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Abstract: NMR imaging allows to obtain 3D-images by non-invasive treatment of biological structures. In this study 
intensity-based warping is evaluated by comparing it to landmark-based warping for a four-dimensional 
analysis of morphological changes in seed development of barley. The datasets of barley grains are obtained 
at certain development stages by NMR. Warping algorithms reconstruct intermediate physically non-
measured stages. The landmark-based procedure consists of automatic definition of landmarks and 
subsequent distance-weighted warping. The intensity-based approach uses iterative intensity-based warping 
for definition of the displacement vector field and distance-weighted volume warping for generation of the 
virtual intermediate dataset. The approaches were tested with four datasets of barley at different 
development stages. As a result, the intensity-based approach is highly applicable for analysis of 
morphological changes in NMR datasets and serves as a tool for an extensive 4D analysis of seed 
development in barley grains.

1 INTRODUCTION 

The accurate four-dimensional analysis of 
developing biological structures requires adequate 
techniques. In case of high-resolution NMR scans of 
biological structures, 4D warping can serve as a tool 
for visualization of morphological changes 
(Thompson and Toga, 1998; Shen and Davatzikos, 
2003; Toga and Thompson, 2003; Shen, 2004). 
Analysis of seed development of barley encloses the 
detection of complex morphological change 
patterns. Therefore we investigate fast and robust 
warping strategies for applicability in biological 
image processing. Warping is a class of image 
processing techniques, which deals with nonlinear 
geometric transformations. According to the 
determination of the spatial correspondence between 
a source and a target image, warping algorithms can 

be divided into two classes (Toga, 1998, Maintz and 
Viergever, 1998): Model-based approaches use 
high-level information, such as point landmarks 
(Bookstein, 1989; Franz et al., 1999; Whitbeck and 
Guo, 2006), contours (Subsol, 1998; Wang et al., 
2004) and surfaces of anatomical structures 
(Davatzikos, 1996; Thompson and Toga, 1996, 
2002). In contrast, intensity-based warping methods 
maximize local gray value correlation to match the 
source to the target image (Bajcsy and Kovacic, 
1989; Ashburner et al, 1999). Hybrid approaches try 
to combine model-based and intensity-based 
techniques (Johnson and Christensen, 2002).  The 
major drawback of pure intensity based methods is 
the incapacity to handle large deformations. To 
overcome these limitations, Christensen et al. have 
published (in 1996) a viscous fluid based warping 
procedure, which allows highly nonlinear, but 
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smooth and topology preserving, deformations with 
a relatively high computational cost. A faster 
derivative of the viscous fluid registration was 
published by Bro-Nielsen and Gramkow in 1996 
using a convolution filter in a scale-space framework 
(Bro-Nielsen and Gramkow, 1996). Another well-
known approach of iteratively registering an image 
is the “Demon's Algorithm” (Thirion, 1996, 1998), 
which can be considered as an approximation of the 
viscous fluid registration (Bro-Nielsen and 
Gramkow, 1996).  

The time- and memory consuming step of fluid 
registration procedures is solving the linear PDE. In 
this study we present new iterative approach that 
performs the calculation of the displacement vector 
field (DVF) by bloc-matching and by minimizing a 
threshold function to get fast computation and few 
memory consumption. Distance-weighted warping 
performs the subsequent volume transformation of 
all voxels of the source image to the target image 
using the DVF as geometric information. The 
method was applied to gradient images, which are 
obtained from the gray value datasets (see Material 
& Methods). 

This approach was compared to a fast and robust 
landmark-based approach with an iterative intensity-
based approach. The manual definition of a 
sufficient amount of landmarks is subjective and 
time-consuming, therefore the 3D landmarks were 
automatically generated. The automatic definition of 
an adjustable number of landmarks is based on 3D 
differential operators (Rohr, 1997).   

