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Abstract: This work presents a method for the visual tracking of articulated targets in image sequences in real time.
Each part of the target object is considered as a region of interest and tracked by a parametric transformation.
Prior geometric and dynamic informations about the target are introduced with a Kalman filter to guide the
evolution of the tracking process of regions. An articulated model with two areas is proposed and applied to
track pedestrians in the urban image sequences.

1 INTRODUCTION

The tracking approaches can be distinguished by sev-
eral criteria, for example:

1. • 2D approach without an explicit shape model,
• 2D approach with an explicit shape model,
• 3D approaches.

2. • tracking of primitives
• tracking of a region of interest (ROI)

3. • deterministic approach
• probabilistic approach
• classification approach

The choice of the tracking approach depends on the
application:

• the target objects are rigid or not,

• the camera used is monocular, stereo, fixed, mo-
bile,

• the precision and the computing time required for
the application.

The aim of this work is to develop a real-time al-
gorithm that allows the tracking of a deformable and
articulated target in an image sequence acquired by a
mobile mono-camera. The principal application is the
tracking of pedestrians in an urban environment and
to warn the driver should a pedestrian move into the
security area (see figure 1) around the vehicle.

This application is difficult to achieve for several
reasons: the camera is mounted on the vehicle (so a

Figure 1: The security area is defined by the red (dark) re-
gion, where Vp is the pedestrian velocity and Vh is the ve-
hicle velocity.

simple background subtraction does not apply), oc-
clusions are frequent and real time computing is re-
quired. Also, the appearence and resolution of the
target object -e.g. the pedestrian- change due to de-
formation of clothes, changes in the posture and the
motion of the camera. Figure 2 gives an idea of the
variation of the resolution. In the diagrams the width
and height (in pixels) of the window that contains the
pedestrian in the image are plotted against the dis-
tance of the camera.

The most popular techniques for the estimation of
motion are based on the parametric model (Bergen
et al., 1992), which is adapted to real time tracking.
These techniques model the motion of a ROI in an
image for example by the affine (6 DOF) or the
homographic (8 DOF) transformation. Problems
occur when the motion model that is used does
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Figure 2: Dimensions of pedestrian in the image (in pix-
els) according to the variation of the distance between the
camera and a pedestrian.

not describe well the motion of the ROI. In (Weiss
and Adelson, 1996), the motion is segmented into
independent multiple motion areas. This method is
problematic when some of the areas do not contain a
high enough number of pixels or when they contain
noise. Others have introduced a constraint. The target
segments are connected to each other by joints. In
(Murray et al., 1994; Bregler et al., 2004), the twist
and product exponential map are used to introduce
constraints. In (Gavrila and Davis, 1995; Kakadiaris
and Metaxas, 1996), the human body is modeled by
rigid segments which are connected by joints. See
(Gavrila, 1999) for a comprehensive bibliography of
approaches used to analyse human motion, and see
(Zhang et al., 2006) for an analysis of motion with an
articulated model.

In this work, we model the target by rigid seg-
ments which are connected by a priori informations
representing the joints. The constraints are intro-
duced as a priori informations using a Kalman filter.
This permits a higher reach connection between the
multiple areas without increasing the DOF of the
system. The contribution of each segment and of
each joint is regulated by the covariance matrices of
the Kalman Filter. So the Kalman filter proposed
introducesa priori geometric (e.g. the connection
between the multiple areas) and dynamic (constant
velocity) informations about the target. Furthermore,
the Kalman filter smooths the trajectory of the target.
In the next section, a different approach to model the
dynamic evolution in the context of visual tracking
with sequential filtering is presented. Subsequently,
we will focus on the Kalman filtering. In section
3, an articulated model based on a Kalman filtering
is proposed. In section 4, an articulated model is
proposed to track a pedestrian in image sequences
and experimental results are given.

