
TIME-VARYING MULTIMODAL VOLUME RENDERING WITH 3D
TEXTURES

Pascual Abellán, Sergi Grau and Dani Tost
Divisió Informàtica CREB, UPC, Avda. Diagonal 647, 8, Barcelona 08028, Spain

Keywords: Volume rendering, Multimodality, Time-varying Data, Frame-to-frame coherence, 3D texture mapping.

Abstract: In this paper, we propose a rendering method for multimodal and time-varying data based on 3D texture
mapping. Our method takes as input two registered voxel models: one with static data and the other with time-
varying values. It visualizes the fusion of data through time steps of different sizes, forward and backward. At
each frame we use one 3D texture for each modality. We compute and compose a set of view-aligned texture
slices. For each texel of a slice, we perform a fetch to each 3D texture and realize fusion and shading using a
fragment shader. We codify the two shading transfer functions on auxiliary 1D textures. Moreover, the weight
of each modality in fusion is not constant but defined through a 2D fusion transfer function implemented as
a 2D texture. We benefit from frame-to-frame coherence to avoid reloading the time-varying data texture at
each frame. Instead, we update it at each frame using a 2D texture that run-length encodes the variation of
property values through time. The 3D texture updating is done entirely on the GPU, which significantly speeds
up rendering. Our method is fast and versatile and it provides a good insight into multimodal data.

1 INTRODUCTION

The development of new medical imaging technolo-
gies, capable of generating different modality aligned
images within the setting of a single examination,
coupled with the enhancement of methods that reg-
ister datasets generated at different instants of time
and with different devices, has converted the use of
multimodal images in a standard practice in medicine
(Pietrzyk and al., 1996). Moreover, there is a growing
interest for time-varying data. For instance, the analy-
sis of the evolution through time of Positron Emission
Tomography (PET) functional images mapped onto
static anatomical data such as Magnetic Resonance
(MR) can provide valuable information on the behav-
ior of the human brain.

Physicians often analyze multimodal and time-
varying dataset by comparing 2D corresponding im-
ages of each modality at specific instants of time
(Rehm et al., 1994). However, three-dimensional ren-
dering and animation can provide a better understand-
ing of the spatial and temporal relationships of the
modalities (Hu and al., 1989).

Previous approaches on 3D multimodality render-
ing are mostly based on ray-casting (Cai and Sakas,
1999), and they address static datasets only. The
visualization of time-varying volume data with ray-
casting (Ma et al., 1998) (Shen and Johnson, 1994),
(Reinhard et al., 2002) as well as with texture map-
ping (Binotto et al., 2003) (Younesy et al., 2005) has
often been treated in the bibliography, specially for
fluid dynamics datasets. However, the joint explo-
ration of static and time-varying datasets has not been
treated in depth.

In this paper, we propose a multimodal rendering
method that handles static and time-varying datasets.
It is based on 3D texture mapping and it uses a frag-
ment shader to perform shading and fusion. Our
method allows users to move forward and backward
through time with different time steps and to tune the
desired combination of modalities by defining a 2D
fusion transfer function. In order to speed up render-
ing, we take advantage of frame-to-frame coherence
to update the time-varying 3D texture. This signifi-
cantly accelerates rendering and increases the effec-
tiveness of data exploration.

223
Abellán P., Grau S. and Tost D. (2008).
TIME-VARYING MULTIMODAL VOLUME RENDERING WITH 3D TEXTURES.
In Proceedings of the Third International Conference on Computer Graphics Theory and Applications, pages 223-230
DOI: 10.5220/0001093802230230
Copyright c© SciTePress

2 PREVIOUS WORK

There are several ways of combining 2D multimodal
images: compositing them using color scales andα-
blending (Hill et al., 1993); interleaving alternate pix-
els with independent color scales (Rehm et al., 1994)
and alternating the display of the two modality images
in synchronization with the monitor scanning so that
it induces the fusion of images in the human visual
system (Lee et al., 2000). Although these techniques
have proven to be useful, they leave to the observer
the task of mentally reconstructing the relationships
between the 3D structures. Three-dimensional mul-
timodal rendering provides this perception and it can
also be used to help users to freely select adequate
image orientations for 2D analysis.