NMR-imaging allows to obtain 3D-images by 
non-invasive treatment of the biological material, 
and was successfully applied to barley grains 
(Glidewell, 2006). The aim of the presented study is 
the evaluation of two different warping strategies for 
transformation of interindividual NMR datasets of 
barley grains at different development stages. The 
transformation helps to analyze morphological 
changes during seed development by reconstructing 
a complete time series of NMR datasets. The 
measured NMR datasets at distinct time points are 
serving as reference for the iterative warping 
procedure. The approaches were evaluated by 
calculation of global cross correlation and volume 
overlap index between the warped and the target 
dataset over time. 

2 MATERIAL & METHODS 

In this study 4 NMR datasets at different 
development stages are used (3 Days After 
Flowering (DAF), 3.5, 9, and 10 DAF). The datasets 
are divided into two groups to examine seed 
development at an early stage (3 DAF + 3.5 DAF) 
and at a relatively late stage (9 DAF + 10 DAF). 
Each group is processed separately and inde-
pendently, i.e. 3 DAF is transformed to 3.5 DAF and 
9 DAF is warped to 10 DAF.   
 Both pairs of datasets are differing in size and 
represent different growth patterns, so that they were 
chosen out of 16 measured datasets as examples to 
demonstrate the method under dissimilar conditions. 
The reconstruction of seed development between 3 
DAF and 3,5 DAF was chosen due to enormous 
morphological changes between these time points. 

The general work flow is as follows: After 
obtaining the datasets, a manual rigid alignment of 
the 3D images to each other ensures best starting 
conditions. Then, as the first step in an iterative 
process, the gray value datasets were duplicated and 
the copies were converted to a gradient dataset. 
Subsequently the registration process generates the 
displacement vector field (DVF) to determine the 
spatial correspondence between the source and the 
target image. The last step is the volume warping of 
the non-converted source gray value dataset. The 
iteration cycle starts again with the gradient 
calculation of a copy of the warped dataset. After a 
predefined number of iterations the whole process 
stops. Fig. 1 shows the general scheme. 

Figure 1: Diagram of general work flow. 

2.1 NMR-Imaging and Image 
Preprocessing 

A Bruker DMX 400 NMR spectrometer (Bruker, 
Rheinstetten, Germany) with a Micro2.5 imaging 
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probe was used for the MRI (Magnetic Resonance 
Imaging) experiments. All three-dimensional images 
were recorded using a standard T1-weighted 3D 
spin-echo pulse sequence with a repetition time Tr of 
300 ms and an echo time Te of 4.4 ms. The image 
resolution was 31 µm along the axial and 16 µm 
along the transverse directions and dimensions of the 
datasets are 512x175x256 voxels (9 DAF, 10 DAF) 
and 194x124x256 voxels (3 DAF, 3.5 DAF), 
depending on the size of the biological structures. 

The datasets were converted to a gray value 
resolution of 8 bit, contrast enhanced and manually 
put into the same orientation. Afterwards they were 
manually aligned to each other, as an important 
prerequisite for the registration process. 

2.2 Landmark-based Approach 

The automatic definition of landmarks is based on 
3D operators for the detection of point landmarks in 
MR images. The operator consists of first partial 
derivatives of the voxels and detects corners and 
saddle-points of biological structures. To ensure 
correct correspondence of the detected reference 
points, a 3D grid is placed on each dataset to define 
non-overlapping subvolumes. Only if a corres-
ponding subvolume contains a reference point in 
both datasets, these reference points are defined as 
landmarks. The spatial difference of a pair of 
corresponding landmarks denotes a displacement 
vector. For the time-series the length of the 
displacement vectors are successively reduced to 
realize a reverse „growth“. At each timepoint, a 
volume warping is performed. 

The displacement vectors describe the DVF, 
therefore the same distance-weighted volume 
warping method is used as in the intensity-based 
approach. 

2.3 Iterative Intensity-based Approach 

As the first step in an iterative process, the gray 
value datasets were duplicated and the copies were 
converted to a gradient dataset. Subsequently the 
registration process generates the displacement 
vector field (DVF) to determine the spatial 
correspondence between the source and the target 
image. The last step is the volume warping of the 
non-converted source gray value dataset. The 
iteration cycle starts again with the gradient 
calculation of a copy of the warped dataset. After a 

predefined number of iterations the whole process 
stops. 

Pretests without conversion into gradient images 
showed poor results probably due to differing 
contrast in the NMR datasets.  