2 SEQUENTIAL FILTERING AND
TRACKING IN IMAGE
SEQUENCES

In this section, an introduction of the use of the se-
quential filtering in the context of the visual tracking
is given. The measurements acquired up to framet are
denotedYt andXt represents the configuration of the
target objects at the timet. The process{Xt ; t ∈ N}
is modeled as a Markov process of initial distribu-
tion p(X0) and transition equationp(Xt |Xt−1). The
observations{Yt ; t ∈ N} are assumed to be condition-
ally independent given the process{Xt ; t ∈ N} and
of marginal distributionp(Yt |Xt). The principle of se-
quential filtering is to apply Bayes’s theorem at each
time-step, obtaining a posteriorip(Xt |Yt) based on all
available information:

p(Xt |Yt) =
p(Yt |Xt)p(Xt |Xt−1)

p(Yt)
(1)

where we can writep(Yt |Xt) instead ofp(Yt |Xt ,Yt−1)
due to the conditional independence assumption. Ac-
cording to custom in filtering theory, a model for the
expected motion between time-steps is adopted. This
takes the form of a conditional probability distribution
p(Xt |Xt−1) termed the dynamics. Using the dynamics
equation, (1) becomes

p(Xt |Yt) =
p(Yt |Xt)

∫

p(Xt |Xt−1)p(Xt−1|Yt−1)dXt−1

p(Yt)
(2)

It is assumed that the predicted values of the states
and the observations,Xt andYt , respectively, evolve in
time according to:

Xt = ft(Xt−1,Vt), (3)

Yt = gt(Xt ,Wt). (4)

whereft andgt are the state and the observation func-
tions, respectively, which are supposed to be known.
The state noiseVt and the measurement noiseWt have
known distributions.

In visual tracking the choice of the dynamical
modelp(Xt |Xt−1) depends on the type of the images,
the a priori information available and the applica-
tion. Typically, the elasticity model is used to track
the elastic structure (Rouchdy et al., 2007) and the
Navier-Stockes model is used to track a fluid struc-
ture (Cuzol et al., 2007). When a gooda priori infor-
mation is available the prediction can be introduced
by learning (Blake et al., 1999). The most popular
dynamical model used is autoregressive (Black and
Fleet, 1999; Perez et al., 2002) and corresponds in the
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first order to the model of constant velocity, which is
the model adopted in this work.

The choice of the observations depends on the ap-
plication and the image and can be subjective in some
cases. The cues usually used are edge information
(Blake and Isard, 1998) and color distributions (Perez
et al., 2002). There exists also a model based on mo-
tion and appearance (Sidenbladh and Black, 2003). In
(Sidenbladh and Black, 2003), several cues are com-
bined to make the model robust to a change of appear-
ance.

For a nonlinear system (e.g. the functionft or gt
in equations (3) is nonlinear) the probabilityp(Xt |Yt)
is approximated by a Monte Carlo (MC) method. Un-
fortunately, the classical sampling for the MC method
is guaranteed to fail as time increases. To deal with
this problem a step of selection is added -(Gordon,
1993) gives the first operationally effective method.
Theoritical convergence results of this algorithm are
given in (Del Moral, 1997). A good reference and co-
herent treatement of these techniques including con-
vergence results and applications to visual tracking
are presented in (Doucet et al., 2002).

When the observation densityp(Yt |Xt) is assumed
to be Gaussian and the dynamics are assumed lin-
ear with additive Gaussian noise the solution is ob-
tained analytically and this method corresponds to the
Kalman filter. In this case the dynamical system is
written as:

Xt = AtXt−1 +BtVt , (5)

Yt = CtXt +DtWt , (6)

whereAt , Bt , Ct andDt are matrices andVt−1, Wt−1
are vectors of i.i.d standard normal variants. The
state noiseVt and the measurement noiseWt are sup-
posed to be Gaussian and independent with the matri-
ces covariancesQt andRt , respectively. In this case,
p(Xt |Xt−1), p(Yt |Xt) andp(Xt |Yt) have a Gaussian dis-
tribution with the covariance matricesQt , Rt andΓt ,
respectively. Where the covariance matrixΓt and the
estimation of the vector stateXt are computed recur-
sively with the Kalman filter, the Kalman recursion is
given in section 3.5 and documented in (Kalman and
Bucy, 1961).

