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Abstract: Lip reading applications require accurate information about lip movement and shape, and both outer and 
inner contours are useful. In this paper, we introduce a new method for inner lip segmentation. From the 
outer lip contour given by a preexisting algorithm, we use some key points to initialize an active contour 
called “jumping snake”. According to some optimal information of luminance and chrominance gradient, 
this active contour fits the position of two parametric models; a first one composed of two cubic curves and 
a broken line in case of a closed mouth, and a second one composed of four cubic curves in case of an open 
mouth. These parametric models give a flexible and accurate final inner lip contour. Finally, we present 
several experimental results demonstrating the effectiveness of the proposed algorithm.

1 INTRODUCTION 

Many studies have shown that visual information 
can significantly increase speech comprehension in 
noisy environment (Neely, 1956) (Sumby, 1954). 
Both inner and outer lip movements and shape give 
useful information for lip reading applications. With 
this motivation, many researches have been carried 
out to accurately obtain outer lip contour. However, 
relatively few studies deal with the problem of inner 
lip segmentation. The main reason is that inner 
contour extraction is much more difficult than outer 
contour extraction. Indeed, we can find different 
mouth shapes and non-linear appearance variations 
during a conversation. Especially, inside the mouth, 
there are different areas which have similar color, 
texture or luminance than lips (gums and tongue). 
We can see very bright zones (teeth) as well as very 
dark zones (oral cavity). Every area could 
continuously appear and disappear when people are 
talking. 

Among the existing approaches for inner lip 
contour extraction, lip shape is represented by a 
parametric deformable model composed of a set of 
curves. In (Zhang, 1997), Zhang uses deformable 
templates for outer and inner lip segmentation. The 
chosen templates are three or four parabolas, 
depending on whether the mouth is closed or open. 
The first step is the estimation of candidates for the 

parabolas by analyzing luminance information. 
Next, the right model is chosen according to the 
number of candidates. Finally, luminance and color 
information is used to match the template. This 
method gives results, which are not accurate enough 
for lip reading applications, due to the simplicity and 
the assumed symmetry of the model. 

In (Beaumesnil, 2006), Beaumesnil et al. use 
internal and external active contours for lip 
segmentation as a first step. The second step 
recovers a 3D-face model in order to extract more 
precise parameters to adjust the first step. A k-means 
classification algorithm based on a non-linear hue 
gives three classes: lip, face and background. From 
this classification, a mouth boundary box is 
extracted and the points of the external active 
contour are initialized on two cubic curves computed 
from the box. The forces used for external snake 
convergence are, in particular, a combination of non-
linear hue and luminance information. Next, an inner 
snake is initialized on the outer contour. Then the 
contour is shrunk by a non isotropic scaling with 
regard to the mouth center and taking into account 
the actual thickness of lips. The main problem is that 
the snake has to be initialized close to the real 
contour because it will converge to the closest 
gradient minimum. Particularly for the inner lip 
contour, different gradient minima are generated by 
the presence of teeth or tongue and can cause a bad 
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convergence. In (Beaumesnil, 2006), the 3D-face 
model is used to correct this problem. 

Statistical methods can be used for inner and 
outer lip segmentation. In (Cootes, 1994a) and 
(Cootes, 1994b), Cootes et al. develop statistical 
active model for both shape (AMS) and appearance 
(AAM). Shape and grey-level appearance of an 
object are learned from a training set of annotated 
images. Then, a Principal Component Analysis 
(PCA) is performed to obtain the main modes of 
variation. Models are iteratively matched to reduce 
the difference between the model and the real 
contour by using a cost function. In (Luettin, 1996), 
Luettin et al. build an AMS and in (Abboud, 2005), 
Abboud et al. build an AAM to position M-PEG 
compatible feature points on the inner and outer lip 
contours. The main interest of these models is that 
the segmentation gives good results, but the training 
data have to deal with many cases of possible mouth 
shapes. 

The aim of our work is to obtain an accurate 
segmentation of the inner lip contour for lip reading 
applications. We develop an algorithm based on 
both active contours and parametric models. Models 
represent the a priori shape of the mouth and the 
“jumping snake” described in (Eveno, 2004) fits 
their position.  