Current 3D multimodality rendering methods can
be classified into four categories (Stokking et al.,
2003):weighted data fusion, multimodal window dis-
play, integrated data displayand surface mapping.
The first technique (Cai and Sakas, 1999), (Ferré
et al., 2004) merges data according to specific weights
at different stages of the rendering process: from
property values(property fusion)to final colors(color
fusion). The second category is a particular case of
the first one, that uses weight values of 0 and 1, in
order to substitute parts of one modality by the other
one (Stokking et al., 1994). Theintegrated data dis-
play consists of extracting a polygonal surface model
from one modality and rendering it integrated with the
other data (Viergever et al., 1992). The main limita-
tion of this method is the lack of flexibility of the sur-
face extraction pre-process. Finally,surface mapping
maps one modality onto an isosurface of the other.
A typical example is painting functional data onto an
MR brain surface (Payne and Toga, 1990). The draw-
back of this approach is that it only shows a small
amount of relevant information. TheNormal Fusion
technique (Stokking et al., 1997) enhancessurface
mappingby sampling the functional modality along
an interval in rays perpendicular to the surface.

Most of these techniques have been implemented
with volume ray-casting (Zuiderveld et al., 1996)
(Cai and Sakas, 1999), because it naturally supports
pre-registered non-aligned volume models. An effi-
cient splatting of run-length encoded aligned multi-
modalities has been proposed by Ferré et al. (Ferré
et al., 2006). The major drawback of these meth-
ods is that they are software-based, and therefore,
they are not fast enough to provide the interactiv-
ity needed by physicians to analyze the data. Tex-
ture mapping (Krüger and Westerman, 2003) can pro-
vide this speed because it exploits hardware graphics
acceleration. Moreover, the programmability of to-

day’s graphic cards provides flexibility to merge mul-
timodal data. Hong et al. (Hong et al., 2005) use
3D texture-based rendering for multimodality. They
use aligned textures in order to use the same 3D co-
ordinates to fetch the texture values in the two mod-
els and combine the texel values according to three
different operators. None of the previous papers treat
time-varying data. This is a strong limitation, because
each time there is major interest for the observation of
properties that vary through time, such as the cerebral
or cardiac activity.

The visualization of time-varying datasets has
been addressed following two main approaches: to
treat time-varying data as ann−D model withn = 4
(Neophytou and Mueller, 2002), or to separate the
time dimension from the spatial ones. In the sec-
ond approach, at each frame, the data values cor-
responding to that instant of time must be loaded.
Reinhard et al. (Reinhard et al., 2002) have ad-
dressed the I/O bottleneck of time-varying fields in
the context of ray-casting isosurfaces. They parti-
tion each time step into a number of files containing
a small range of iso-values. They use a multiproces-
sor architecture such that, during rendering, while one
processor reads the next time step, the other ones
render the data currently in memory. Binotto et al.
(Binotto et al., 2003) propose to compress highly co-
herent time-varying datasets into 3D textures using a
simple indexing scheme mechanism that can be im-
plemented using fragment shaders. Younesy et al.
(Younesy et al., 2005) accelerate data load at each
frame using a differential histogram table that takes
into account data coherence. Aside from data load-
ing, frame-to-frame coherence can also be taken into
account to speed up the rendering step itself. Sev-
eral authors have exploited it in ray-casting (Shen
and Johnson, 1994) (Ma et al., 1998) (Liao et al.,
2002), shear-warp (Anagnostou et al., 2000), texture-
mapping (Ellsworth et al., 2000) (Lum et al., 2002)
(Schneider and Westermann, 2003) (Binotto et al.,
2003) and splatting (Younesy et al., 2005).

In this paper, we propose to use 3D texture map-
ping to perform multimodal rendering for both sta-
tic and time-varying modalities. For the latter type of
data, we propose an efficient compression mechanism
based on run-length encoding data through time.

3 OVERVIEW

Figure 1 shows the pipeline of our method. We codify
the time-varying data in a 2D texture(Time Codes 2D
Texture)that we use, at each frame, to update a 3D
texture(Time-Varying Data 3D Texture). This mech-

GRAPP 2008 - International Conference on Computer Graphics Theory and Applications

224

anism is explained in Section 5.
For the static data, once, at the beginning of the

rendering process we construct a second 3D texture
(Static Data 3D Texture). We load this texture directly
from the corresponding voxel model, or, ifNormal
Fusion is applied, we construct it using in addition
an auxiliary distance-map voxel model. This is ex-
plained in Section 4. Each texture model has its own
local coordinate system. We assume that the geomet-
rical transformations that situate the two models in
a common reference frame are known or have been
computed in a registration pre-process.