3 ARTICULATED MODEL BASED
ON KALMAN FILTER

3.1 Motion Estimation

The image is a projection of 3D points of the space on
an image plane. Let a rectangle that moves in the 3D
space be such that the deformations in the image plane
are described by a rigid transformation. LetI1 be the
image of this object at the timet1 and letItn be the
image attn. In (Faugeras et al., 2001), it is shown that
the points on the rectangle of the two frames are re-
lated by ahomographictransformation and that they
are defined by eight parameters. Subsequently, it is
supposed that the deformation of a target is obtained
by a homographic transformation. Otherwise, the ob-
ject is approximated by a set of rigid links. We re-
strict ourselves to this type of motion to reduce the
complexity.

3.2 Modelisation and Predictions

Let {Rl
r}

N
l=1 be a set of supposed rigid areas of an

articulated target, letcl be the coordinates of the
barycenter of the regionRl

r , and letsl be the surface
of Rl

r . The elements of the set{Rl
r}

1
l=N are correlated

by their barycenters with the relations

ψ1(c1, · · · ,cN,s1, · · · ,sN) = d1; . . . ;
ψN(c1, · · · ,cN,s1, · · · ,sN) = dm

(7)

wherem is the number of the constraint functionsψ.
These constraints are introduced as a priori informa-
tions with the Kalman filter. An example of the track-
ing of a pedestrian in an image sequence using two
correlated areas is given in section 4.

The constraintes (7) are supposed to be linear. If
this is not the case, they can be linearized. The con-
straints are introduced into the dynamic system of the
Kalman filter. The constraints (7) are introduced in
the filter with a functiongt = (g1

t , · · · ,g
m
t ). At the time

t, the state vectorXt is defined by

Xt =
(

c1
t , · · · ,c

n
t ,v

t
1, · · · ,v

N
t ,s1

t , · · · ,s
N
t ,g1

t , · · · ,g
m
t

)

,

and follows the state equations:

Xt = AXt−1 +BVt−1, (8)

Yt = CXt +DWt−1, (9)

whereA, B, C andD are fixed matrices andVt−1, Wt−1
are vectors of i.i.d standard normal variants. The ma-
trix A introduces dynamic, e.g. constant velocity, and
geometric, e.g. the correlation between the areas, a
priori informations about the target.
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3.3 Measurement

For each setRl
r , the estimation of the parameters of the

transformation model is achieved by the minimization
problem:

λl
t = arg min

λ∈Rα ∑
p∈Rl

r

∣

∣It(φl
t (λ, p))− Ir(p)

∣

∣

2
(10)

whereIr is the reference image,It the current image,
φl

t are the parametric transformations determined by
the parametersλl

t for eachl ∈ {1, · · · ,N} and where
α is the parameters number. The measurement vector
is computed from the transformationsφl

t and defined
by

Ymes
t =

(

z1
t , · · · ,z

n
t ,v

t
1, · · · ,v

N
t ,s1

t , · · · ,s
N
t ,g1

t , · · · ,g
m
t

)

,

wherezl
t andsl

t are the barycenters and the surfaces,
respectively, of the areasφl

t (λl
t ,R

l
r). Fromzl

t andsl
t we

compute the quantitygi
t for each(i, l) ∈ {1, · · · ,m}×

{1, · · · ,N}. The image motion of the pointzi,l
t from

time t −1 to timet is :

vl
t =

zl
t −zl

t−1

∆t
.

The minimization of the problem (10) is achieved by
the ESM algorithm, see (Malis, 2004; Benhimane and
Malis, 2004).

3.4 Initialization

Using the first reference image, the user segments the
target manually into a set of areas. The surface of the
areas, the distance between the barycenters of the ar-
eas and other geometric characteristics are computed
from the initial set of areas to initialize the Kalman
filter.

3.5 Filtering

This step allow us to introduce a goodness of fit crite-
rion between a reference template and possible candi-
dates in the current image. If the additional noisevt is
supposed to be Gaussian, then the observation density
p(Yt |Xt), associated to the prediction and measure-
ment described in the previous section, has a Gaussian
distribution with a Covariance matrix errorR. The
densityp(Xt |Yt) has also a Gaussian distribution with
a covariance matrix errorQ. So the estimation of the
state is computed by a Kalman filter with the rela-
tions:

• initialization

– X0, P0, RandQ are given

• prediction

– X̄t = AXt−1

– Ȳt = CX̄t

– P̄t = APt−1A∗ +Q

• filtering

– Kt = P̄tC(CP̄t ·C+R)−1,
– Xt = X̂t +Kt(Ymes

t − Ȳt),
– Pt = (1−KtC) P̄t .