For the outer lip segmentation, we use the 
algorithm proposed in (Eveno, 2004). From the 
resulting outer lip contour, we extract several key 
points, and we define jumping snakes and two 
different parametric models (depending on whether 
the mouth is closed or open) to extract the inner lip 
contour. As a consequence, our algorithm for inner 
lip contour segmentation supposes that the outer 
contour of the lips has already been extracted 
successfully. 

The paper is organized as follows. In section 2 
we briefly describe the extraction of the outer lip 
contour proposed in (Eveno, 2004). Section 3 and 4 
show the way to find the inner lip contour depending 
on whether the mouth is closed or open. 
Experimental results are presented in section 5. 
Finally, section 6 concludes the paper. 

2 OUTER LIP CONTOUR 
EXTRACTION 

In (Eveno, 2004), Eveno et al. introduce a 
parametric model composed of a broken line and 
four cubic curves (see figure 1). The model is 
initialized by 6 key points and is adjusted by using 

some gradient information computed from the 
pseudo-hue (Hulbert, 1998) and luminance. The 
three points P2, P3 and P4, linked by the broken 
lines, give the Cupidon's bow contour, the point P6 is 
the lowest point of the contour and the points P1 and 
P5 are the mouth corners. 4 cubic curves (γi), linking 
P2 and P6 (resp. P4 and P6) to P1 (resp. P5), complete 
the outer contour. 

Our algorithm for the inner contour detection is 
inspired by the algorithm described in (Eveno, 
2004). First, our method supposes that the outer lip 
contour has been successfully segmented and that 
we can use the different key points Pi to initialize 
our process. Moreover, we make the hypothesis that 
the inner and outer lip contours are linked by the 
mouth corners (P1 and P5). 
We develop two different strategies and 2 models 
depending on whether the mouth is closed or open. 

 
 
 
 
 
 

 

Figure 1: Key points and parametric model (Eveno, 2004). 

3 CONTOUR EXTRACTION FOR 
CLOSED MOUTH 

3.1 Chosen Model 

The parametric model for inner contour, when the 
mouth is closed, is composed of two cubic curves (γ5 
and γ6) and one broken line (see figure 4). The 
broken line linking the points P’2, P’3 and P’4 of the 
model stands for the representation of the inner lip 
distortion due to the Cupidon’s bow. Two cubic 
curves, between the point P’2 (resp. P’4) and the 
mouth corner P1 (resp. P5), complete the inner 
contour. Experimental study has shown that a 
parabola is not accurate enough to represent the 
inner lip contour, as chosen in the majority of others 
works. For lip reading applications, the inner 
contour has to be very accurate and what we can call 
the “inner Cupidon's bow” cannot be represented by 
a single parabola between the mouth corners.  

3.2 Model Initialization 

For closed mouth, the inside of the mouth is only 
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composed of lips. The inner contour can be seen as a 
dark line between the mouth corners. 
We use the line Lmin to initialize the searched 
contour. As proposed in (Delmas, 1999), Lmin is 
composed of the darkest pixels and moreover, the 
mouth corners have been chosen so as to be on this 
line. Lmin is initialized on the darkest pixel of the 
segment [P3P6] and grows by adding pixels in both 
directions left and right. For each direction, only the 
3 closest pixels are candidates and the pixel with the 
minimum of luminance is chosen. As you can see on 
figure 2, Lmin is already a good representation of the 
inner lip contour. 
 
 
 
 
 
 
 
 

Figure 2: Detection of Lmin. 

Lmin is sampled and gives the initial contour 
called C1 (see figure 3). We find three key points 
P’2, P’3 and P’4, in order to fix the limits of the three 
parts of our model. P’3 is on the contour C1 and is 
the closest point to the vertical passing by P3.  P’2 is 
the highest point of the contour C1 limited by the 
two verticals passing by P2 and P3 (interval I1 on 
figure 3). P’4 is the highest point of the contour C1 
limited by the two verticals passing by P3 and P4 
(interval I2 on figure 3). The mouth corners are the 
points P1 and P5 found with the detection of the 
outer lip contour. 
 