Figure 1: Pipeline of the proposed method.

For each modality we can define separately the shad-
ing model to be applied. We support three types of
shading: emission plus absorption, surface shading
and the mixture of both shading. The three cases are
based on the use of a look-up table implemented as a
1D texture that stores the emission and opacity or the
diffuse reflectivity of the surfacekd∗Od. When both
types of shading are applied, we use the emission as
the diffuse reflectivity and the opacity for the volume
as well as the surface. This can be inconvenient be-
cause, in general, surface opacity needs to be higher
than volume opacity. In order to provide more flexi-
bility, an extra 1D texture encoding the surface diffuse
reflexivity could be stored with each 3D texture.

Once the texture models are constructed and the
two transfer functions edited, we compute the bound-
ing box that encloses the two textures. Then, we
apply the classical methodology of texture mapping
(Meissner et al., 1999), i.e. composition of a set of
view-aligned depth-sorted slices of the bounding box.
Each slice is computed by rendering the polygon of

intersection between the bounding box and the corre-
sponding view-aligned plane. The fragment shader
applied at each pixel of the polygon’s rasterization
performs shading and merges the data using a 2D fu-
sion transfer function (see Section 4).

4 FUSION

Fusion is performed in a fragment shader. For each
rendered pointp the shader checks if it falls inside
the two textures. If it falls only into one of them,
then shading is applied directly to that modality with
no fusion. Otherwise, fusion is applied according to
theweighted data fusionmethod, by merging the two
modalities according to a weight that varies depend-
ing on the combination of values. Beingpropi, i =
1,2 the ranges of the property values, we define the
fusion transfer function as:f t f : ∀(v1,v2) ∈ prop1×
prop2, f t f (v1,v2) = w, beingw∈ [0. . .1]. This trans-
fer function is implemented as a 2D texture.

We can define this transfer function on the prop-
erty domain in order to perform fusion before shad-
ing, or on the color domain, to first shade each modal-
ity separately and then merge them. In addition, we
are able to performmultimodal window displayby
setting to 0.0 the weight of the region that should
be occluded by the other. Moreover, we can merge
modalities and avoid camouflage effects (Rehm et al.,
1994) by giving higher weights to low values of func-
tional modalities than to high ones.

We are also able to performsurface mapping, for
instance, to show intensity PET values only the MR
surface brain. To do so, we select surface shading for
MR, emission plus absorption for PET, and assign a
fusion weight of 0.5 to each modality in the range of
the brain property. We merge the data only where the
gradient value of the MR is significant, and we discard
the pixel otherwise.

In order to performNormal-Fusionrendering, we
compute a distance map model of the relevant surface
in the static modality, using an algorithm based on a
scanning technique (Gagvani and Silver, 1999). We
have implemented a special texture loader than uses
the original voxel model and the distance map. This
loader computes the gradient values in the original
model but uses the distance map as the property value.
We define a fusion transfer function that sets for the
second modality a weight of 0.5 where the distance
map value is 0 (at the relevant surface), of 1.0 where
the distance map is within the desired width and of
0.0 everywhere else. We set surface shading for the
first modality. Then, at the surface, both modalities
are merged, and only the second one is visible at a

TIME-VARYING MULTIMODAL VOLUME RENDERING WITH 3D TEXTURES

225

given distance of the surface.

5 TIME-VARYING DATA
HANDLING

5.1 Data Structures

We represent the time-varying modality accord-
ing to a Time Run-Length(TRL) encoding that
stores for every voxelvi a sequence of codes
composed of the voxel value and the number
of time steps in which this value remains con-
stant within a user-defined error:codes(vi) =
< valuek,n f ramesk >,k = 1. . .ncodes(vi). This in-
formation is stored in theTime Codes 2D Texture
sorted using the voxel coordinates as a primary key
and time as secondary key (see Figure 2). This cod-
ification is computed in a pre-process according to a
user-defined error.

The Time-Varying Data 3D Textureused for ren-
dering stores the current value of all the voxels, their
next (fnext) and previous(fprev) instants of change
and an index to the current code in theTime Codes
2D Texture.

Figure 2: TRL structure in the GPU: Time-Varying Data 3D
Texture (left) and Time Codes 2D Texture (right).