Kt is called the gain. The differenceYmes
t − Ȳt is

called the measurement innovation. The innovation
reflects the discrepancy between the predicted mea-
surementCX̄t and the actual measurementZmes

t . Let

Q =





Q1 0 0
0 Q2 0
0 0 Q3



 , R=





R1 0 0
0 R2 0
0 0 R3





The covariance matrix(Q1,R1), (Q2,R2) and
(Q3,R3) are associated to the barycenters, the surface
and the constraints, respectively.

4 APPLICATION TO TRACK A
PERSON

4.1 Measurements and Predictions

To track a pedestrian in an image sequencee, we track
the head and the torse which are supposed to be con-
nected: the head stays close to the torse. Two areas
F1 andF2 are used, one coresponding to the head and
other to the torse.

4.1.1 Method 1

The vector stateXt is defined by the centers of the
windowsF1 andF2 and by their velocityv1

t andv2
t ,

respectively:

Xt = (c1
t ,v

1
t ,c

2
t ,v

2
t )

The prediction matrices are defined by

A =























1 0 ∆t 0 0 0 0 0
0 1 0 ∆t 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 ∆t 0 0 0 0 0
0 0 0 0 0 1 0 ∆t
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1























,
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C =























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1























These predicions introduce thea priori informa-
tion that the first component of the window centerc1

t
is equal to the first component ofc2

t . Figure 3 gives
the variations of the predicted value of the first com-
ponent of one window when the first component of
the other window is fixed to be zero. The amplitude
variation of the predicted value of the first component
depends on the variance of the considered gaussian
noise.

0 200 400 600 800 1000
−4

−3

−2

−1

0

1

2

3

4
x 10

−3

Figure 3: Variation of the predicted value of the first compe-
nents of one window when the first component of the second
window is fixed at zero.

4.1.2 Method 2

Here, the vector state is defined by only one window
F1 :

Xt = (c1
t ,vt ,dt),

wheredt is a vecor ofR2. The prediction matrices are
defined by

A =















1 0 ∆t 0 0 0
0 1 0 ∆t 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1















,

C =















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1















We remark that if

dt = c2
t −c1

t , (11)

the observationsYt correspond to the barycenters of
the zones targeted. So the initial values of the vector
dt permit to introduce a constraint on the evolution of
the two windows in the Kalman filter. The coordinates
of the barycenter of the windowF2 are deduced from
the estimation ofdt andc1

t by the relation

c2
t = dt +c1

t .

The initial value of the vectordt is computed from
the initial barycenters of the windowsF1 andF2.

4.2 Initialization of the Optimization
Algorithm

The user chooses the initial size of the windowsF1
andF2 manually The window size is updated with the
estimated values ofdt with the relations:

Ll ,x
t = Ll ,x

t−1 ·
||dt ||

||dt−1||
, Ll ,y

t = Ll ,y
t−1 ·

||dt ||

||dt−1||

whereLl ,x
t is the length of the windowl andLl ,y

t is the
width of the windowFl at the timet. The size of the
windows and their barycenters are used to initialize
the values of the transformations for the next step of
tracking. The initialization of the transformation for
the minimization routine ESM is achieved by using
the results of filtering to construct new homographic
transformations defined by

H l ,0
t =















1 0 min
(

cl ,x
t − Ll ,x

t
2 ,cl ,x

t + Ll ,x
t
2

)

0 1 min
(

cl ,y
t + Ll ,y

t
2 ,cl ,y

t − Ll ,y
t
2

)

0 0 1















We note that, these homographies are computed from
the estimation at the previous iteration of the window
center. The update of the transformation by the trans-
formation H l ,0

t gives more stable results than when
the initialization is performed with the transforma-
tions that we measured directely at the previous step.
The necessity to update the transformation is due to
the non-rigid motion of the target and changes of their
appearence.

