of networks
with two and three hidden layers and the number of neurons in each layer ranging from
5 to 15. Designer selects the network configuration that presents the minimum error and
the fastest rate of convergence. A series of alternative configurations have been tested
to determine the proper configuration of both networks. Several tests were conducted
varying the number of hidden layers, different numbers of neurons for each layer and
different transitions functions. The learning algorithm adopted in all these tests was
the backpropagation algorithm with momentum. As it is usualin the approaches using
this kind of networks, the set of data was divided into two subsets: the first used as
the training data set contains 138 patterns and the second, used as a validation set to
evaluate the responses of the net to unseen information, contains 55 patterns. Through
the use of these two sets, networks parameters can be adjusted and the generalization
ability can be evaluated. To select the most appropriate configuration two traditional
performance indicators were used. We refer to the medium absolute deviation (MAD),
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which was computed in two phases, during the training process and the testing process.
The deviations were calculated as the difference between the actual speed and the es-
timated speed, both for the training and testing sets. The second performance indicator
that was used to evaluate the generalization capacity of thetested configurations is the
Generalization Factor (GF), defined by Eq. (1).

GF =
k

n
∗ 100 (1)

Where n is the number of patterns that compose the validationset and k is the
number of such patterns estimated with an error less than 2 % (this value having been
fixed as a threshold level). Table 2 summarizes the results obtained from an alternative
configuration of neural networks for estimating feed speed (network number two). It is
quite evident that the configuration number 1 (with three hidden layers) showed better
generalization performance since GF is 100%. However, the MAD seemed to be a little
high from the operational point of view. If one considers an error of 31 mm/min in the
estimated feed speed, this may lead to undesirable or inappropriate time estimations
and tool life expectations significantly overestimated. Thus the selected configuration
was number 3, in Table 2 (with two hidden layers), which MAD is1,3 mm/min, con-
sidered as acceptable from the operational point of view. Moreover, the generalization
factor of near 85% seems to be adequate, if one consider that the training set takes into
account a wide variety of types of milling tools and workpiece materials. The same type
of analysis was conducted to obtain the architecture of the first ANN that performs the
estimation of the cutting speed. Table 3 shows the selected configuration parameters for
both networks. Figure 3 (left) shows the net output and expected cutting speed values
obtained after the network was entirely trained and a comparison between the original
testing data and the parameters estimated by the neural network (Fig.3 right). For the
selection of feed speed a single layer network with one hidden layer was trained using
the same training data set used for training the network thatselects the cutting speed.
Figure 4 (left) shows the convergence of the output mean error for the network that
was trained for selecting the cutting speed, where it can be noticed the low number of
epochs needed for attain the minimum required error. Figure4 (right) shows the con-
vergence of the output mean error for the network during the training process of the
network for selecting the cutting speed. Again, the low number of epochs needed for
attain the minimum required error can be noticed. Figure 5 (left) shows the net out-
put and expected feed speed values obtained after the network was entirely trained and
on the right side of the Figure 5 a comparison between the original testing data and
the parameters estimated by the neural network is shown. To evaluate the performance
of the two developed networks, an additional test set was prepared for simulation and
comparisons ends. The results of the simulation tests were classified according differ-
ent criteria. Table 4 shows the performance in terms of percent error of the two both
networks according to the operation type (refer Figure 1). Table 5 presents the results
of the test grouped according to the material workpiece. Finally, table 6 presents the re-
sults obtained by the two networks according the hardness ofthe workpiece. As can be
appreciated, from table 5 and 6, network 1 presented the bestresults with errors within
the 3%. As it can be observed in the tables shown above, the approach presents different
performance between network 1 and network 2, i.e. network 1 performs better estima-
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Fig. 3.Comparison between the train data set and the output produced by the trained network(left)
and between by the test data set and the output of the trained network (right).

Fig. 4. Convergence during the process of training the first network(left) and during the process
of training of the second network (right).

tion of the cutting speed than the estimations performed by the network 2 for the feed
speed. This is caused, we believe, by the great variability of the recommended values
of feed speed among different materials and operations types. The values used in the
test set present a mean value of 6000 mm/min approximately with a standard deviation
of 9000 mm/min. However, and it can be observed in tables 5 and6, there are some
applications where the networks presented acceptable results (under 10 % of error), i.e.
operation type 3 and milling of High alloy steel and aluminumsteel materials.

Table 6.Percent error according to the workpiece material hardness.

Material network 1 network 2
Hardness % %
350 HB 0,76 18,02
350 HB 2,37 13,70
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Fig. 5. Comparison between the training data and the data obtained by the trained network for
estimating Vf (left) and between test data and the networks output (right side).

4 Conclusions

This paper presented a neural network-based automated approach for cutting conditions
selection in milling operations. Two prototype networks were developed. The first net-
work is for selecting cutting speed and the second one for selecting feed speed, both
using almost the same set of input parameters. Both neural networks are interrelated,
since the output produced by the first network is used as an input in the second one. The
developed approach aims at selecting cutting parameters inoff-line mode. The main
difficulty found in the reported experiments was the fact that the training data set con-
siders a great variety of workpiece materials. That situation leads to a wide interval of
cutting conditions affecting convergence mechanism during the training process and the
generalization capabilities during the utilization phase. In spite of this fact, the obtained
results show that the developed networks have an acceptableperformance in simulating
cutting conditions selection process, with a generalization performance of about to 85
approximately. Future research points to develop and test new architectures of neural
networks to enhance the selection process performance, especially in estimation of feed
speed. Also, this work should be extended to other process planning functions such as
machine selection, tool and fixture selection and sequence of manufacturing operations.
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