The rate of compression provided by theTRL de-
pends of the coherency of the dataset. For the datasets
that we have used we achieve high compression levels
(between 0.02 and 0.04) as it is shown in Section 7.

5.2 Time-varying Data 3D Texture
Update

We use theglFramebufferTexture3DEXTextension to
update theTime-Varying Data 3D Textureby slicing
it by z-sorted planes. For each slice, we use two frag-
ment shaders: one that determines which voxels must
be updated, and the other that updates those. A voxel
must be updated, if the current frame is not between

its fnextandfprevvalues in theTime-Varying Data 3D
texture. The fragment shader modifies the Z-value of
the modified voxels, so that in the second step, the Z-
Test restricts the update stage to the modified voxels.

For the second step, we need to take into ac-
count that the 3D texture holds absolute time steps
(fnext and fprev) whereas the 2D texture stores rel-
ative time lengths of the codes(nframes). There-
fore, given a voxelv and its current texture value<
idx,valueidx, f prev, f next> , when this texture value
is updated to the next code of the 2D texture it is set to:
< idx+1,valueidx+1, f next, f next+n f ramesidx+1 >.
When it is set to the previous codeidx− 1 it is: <

idx − 1,valueidx−1, f prev− n f ramesidx−1, f prev >.
Figure 3 shows the fragment shader used to update
the 3D texture using the TRL.

uniform sampler2D curr;
uniform sampler2DRect codes;
uniform float f;
void main(void)
{

vec4 v = texture2D(curr,glTexCoord[0].xy);
vec2 c;
float idx = index(v);
float fnext = next(v), fprev = prev(v);
while((f < fprev) || (f >= fnext))
{

if (f < fprev)
{

idx−−;
c = currCode(codes,idx);
fnext = fprev;
fprev = fprev - code(c);

} else{
idx++;
c = currCode(codes,idx);
fprev = fnext;
fnext = fnext + code(c);

}
}
gl FragColor = vec4(idx,value(c),fprev,fnext);

}

Figure 3: Fragment shader that updates the 3D texture.

5.3 Memory Management

The capacity of the GPU memory determines the size
of the voxel model and the number of consecutive
frames that can be handled in the GPU. Specifically,
the GPU memory must fit theStatic Data 3D Tex-
ture, theTime-Varying Data 3D Textureplus theTime
Codes 2D Texture, the two 1D transfer functions and
the 2D fusion transfer function.

GRAPP 2008 - International Conference on Computer Graphics Theory and Applications

226

Currently, our system is able to handle any type
of scalar valued voxel model: unsigned chars, inte-
gers and floats and it supports two types of textures:
GL INTENSITYand (GL RGBA). The first type of
texture is the fastest to construct because it uses the
pixel transferinstruction in order to configure scale
and bias, and thus, it does not need any intermediate
buffer. We use it only for theStatic Data 3D Tex-
ture, to store for each texel an index to an emission +
absorption look-up table. We use theGL RGBAtex-
ture forStatic Data 3D Texturewhen surface shading
is applied. In this case, the texture stores the gradi-
ent vector scaled and biased between 0 and 1 in the
RGB channels and a value indexing a look-up table in
theα-channel. For theTime-Varying Data 3D texture
we always useGL RGBAand store index, value,fnext
andfprev in each channel respectively.

The size of the TRL is proportional to the number
of codes of all the voxels:∑n

i codes(i). However, for
the voxels that are empty all time through, we store a
unique common empty code with zero value and in-
finite number of frames, this way, the occupancy of
the TRL is actually: ∑m

i codes(i), beingm≤ n the
number of non-empty voxels of the model. Generally,
we do not apply surface shading on the time-varying
modality, so we do not need to store gradient vectors.
Thus, a code occupies usually 2 floats (value, num-
ber of time steps) and we are able to store two codes
in one RGBA value. The maximum size for a 2D tex-
ture is currently 40962 RGBA, which is also the upper
limit for the total number of codes that we can store
at a time in one texture. Above this limit, we need to
split the TRL into various 2D textures up to the GPU
memory and, eventually, we will have to read the tex-
ture from the CPU. In any case, this is far much faster
than loading the voxel values at each frame.