4.3 Change of Appearance and
Resolution

Where the change of appearence and resolution be-
comes very large due to the deformation of the
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clothes, changes in the posture of the pedestrian and
the mobility of the camera, the update of the trans-
formations proposed in the previous section is insuffi-
cient. It is necessary to update the reference template
which is composed of the set of the targeted areas. In
this work, we have used the estimation ofdt to update
the reference template. Indeed, when the condition

∣

∣

∣||dt ||− ||dt−1||
∣

∣

∣ < Thv

is not satisfyed, the set of areas is update from the
set of areas obtained at the previous iteration. This
criterion can be combined with another similarity
measurement that compars the reference and current
templates for example by using the sum-of-squared-
differences (SSD). In (Arnaud et al., 2004), the eigen-
values of the covariance error in tke Kalman filter is
used to define a threshold.

Intuitively, a more pertinent strategy to update the
reference template consists to accumulate the refer-
ence templates (Morency et al., 2003). The problem
with such an approach is to define a criterion of sim-
ilarity that can be applied to the reference data and
also the computing time can be expensive. In (Wu
and Huang, 2001), a particle filter is used to evolve
the reference template by a dynamical model. To deal
with the change of apparence, Headvig et al. (Siden-
bladh and Black, 2002) are use a learning approach
based on the cues edge, ridge and motion. The cues
are combined with a bayesian model.

4.4 Experiments

4.4.1 Data

We tested the proposed articulated models on data
from an urban traffic environment. The two video se-
quences used were recorded by Renault in the con-
text of the LOVe project1 by a SMAL camera from
CYPRESS company. The following table gives the
main characteristics of the used camera. Since our
model is adapted to a monocular camera, only one of
the two sets of images obtained by the stereo camera
were used.

The first image sequence was aquired from an
immobile vehicle. The trajectory of the pedestrian
was perpendicular to the road. The second image se-
quence is acquired by a camera mounted on a moving
vehicle and shows pedestrians crossing the road.

1http://www.love.univ-bpclermont.fr/

4.4.2 Results and Discussion

In the following section, some experimental results
obtained with the urban image sequences presented
in the last section are given to evaluate the articulated
model 4.1.1. We compare it to the results obtained
when only one area is trached with the ESM algo-
rithm. Figure 4 shows the result obtained by the ESM
algorithm: the tracker has lost the target at the sec-
ond image due to a non-rigid motion and due to the
background present in the initial area (pixels not be-
longing to the pedestrian). Figure 5 shows that the
articulated model has succeeded in tracking the tar-
get. These results were obtained without updating the
reference template.

Figure 6 shows the results of the tracking. The
pedestrian was correctly tracked until he made a 90
degree turn in relation to the camera in imaget8 =
2.0630s. The update of the reference template us-
ing the distance correlation between the barycenters
was insufficient to deal with the large change of ap-
pearance in framet8 = 2.0630s when the pedestrian
changed his posture completely. It will be interesting
to combine the proposed update method to another
update strategy based on the measurement of similar-
ity, see section 4.3.
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Figure 4: Results of the ESM tracking algorithm.

AN ARTICULATED MODEL WITH A KALMAN FILTER FOR REAL TIME VISUAL TRACKING - Application to the
Tracking of Pedestrians with a Monocular Camera 

691



100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Figure 5: Results obtained with the first articulated model.

5 CONCLUSIONS

In this work, we propose a method for the tracking of
an articulated target with a monocular camera using
the Kalman filter. The advantages of this approach
are: the joints are introduced asa priori information
and not as constraints -e.g. the a priori informations
can be left unsatisfied if the measurements (extracted
from the images) are more pertinent-, a real time im-
plementation is possible, it is easy to implement, it is
stable and it smooths the trajectory of the target. For a
large number of areas the algorithm can be easily par-
allelized: the measurement is computed separately for
each area. However, this model is sensitive to large
changes in appearence. Further work is necessary to
tackle this problem, some directions are proposed in
section 4.3.
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Figure 6: Tracking with the first articulated model ap-
plied to an an urban image sequence recorded with 30 im-
ages/seconde.

by Renault in the context of the LOVe project2
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