The first step of the iteration cycle is to calculate 
the gradient image of the source and the target 
dataset by application of a sobel mask. Therefore the 
registration is performed on the gradient dataset and 
not on the original gray value datasets. Based on 
linear elasticity properties of a deformed body, 
which are described by the Navier-Stokes equation, 
the gradient of local similarity between the target 
and the deformed image represents the body forces. 
The strength of deformation is regulated by the 
internal forces. To overcome the limitations of only 
small deformations, the whole process becomes 
iterative by adding time to it.  

The presented approach changes this model to a 
simpler and faster algorithm by reducing the core 
problem of time-consuming solving of PDEs to a 
minimization problem. The internal forces are 
simplified to a simple threshold function s(u(x,t)): 
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The body forces b(u(x,t)) are determined by the 
local sum of squared differences of the voxel values 
of the source dataset S and the target dataset T: 
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where c depicts a predefined threshold value. In this 
study the non-critical value of c was set to 5, 
therefore the maximal length of a displacement 
vector cannot exceed this value. In contrast to 
common iterative elastic matching algorithms, the 
displacement vectors are only determined for rigid 
displacement of local subvolumes of 10 x 10 x 3 
voxel. Therefore the calculation of the DVF can be 
described as a very fast bloc-matching process. 

For each local subvolume the best displacement 
is determined by minimizing eq. (1). After the 
registration procedure the DVF contains M vectors, 
each vector can be taken as the spatial difference 
between the points vi in the target image and xi in the 
source image. These points are called registration 
points.  
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The volume warping requires a robust and fast 
warping method to handle a large number of 
displacement vectors obtained by the registration 
step. We chose a distance-weighted warping 
algorithm to ensure mathematical robustness even 
with a high number of displacement vectors. The 
smoothness of the transformation is controlled by a 
global parameter.  

The transformation function r(x) of the used 
warping method calculates the displacement of each 
voxel x by the weighted sum of all displacement 
vectors: 
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The weighting function consists of a global 
weighting factor β and the Euclidean distance of the 
point x to the reference point xi: 
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To decrease computational efforts, only 
reference points with a distance value smaller than a 
given threshold are used for further calculation. The 
global weighting factor β shapes the transformation: 
a high value results in local and coarse 
transformations whereas a low value yields smooth 
displacements. For the intensity-based approach we 
set β to 0.02. In case of the landmark-based 
approach a value of 0.10 is used. 

After generation of the gray value dataset by this 
distance-weighted warping algorithm, the warped 
dataset is duplicated, then the copy is converted into 
a gradient dataset and fed into the next iteration 
cycle. Due to the lack of a reliable convergence 
criterion, the whole process was stopped after a 
predefined number of 30 iteration cycles.   

3 RESULTS 

All calculations were performed on an SMP Opteron 
850 system with Linux 2.6.13. In case of the early 
development stage the intensity-based approach uses 
17,136 vectors (landmark-based: 1,071 landmarks) 
and in case of the late development stage 57,600 
vectors (landmark-based: 3,120 landmarks) are used 
for the volume warping. 

In case of the early development stage fig. 2 
shows one single slice (z=126) out of the volumes. 
The original NMR datasets were cropped at their left 
ends, because the caryopsis does not reach the 
glumes completely. The upper row shows on the left 
the target and on the right the source dataset with an 
automatically generated outer contour of the target. 
The lower row shows the warped dataset at the same 
z-position after 5 resp. 30 iteration cycles. It can be 
seen, that the warping process simulates nonlinear 
growth of the caryopse, until the most left part of the 
caryopse reaches the position of the same structure 
in the target dataset. 

Figure 2: Single slice (z=126) from NMR datasets (early 
development stage). Upper row: Target dataset and source 
dataset with outer contour of target. Lower row: Warped 
dataset after 5 and 30 iterations. The arrow depicts the 
outer contour of the caryopse to demonstrate the iterative 
process of transformation.  