 
 
 
 
 
 
 
Figure 3: Initial contour C1 by sampling Lmin and detection 
of key points. 

3.3. Model Optimization 

From the key points detected in the previous section, 
the final inner contour is given by a broken line 
linking P’2, P’3 and P’4, and two cubic curves, 
between the mouth corner P1 (resp. P5) and the key 
point P’2 (resp. P’4). The two curves are computed 
with the least square minimization method. 

 
 
 
 
 
 
 

Figure 4: Inner lip model for closed mouths. 

4 CONTOUR EXTRACTION FOR 
OPEN MOUTH 

The detection of the inner lip contour is much more 
challenging for open mouth, due to the non-linear 
appearance variations of the inside of the mouth. 
Indeed, during a conversation, the area between lips 
could take different configurations. We can have 
four configurations: 1) Teeth, 2) Oral cavity, 3) Gum 
and 4) Tongue. 

4.1 Chosen Model 

The parametric model for inner contour, when the 
mouth is open, is composed of four cubic curves 
(see figure 9). For open mouth, the “inner Cupidon's 
bow”, as introduced in section 3.1, is less 
pronounced than for closed mouth, so using only 
two cubic curves is sufficient to accurately segment 
the upper inner lip contour. With four cubic curves, 
the model is flexible and allows to challenge inner 
segmentation with unsymmetrical mouth shape. 

4.2 Model Initialization: Key Points 
Extraction 

Two jumping snakes, as introduced in (Eveno, 
2004), are used to match the model; a first one for 
the upper inner contour and a second one for the 
lower inner contour.  

The jumping snake convergence is a succession 
of growth and jump phases. First, the snake is 
initialized with a seed, then, the snake grows by 
adding left and right endpoints. Each new point is 
found by maximizing some gradient flow through 
the segment between this current candidate point and 
the previous one. Finally, the seed jumps to a new 
position closer to the searched contour. The process 
of growth and jump is repeated until the jump 
amplitude is smaller than a threshold. 

The initialization of the snakes starts with the 
search for two points (P7 and P8 on figure 5) on the 
upper and lower inner contours assumed to belong to 
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( ) ( ) ( )1( , )G x y = Cr x, y + h x, y + L x, y∇ ⎡ ⎤⎣ ⎦

( ) ( ) ( ) ( )2 ( , ) 3G x y = L x, y Cr x, y S x, y h x, y∇ − − − ∗⎡ ⎤⎣ ⎦

(1)

(2) 

the vertical passing by P3. As said previously, the 
difficulty of the task is that we can find between lips 
different areas with similar or largely different color, 
texture or luminance than lips, when a mouth is 
open. The main goal is to find the adequate 
information that can emphasize the inner contour for 
every configuration. Experimental study on 
thousands of face images has shown that no single 
data can reach this goal and we have to consider a 
combination between the information coming from 
different spaces, each information emphasizing the 
boundary for one specific configuration. For 
example, lips are represented by a high pseudo-hue 
and a high red component, teeth are bright and 
saturated in color, the oral cavity is very dark, when 
gums and tongue could have the same aspect than 
lips. We build experimentally two gradients (G1 and 
G2) of mixed information coming from different 
spaces to find P7 and P8.  P7 is found by searching 
the maximum of the gradient G1 (see equation 1) 
between P3 and P6. P8 is found by searching the 
maximum of the gradient G2 (see equation 2) 
between P3 and P7.  In order to avoid false detection 
due to noise, we cumulate the different gradients on 
10 columns around P3 and we choose the point with 
the highest cumulated gradient. 

 

where Cr comes from the YCbCr space, h is the 
pseudo-hue, L is the luminance and S is the 
saturation component of the HSV space. Each 
component is normalized between 0 and 1. The 
pseudo-hue, introduced by Hulbert et al. (Hulbert, 
1998), is the ratio h = R/R+G, where R and G are the 
red and green components of the RGB color space. 
The pseudo-hue emphasizes contrast between lips 
and skin (Eveno, 2004). 