6 USER INTERACTION

The interface of our system is shown in Figure 4. A
slider below the graphical area allows users moving
forward and backward through time. At any frame,
users can move the camera around the model and
zoom in and out using the mouse buttons. In addi-
tion, users can manipulate OpenGL clipping planes
to interactively remove parts of the volume. More-
over, depth cueing can be activated to enhance image
contrast. Finally, in order to specify the fusion trans-
fer function we use a widget such as the one shown in
Figure 4 (Abellán and D.Tost, 2007). It consists ba-
sically of a matrix of colors. It shows in thex andy
axis a color scale that represents the shading transfer
function of each modality. The color matrix shows

color merging according to the weight value. A set
of rulers allows users to select a particular subrange
of the matrix and to vary the weight associated to that
range using a slider.

Figure 4: Snapshot of the application interface. Left: the
3D multimodal rendering area. The slider below the area
allows users moving forward and backward through time.
Right: the fusion widget is used for the specification of the
2D fusion transfer function.

7 RESULTS

We have used our method with various multimodal
static/static (Table 1) and static/time-varying datasets
(Table 2). Figure 5 shows an example of the sta-
tic/static fusion of datasetsBrain, EpilepsiaandMon-
key. Figure 6 shows examples of 2D multimodal
slices defined using the 3D model. Figures 7 and
8 illustrate the use of depth cueing and clipping re-
spectively. Figures 9 and 10 show three frames of a
multimodal time-through visualization ofTumor2and
Receptorsdatasets. In the PET medical datasets, the
number of frames needed for medical analysis is gen-
erally low (between 5 and 28). Therefore, we have
also tested our method on a non-medical fluid flow
simulation datasetTJet.

Figure 5: Left to right:Brain, EpilepsiaandMonkeymulti-
modal rendering.

For the encoding of the time-varying datasets we have
used a precision ofε = 10−3. This means that voxel
values consecutive through time and normalized in

TIME-VARYING MULTIMODAL VOLUME RENDERING WITH 3D TEXTURES

227

Figure 6: Brain Dataset. Slides of the MRI-PET with dif-
ferent orientations. Top-Left: Coronal. Top-Right: Sagital.
Bottom-Left: Axial. Bottom-Right: Arbitrary orientation
showing the bounding box of the volumes and the resulting
polygon of intersection with the slide plane and the bound-
ing box.

Figure 7:Brain dataset without (left) and with (right) depth
cueing.

Figure 8:Mousedataset using (right) or not (left) clipping
planes.

the range[0,1] that have a difference less thanε are
compressed in one code. The number ofTRLcodes,
shown in Table 2, is very low in relation to the total
number of voxel values. This yield a high compres-
sion of the time-varying data, so that all the time steps
fit into the GPU, even with the largest modelsrecep-

Figure 9: Three frames of theTumor2dataset.

Figure 10: Three frames of theReceptorsdataset.

torsandTJet.

We have measured the number of frames per second
(fps) of rendering on a Pentium D 3.2 Ghz with 4
GB of RAM. In all cases, the image size is 512x512
and the model occupies almost all the viewport. We
achieve frame rates between 6 and 10 fps. Table 3
shows the frame rates of the static/static datasets.

Table 4 shows a comparison of the time-varying
datasets frame rates using or not theTRL structure.
In both cases, we have measured thepure rendering
time without taking into account the texture load (or
update) and thetotal renderingtime which includes
texture loading (or update) and rendering itself. It can
be observed that, in general, the pure rendering step
is slightly more costly withTRLthan without it. This
is due to the fact that the 3D texture updated from
the TRL is alwaysGL RGBA, whereas, when con-
structed from scratch, it can beGL INTENSITY, with
faster fetch operations. However, the total frame rate,
including texture loading or updating is much faster
with TRL than without it, between four to six times
more in the three medical datasets. Nevertheless, in
the fluid flow simulation datasetTJet, there is no ac-
tual speedup, because the model dimensions are small
and its loading time is only a small part of the effec-
tive rendering time.