Fig. 3 shows for the late development stage the 
results of the intensity-based approach one single 
slice (z=126) of the target dataset (upper row, left) 
and on the right the corresponding slice of the source 
dataset together with the outer contour of the target 
dataset. In the middle row the warped datasets after 
5 and 30 iterations resp. are depicted. For a better 
evaluation the lower row shows magnifications. It 
can be seen, that the shapes of the biological 
structures became more similar to each other.  
 

Ta rge t: 3,5 DAF S ource : 3 DAF

Afte r 5 ite ra tions Afte r 30 ite ra tions
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Figure 3: Single slice (z=126) from NMR datasets (late 
development stage). Upper row: Target dataset and source 
dataset with outer contour of target. Middle row: Warped 
dataset after 5 and 30 iterations. The arrows depict a 
prominent location to see the iterative process of 
transformation. Lower row: Magnifications of the marked 
regions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Increase of the global cross correlation 
coefficient and the volume overlap index during the 
iterations. The thicker curve depicts the results of the 
intensity-based approach and the thinner curve the results 
of the landmark-based approach. The iterations were 
stopped after 30 cycles. a) and b): early development 
stage, c) and d): late development stage. 

The increase of the global cross correlation 
coefficient (cc) and the volume overlap index (voi) 
is shown in Fig. 4. The global cross correlation 
measures the similarity of the global gray value 
distribution, whereas the volume overlap index 
quantifies the 3D geometric correspondence. In case 
of the intensity-based approach, a rapid increase of 
similarity in terms of the used quality functions 
shows a strong transformation at the beginning of 

the iterations. After about 15 iterations the similarity 
increases only slightly. In case of landmark-based 
warping the increase is more or less linear after 
about 5 iterations. However, best results after 30 
iterations are obtained by the intensity-based 
approach. 
The increase of similarity in terms of the used 
similarity functions is summarized in tab. 1 (early 
development stage) and tab. 2 (late development 
stage). 

Table 1: Increase of similarity (early development stage). 
The global cross correlation coefficient before warping 
between target and source dataset was 0.7359 and the 
volume overlap index was 0.5462. 

 Intensity-based Landmark-based 

cc voi cc voi 

After 5 
iterations

0.7394 
+0.48% 

0.6680 
+22.30% 

0.7495 
+1.85% 

0.5256
-3.77% 

After 30 
iterations

0.8025 
+9.05% 

0.7335 
+34,29% 

0.8014 
+8.90% 

0.6091
+11.52% 

Table 2: Increase of similarity (late development stage). 
The global cross correlation coefficient before warping 
between target and source dataset was 0.6790 and the 
volume overlap index was 0.7716. 

 Intensity-based Landmark-based 

cc voi cc voi 

After 5 
iterations

0.7419 
+9.26%  

0.8115 
+5.17% 

0.6826 
+0.53% 

0.7740
+0.31% 

After 30 
iterations

0.7691 
+13.27% 

0.8375 
+8,54% 

0.7551 
+11.21% 

0.8014
+3.86% 

4 CONCLUSIONS 

The aim of this study was the investigation of 4D 
warping of interindividual NMR datasets of barley 
grains at different development stages. The 
transformations help to visualize morphological 
changes during seed development of barley. We 
have developed and evaluated an iterative procedure 
to generate virtual datasets using measured NMR 
datasets as reference. Similarity measurements by 
applying global cross correlation and volume 
overlap index as quality functions show an increase 
during the iterations. In case of our new method, the 
increase of similarity is not linear in terms of the 
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used similarity functions. This is a property of the 
used intensity-based warping method. However, up 
to now, it is more likely that the growth of the 
structures in barley grains between the presented 
timepoints is nonlinear. The landmark-based 
approach shows a linear increase in terms of the 
quality functions, but produces suboptimal results 
after a given number of iterations.  

The presented algorithm will serve as a tool for 
further four-dimensional analysis of seed 
development in barley: For further 4D analysis 
expression data will be incorporated into the virtual 
NMR datasets to visualize time-dependent 
localization of e.g. metabolites during development. 
For this task the presented iterative procedure 
appears to be highly suitable for time-dependent 
transformation of one development stage to another 
and may prove to be a useful tool to make 
morphological changes during seed development 
accessible for further analysis. 
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