From P8 and P7, we compute two seeds P’8 and 
P’7 for the initialization of the jumping snakes. P’8 is 
¾ of the segment [P3P8] and P’7 is ¾ of the segment 
[P6P7] (see figure 5). With this configuration, the 
seeds are closer to the inner contours than eventual 
noise contours. 
 
 
 
 
 
 
 
 

Figure 5: Detection of jumping snake seeds. 

For the convergence of the snakes, we have also 
to find gradients which emphasize the inner 
boundary in every configuration. In the same way, 
we experimentally build two kinds of space 
combination. For the upper inner contour, the 
convergence of the first jumping snake gives the 
initial contour C2. P’8 is taken as seed and the snake 
parameters are chosen so that the two snake’s 
branches tend to go down. G3 (see equation 3) is the 
gradient used for the snake’s growth phase. For the 
lower inner contour, the convergence of the second 
jumping snake gives the initial contour C3. P’7 is 
taken as seed and the snake parameters are chosen so 
that the two snake’s branches tend to go up. G4 (see 
equation 4) is the gradient used for the snake’s 
growth phase (see figure 6). 

                                                             (3) 

                                                             (4) 

where R is the red component of the RGB space, 
L is the luminance, u comes from the CIELuv space 
(Wyszecki, 1982) and h is the pseudo-hue. Each 
component is normalized between 0 and 1. 
 

These 2 gradient definitions were chosen 
because: 
− the luminance L and the pseudo-hue h are 

generally higher for the lips than inside the 
mouth (in particular than the oral cavity, where 
L and h are close to zero), 

− the component u is higher for the lips than for 
the teeth (indeed u is close to zero for the teeth)  

− and the component R can be lower for the lips 
than inside the mouth in others cases. 

The sign is different between G3 and G4 because the 
lips are above the inside of the mouth with G3, 
whereas the lips are below the inside of the mouth 
with G4. 
 

We take the two closest points (P’’8 and P’’7) to 
the vertical passing by P3 on each contour C2 and C3 
as key points for our inner lip model. 
 
 
 
 
 
 
 
 
Figure 6: Jumping snake convergences and detection of 
key points. 

( ) ( ) ( )3 ( , )G x y = R x, y u x, y h x, y∇ − −⎡ ⎤⎣ ⎦

( ) ( ) ( )4 ( , )G x y = L x, y +u x, y +h x, y∇ ⎡ ⎤⎣ ⎦
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4.3. Snakes adjustment 

4.3.1 Adjustment in Case of Teeth 

In (Wang, 2004), Wang et al. find the teeth area by 
computing the mean value μ and the standard 
deviation σ of the components a and u of the 
CIELab and CIELuv spaces (Wyszecki, 1982). Only 
the pixels inside the mouth area are considered and 
these parameters are represented by μa, μu, σa and 
σu. A pixel (x, y) is defined as a teeth pixel if: 

or  

We exploit this idea in our algorithm. After 
having found the teeth area (see figure 7 (a)), we 
adjust the points of the jumping snake found by the 
first convergence (see figure 7 (b) and (c)), only if 
there are teeth pixels just below the snake for the 
lower inner contour or just above for the upper inner 
contour. 
 
 
 
 
 

(a)                            (b)                            (c) 

Figure 7: (a) teeth region (the green pixels represent the 
teeth), (b) snake convergence, (c) snake convergence after 
the adjustment. 

4.3.2 Adjustment in Case of Gum 

Segmentation failures of the upper inner contour can 
occur in presence of gum. Indeed, when the color 
and texture information of the gum is too close to 
the one of the lips, the contour is detected between 
the gum and the teeth (see figure 8 (a)). To 
overcome this difficulty, we use a second snake for 
the upper contour. The seed of the 2nd snake is the 
middle point of the 1st snake. The 2nd snake 
parameters are chosen so that the two snake’s 
branches tend to go up and G5 (see equation 5) is the 
gradient used for the snake’s growth phase. 

                                                   (5) 

where L is the luminance and Cr comes from the 
YCbCr space. Each component is normalized 
between 0 and 1. 
 