Table 1: Static/static datasets characteristics: origin,size
and value type of each modality.

model epilepsia brain monkey mouse

modal.1 MR MR CT MR

size 1 2562x92 2562x116 2562x62 2562x28

type 1 short int float uchar uchar

modal.2 SPECT PET PET SPECT

size 2 2562x92 1282x31 2562x62 2562x286

type 2 uchar float uchar float

GRAPP 2008 - International Conference on Computer Graphics Theory and Applications

228

Table 2: Static/time-varying datasets characteristics: origin,
size, value type of each modality, number ofTRLcodes (in
millions) of the time-varying data and size ofTRLmodel in
comparison to all the time-varying model.

model tumor1 tumor2 receptors TJet

modal.1 MR MR MR simulation

size 1 5122x63 2562x116 2562x116 2563

type 1 short int float float float

modal.2 PET PET PET simulation

size 2 5122x63 2562x116 2562x116 1292x104

frames 20 5 28 150

type 2 float float float float

trl codes 14.6 1.2 2.4 7.1

TRL/Total 0.044 0.031 0.037 0.027

Table 3: Frames per second of the static/static multimodal
rendering.

epilepsia brain monkey mouse

7.2 6.2 10.4 6.8

Table 4: Frame rates in frames per second (fps) of render-
ing using or notTRL: first and third column only rendering,
without texture loading, second and fourth column total ren-
dering rate.

WithoutTRL WithoutTRL With TRL With TRL

pure effective pure effective

dataset rendering rendering rendering rendering

tumor1 12.4 1.2 9.4 7.2

tumor2 13.8 2.4 9.4 9.1

receptors 13.7 2.4 12.8 9.2

Tjet 11.2 10.4 10.4 10.2

8 CONCLUSIONS

We have designed and implemented a fast and ver-
satile tool to render 3D multimodal static and time-
varying images based on 3D textures and fragment
shaders. Our system uses a 2D fusion transfer func-
tion that allows users to modulate data merging. We
have also designed a widget for the specification of
this transfer function. Our method takes advantage of
frame-to-frame coherence to update the time-varying
3D texture using a run-length codification through
time of the data. Since this stage is done on the GPU,
it considerably speeds the loading step of rendering.

We plan to extend this work in several directions.
First, we need to perform usability tests of the appli-
cation. Second, we want to extend it to more than two
models. And third, we will investigate how to incor-
porate polygonal model of external objects in order to
provide multimodal, time-varying and hybrid render-
ing at a time.

ACKNOWLEDGEMENTS

Many thanks are due to Pablo Aguiar, Cristina Crespo
and Domenech Ros from the Unitat de Biofsica of the
Facultat de Medicina of the Universitat de Barcelona,
Deborah Pareto from the Hospital del Mar and Xavier
Setoian of the Hospital Clnic de Barcelona, who pro-
vided the datasets and helped us in their process-
ing and understanding. This work has been partially
funded by the project MAT2005-07244-C03-03 and
the Institut de Bioenginyeria de Catalunya (IBEC).

REFERENCES

Abellán, P. and D.Tost (2007). Multimodal rendering
with 3D textures. InXVII Congreso Español de In-
formática Gráfica 2007, pages 209–216. Thompson
Eds.

Anagnostou, K., Atherton, T., and Waterfall, A. (2000). 4D
volume rendering with the Shear-Warp factorization.
Symp. Volume Visualization and Graphics’00, pages
129–137.

Binotto, A. P. D., Comba, J., and Freitas, C. D. S. (2003).
Real-time volume rendering of time-varying data us-
ing a fragment-shader compression approach.6th
IEEE Symposium on Parallel and Large-Data Visual-
ization and Graphics, pages 69–76.

Cai, W. and Sakas, G. (1999). Data intermixing and
multivolume rendering.Computer Graphics Forum,
18(3):359–368.

Ellsworth, D., Chiang, L. J., and Shen, H. W. (2000). Accel-
erating time-varying Hardware volume rendering us-
ing TSP trees and color-based error metrics. InIEEE
Visualization’00, pages 119–128.

Ferré, M., Puig, A., and Tost, D. (2004). A framework
for fusion methods and rendering techniques of multi-
modal volume data.Computer Animation and Virtual
Worlds, 15:63–77.

Ferré, M., Puig, A., and Tost, D. (2006). Decision trees for
accelerating unimodal, hybrid and multimodal render-
ing models.The Visual Computer, 3:158–167.

Gagvani, N. and Silver, D. (1999). Parameter-controlled
volume thinning. Graphical models and Image
Processing, 61(3):149–164.

Hill, D., Hawkes, D., and Hussain, Z. (1993). Accurate
combination of CTand MR data of the head: valida-
tion and application in surgical and therapy planning.
Computer Medical Imaging and Graphics, 17:357–
363.

Hong, H., Bae, J., Kye, H., and Shin, Y. G. (2005). Efficient
multimodalty volume fusion using graphics hardware.
ICCS 2005, LNCS 3516, pages 842–845.

