
Figure 9: Continuous skeletons: (a) leaf1, (b) room, 
(c) Billygoat (external), (d)  Billygoat (internal). 
 
Figure 10: The fragment of the skeleton for “neuron”. 
4. Running time of continuous skeletonization 
algorithm is less by at least an order than that of the 
best samples of discrete skeletonization algorithms. 
The downside of application of continuous 
skeleton construction algorithm is the complexity of 
its software implementation which demands rather 
refined programming technique. 
ACKNOWLEDGEMENTS 
The authors thank Dr. R.Strzodka who has granted 
us image samples for experiments. Also authors are 
grateful to the Russian Foundation of Basic 
Research, which has supported this work (grant 05-
01-00542). 
REFERENCES 
Bai, X., Latecki, L.J., Liu, W.-Y, 2007. Skeleton pruning 
by contour partitioning with discrete curve evolution. 
IEEE transactions on pattern analysis and machine 
intelligence, vol. 29, No. 3, March 2007.  
Blum, H., 1967. A transformation for extracting new 
descriptors of shape. In Proc. Symposium Models for 
the perception of speech and visual form, MIT Press 
Cambridge MA, 1967.  
Costa, L., Cesar, R., 2001. Shape analysis and 
classification, CRC Press. 
Deng, W., Iyengar, S., Brener, N., 2000. A fast parallel 
thinning algorithm for the binary image 
skeletonization.  The International Journal of High 
Performance Computing Applications, 14, No. 1, 
Spring 2000, pp. 65-81. 
Fortune S., 1987. A sweepline algorithm for Voronoi 
diagrams. Algorithmica, 2 (1987), pp. 153-174. 
Klein, R., Lingas, A., 1995. Fast skeleton construction. In 
Proc. 3
rd
 Europ. Symp. on Alg. (ESA’95), 1995.  
Lagno, D., Sobolev, A., 2001. Модифицированные 
алгоритмы  Форчуна  и  Ли  скелетизации 
многоугольной  фигуры. In Graphicon’2001, 
International Conference on computer graphics, 
Moscow, 2001 (in Russian). 
Lee, D., 1982. Medial axis transformation of a planar 
shape. IEEE Trans. Pat. Anal. Mach. Int. PAMI-4(4): 
363-369, 1982. 
Manzanera, A., Bernard, T.,  Preteux, F., Longuet, B., 
1999. Ultra-fast skeleton based on an isotropic fully 
parallel algorithm. Proc. of Discrete Geometry for 
Computer Imagery, 1999. 
Mestetskiy, L., 1998. Continuous skeleton of binary raster 
bitmap. In Graphicon’98, International Conference on 
computer graphics, Moscow, 1998 (in Russian). 
Mestetskiy, L., 2000. Fat curves and representation of 
planar figures. Computers & Graphics, vol.24, No. 1, 
2000, pp.9-21. 
Mestetskiy, L., 2006. Skeletonization of a multiply 
connected polygonal domain based on its boundary 
adjacent tree. In Siberian journal of numerical 
mathematics, vol.9, N 3, 2006, 299-314, (in Russian). 
Ogniewicz, R., Kubler, O., 1995. Hierarchic Voronoi 
Skeletons.  Pattern Recognition, vol. 28, no. 3, pp. 
343-359, 1995. 
Smith R., 1987. Computer processing of line images: A 
survey.  Pattern recognition, vol. 20, no.1, pp.7-15, 
1987. 
Srinivasan, V., Nackman, L., Tang, J., Meshkat, S., 1992. 
Automatic mesh generation using the symmetric axis 
transform of polygonal domains, Proc. of the IEEE, 80 
(9) (1992), pp. 1485–1501.  
Strzodka, R., Telea, A., 2004. Generalized Distance 
Transforms and Skeletons in Graphics Hardware. Joint 
EUROGRAPHICS – IEEE TCVG Symposium on 
Visualization (2004). 
Yap C., 1987. An O(n log n) algorithm for the Voronoi 
diagram of the set of simple curve segments. Discrete 
Comput. Geom., 2(1987), pp. 365-393. 
(a) 
(b) 
(c) 
(d) 
VISAPP 2008 - International Conference on Computer Vision Theory and Applications
258