G5 is considered because the luminance L and the 
component Cr are higher for the gum than for the 
lips. 
 

 
 
 
 
 
 

(a) 1st snake convergence 
 
 
 
 
 
 
 

(b) 2nd snake convergence 

Figure 8: Snake adjustment in presence of gum. 

After the convergence, if the middle points of the 
2nd snake are below the upper outer contour, we keep 
the modification (see figure 8 (b)), else we go back 
to the result of the 1st snake (that is the case when no 
gums are visible). 

4.4. Model Optimization 

From the key points detected in the previous section, 
the final inner contour is given by four cubic curves 
between the mouth corners P1 and P5 and the key 
points P”7 and P”8. The two curves for the upper 
contour are computed with the least square 
minimization method by taking some points of the 
contour C2 close to P”8, the point P”8 and the mouth 
corners P1 and P5. The two curves for the lower 
contour are computed with the least square 
minimization method by taking some points of the 
contour C3 close to P”7, the point P”7 and the mouth 
corners P1 and P5. 
 
 
 
 
 
 
 
 

Figure 9: Inner lip model for open mouth. 

5 EXPERIMENTAL RESULTS 

For testing the performances of our lip segmentation 
method, we use images from the AR face database 
(Martinez, 1998). It contains images of 126 people's 

( , ) u uu x y σ μ≤ −( , ) a aa x y σ μ≤ −

( ) ( )5 ( , )G x y = L x, y +Cr x, y∇ ⎡ ⎤⎣ ⎦
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faces (70 men and 56 women) with different facial 
expressions and illumination conditions. The mean 
size of the mouths is 110 pixels in width. Figure 11 
shows experimental inner lip segmentation results 
for this database for both closed and open mouths. 
The results are zoomed on the mouth to better see 
the segmentation. 

Moreover, we use image sequences from 
different speakers acquired in our lab under natural 
non uniform lighting conditions and without any 
particular make-up. These images are RGB (8 
bits/color/pixel) and contain the region of the face 
spanning from chin to nostrils. The mean size of the 
mouths is 85 pixels in width. Results for closed and 
open mouths are shown on figure 12. 

To evaluate quantitatively our algorithm in case 
of open mouths, we use the method introduced by 
Wu et al. (Wu, 2002). We hand-labelled the inner lip 
contour of 507 images from the AR face database 
(corresponding to the features “smile” and 
“scream”) and 94 images from our own database. If 
a pixel does not belong to both the hand-labelled 
area and the area defined by our algorithm, the pixel 
is evaluated as an error pixel. The error ratio is 
computed by the ratio between the number of error 
pixels (NEP) of the image divided by the number of 
pixels in the hand-labelled area. The 252 first images 
of the AR face database correspond to the feature 
“smile” and the last 255 images correspond to the 
feature “scream” (see figure 11 (b) and (c) for 
examples).  

The tables 1, 2 and 3 show the error ratio for the 
3 images sets (database AR “smile” and “scream” 
and our sequences). The value is 0.252 (standard 
deviation = 0.093) for the AR images with the 
feature “smile”, 0.112 (standard deviation = 0.095)  
or the AR images with the feature “scream” and 
0.188 (standard deviation = 0.068) for the images 
from our sequences. The error ratio is lower for the 
feature “scream” than for the feature “smile” and 
this difference is due to the method for computing 
the error ratio. Indeed, the number of error pixels 
(NEP) is relatively constant for the whole database. 
But to compute the error ratio, the NEP is divided by 
the number of pixels in the hand-labeled area, and 
that is obvious there are much more pixels in the 
mouth area during a scream rather than during a 
smile. The mean NEP is 360 for the “smile” images 
and 535 for the “scream” images, whereas the mean 
number of pixels in the inner lip hand-labelled area 
is around 1505 for the first one and 4968 for the 
second. For example, that's why the error ratio of the 
last images of the figure 11 (b) is higher than the last 
images of the figure 11 (c) in spite of a lower NEP. 

Table 1: Error ratio for the images from the AR face 
database with the feature “smile”. 