Hu, X. and al. (1989). Volumetric rendering of multimodal-
ity, multivariable medical imaging data.Proc. Chapel
Hill Workshop on Volume Visualization, pages 45–49.

TIME-VARYING MULTIMODAL VOLUME RENDERING WITH 3D TEXTURES

229

Krüger, J. and Westerman, R. (2003). Acceleration tech-
niques for GPU-based volume rendering. InIEEE Vi-
sualization’03, pages 287–292.

Lee, J. S., Kim, B., Chee1, Y., Kwark, C., Lee2, M. C.,
and Park, K. S. (2000). Fusion of coregistered cross-
modality images using a temporally alternating dis-
play method. Medical and Biological Engineering
and Computing, 38(2):127–132.

Liao, S., Chung, Y., and Lai, J. (2002). A two-level differ-
ential volume rendering method for time-varying vol-
ume data.The Journal of Winter School in Computer
Graphics, 10(1):287–316.

Lum, E. B., Ma, K. L., and Clyne, J. (2002). A Hardware-
assisted scalable solution for interactive volume ren-
dering of time-varying data.IEEE Trans. on Visual-
ization and Computer Graphics, 8(3):286–301.

Ma, K., Smith, D., Shih, M., and Shen, H. W. (1998). Ef-
ficient encoding and rendering of time-varying vol-
ume data. Technical Report ICASE NASA Langsley
Research Center, pages 1–7.

Meissner, M., Hoffmann, U., and Straßer, W. (1999). En-
abling classification and shading for 3D texture map-
ping based volume rendering using OpenGL and ex-
tensions.IEEE Visualization’99, pages 207–214.

Neophytou, N. and Mueller, K. (2002). Space-time points:
4D splatting on efficient grids. InIEEE Symp. on Vol-
ume Visualization and graphics, pages 97–106.

Payne, B. and Toga, A. (1990). Surface mapping brain func-
tion on 3D models.IEEE Computer Graphics & Ap-
plications, 10(5).

Pietrzyk, U. and al. (1996). Clinical applications of regis-
tration and fusion of multimodality brain images from
PET, SPECT, CT, and MRI.European Journal of Ra-
diology, pages 174–182.

Rehm, K., Strother, S. C., Anderson, J. R., Schaper, K. A.,
and Rottenberg, D. A. (1994). Display of merged mul-
timodality brain images using interleaved pixels with
independent color scales.Journal of Nuclear Medi-
cine, 35(11):1815–1821.

Reinhard, E., C.Hansen, and S.Parker (2002). Interac-
tive ray-tracing of time varying data. InEG Parallel
Graphics and Visualisation’02, pages 77–82.

Schneider, J. and Westermann, R. (2003). Compression
domain volume rendering. InIEEE Visualization’03,
pages 39–47.

Shen, H. W. and Johnson, C. R. (1994). Differential volume
rendering: a fast volume visualization tech for flow
animation. InIEEE Visualization’94, pages 180–187.

Stokking, R., Zubal, G., and Viergever, M. (2003). Display
of fused images: methods, interpretation and diagn-
sotic improvements.Seminars in Nuclear Medicine,
33(3):219–227.

Stokking, R., Zuiderveld, K., and Hulshoff, P. (1994). In-
tegrated visualization of SPECT and MR images for
frontal lobe damaged regions.SPIE Visualization in
biomedical computing, 2359:282–292.

Stokking, R., Zuiderveld, K., Hulshoff, P., van Rijk, and
Viergever, M. (1997). Normal fusion for three-
dimensional integrated visualization of spect and
magnetic resonance brain images.The Journal of Nu-
clear medicine, 38(3):624–629.

Viergever, M. A., Maintz, J. B. A., Stokking, R., Elsen,
P. A., and Zuiderveld, K. J. (1992). Integrated presen-
tation of multimodal brain images.Brain Topography,
5:135–145.

Younesy, H., Möller, T., and Carr, H. (2005). Visualiza-
tion of time-varying volumetric data using differential
time-histogram table. InVolume Graphics’05, pages
21–29.

Zuiderveld, K. J., Koning, A. H. J., Stokking, R., Maintz,
J. B. A., Appelman, F. J. R., and Viergever, M. A.
(1996). Multimodality visualization of medical vol-
ume data.Computers and Graphics, 20(6):775–791.

GRAPP 2008 - International Conference on Computer Graphics Theory and Applications

230