AR database : feature “smile” 

Error ratio (ER) in % (standard-deviation) 25.2 (9.3) 

Number of images with ER < 15% 26 

Number of images with 15% ≤ ER < 25% 118 

Number of images with 25% ≤ ER < 50% 103 

Number of images with 50% ≤ ER ≤ 75% 5 

Number of images with ER > 75% 0 

Mean number of error pixels (NEP) 
(standard-deviation) 360 (179) 

Mean number of pixels in the hand-labelled 
area (standard-deviation) 1505 (598) 

Table 2: Error ratio for the images from the AR face 
database with the feature “scream”. 

AR database : feature “scream” 

Error ratio (ER) in % (standard-deviation) 11.2 (9.5) 

Number of images with ER < 15% 216 

Number of images with 15% ≤ ER < 25% 19 

Number of images with 25% ≤ ER < 50% 16 

Number of images with 50% ≤ ER ≤ 75% 4 

Number of images with ER > 75% 0 

Mean number of error pixels (NEP) 
(standard-deviation) 535 (497) 

Mean number of pixels in the hand-labelled 
area (standard-deviation) 

4968 
(1556) 

Table 3: Error ratio for the images from our sequences. 

database from our sequences 

Error ratio (ER) in % (standard-deviation) 18.8 (6.8) 

Number of images with ER < 15% 28 

Number of images with 15% ≤ ER < 25% 49 

Number of images with 25% ≤ ER < 50% 17 

Number of images with 50% ≤ ER ≤ 75% 0 

Number of images with ER > 75% 0 

Mean number of error pixels (NEP) 
(standard-deviation) 108 (43) 

Mean number of pixels in the hand-labelled 
area (standard-deviation) 616 (238) 
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error = 0.268          error = 0.305          error = 0.669 
NEP = 528             NEP = 1542           NEP = 3812 

Figure 10: Failures due to the presence of gum or tongue. 

The majority of the wrong detections for the 
lower inner lip contour occur in presence of the 
tongue, when the contour is not marked enough. 
Also, in spite of the adjustment introduced in section 
4.3.2., the upper inner lip contour can be found 
between the gum and the teeth. Some examples are 
shown on figure 10. 

 
 
 
 
 
 
 

(a) closed mouth 

 
 
 
 
 
 
 
error = 0.256          error = 0.106           error = 0.216 
NEP = 255             NEP = 199              NEP = 196 

(b) open mouth and feature “smile” 

 
 
 
 
 
 
 

error = 0.038         error = 0.052          error = 0.071 
NEP = 233             NEP = 381             NEP = 454 

(c) open mouth and feature “scream” 

Figure 11: Some results with the AR face database. 

Also, by examining the localization of the error 
pixels inside the mouth, we have seen that there are 
sometimes a lot of error pixels near the mouth 
corners, even if the inner lip contour seems to be 

right. That is because in our model the outer lip 
contour and the inner lip contour are linked by the 
two mouth corners (P1 and P5). So the cubic curves 
of the inner contour have to pass by the mouth 
corners and the contour could be not very accurate 
near the mouth corners. For example, it is the case 
for the images of the figure 12 (b). 
 

 

 
 

(a) closed mouth 

 
 
 
 
 
 
 
error = 0.194        error = 0.156          error = 0.287 

NEP = 114           NEP = 96               NEP = 82 
(b) open mouth 

Figure 12: Some results for the images from our 
sequences. 

6 CONCLUSIONS 

This paper presents an algorithm for inner lip 
segmentation. The method consists of a combination 
of active contours and parametric models. The active 
contours give key points and fit the two models, a 
first one for a closed mouth and a second one for an 
open mouth. The parametric models, composed of 
several cubic curves, allow to obtain accurate and 
realistic results useful for applications which require 
a high level of precision, such as lip reading. 

For the moment, the decision between the closed 
mouth model and the open mouth model is taken 
manually and the inner lip segmentation is done for 
static images. It could be useful to know 
automatically if the mouth is closed or open for a 
future work of segmentation in video sequences.  
Indeed, during a conversation, the mouth 
continuously alternates with closed and open 
positions. 
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