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Abstract: In this paper we describe an adaptive approach for the classification of multichannel electrocorticogram 
(ECoG) recordings for a Brain Computer Interface. In particular the proposed approach implements a time-
frequency plane feature extraction strategy from multichannel ECoG signals by using a dual-tree 
undecimated wavelet packet transform. The dual-tree undecimated wavelet packet transform generates a 
redundant feature dictionary with different time-frequency resolutions. Rather than evaluating the individual 
discrimination performance of each electrode or candidate feature, the proposed approach implements a 
wrapper strategy to select a subset of features from the redundant structured dictionary by evaluating the 
classification performance of their combination. This enables the algorithm to optimally select the most 
informative features coming from different cortical areas and/or time frequency locations. We show 
experimental classification results on the ECoG data set of BCI competition 2005. The proposed approach 
achieved a classification accuracy of 93% by using only three features. 

1 INTRODUCTION 

Brain-computer interfaces (BCIs) use the electrical 
activity of the brain for communication and control. 
Since the muscles are bypassed, a BCI can be used 
by people with motor disabilities to interact with 
their environment. Electroencephalogram (EEG) is 
widely used in BCIs due to its non-invasiveness. 
However, the low signal to noise ratio (SNR) and 
spatial resolution of EEG limit its effectiveness in 
BCIs. On the other hand invasive methods such as 
single neuron recordings have higher spatial 
resolution and SNR.  However, they have clinical 
risks. Furthermore, maintaining long term reliable 
recording with implantable electrodes is difficult.  
On the other hand, an electrocorticogram (ECoG) 
has the ability to provide long term recordings from 
the surface of brain.  Furthermore, ECoG signals 
also provide information about oscillatory activities 
in the brain with a much higher bandwidth than EEG 
(Leuthardt 2004). Therefore, existing algorithms for 
EEG classification are readily applicable to ECoG 
processing. 
Various events in brain signals such as slow cortical 
potentials, motor imagery (MI) related sensorimotor 
rhythms, and visual evoked potentials were used in 
construction of ECoG based BCIs (Wolpaw 2000, 

Pfurtscheller 2001). In MI based BCIs, the subjects 
are asked to perform an imagined rehearsal of either 
hand/finger or foot movement without any muscular 
output. Related events in sensorimotor rhythms such 
as alpha (7-13Hz) and beta (16-32Hz) bands are 
processed to recognize the executed task using only 
brain waves. Several methods have been proposed to 
extract relevant features for BCI classification from 
rhythmic activities. Methods such as autoregressive 
modeling and sub band energies in predefined 
windows are widely used in single trial ECoG 
classification (Schlogl 1997, Prezenger 1999).  
When used with multi channel recordings, all of 
these methods need to deal with the high 
dimensionality of the data. Selecting the most 
informative electrodes and adapting to subject 
specific oscillatory patterns is critical for accurate 
classification. However, due to the lack of prior 
knowledge, selection of the most informative 
electrode locations can be difficult. Furthermore, it 
is well known that there exists a great deal of inter 
subject variability of EEG and ECoG patterns in 
spatial, temporal, and frequency domains (Ince 
2006, Ince 2007, Leuthardt 2004, Prutscheller 2001 
and Schlogl 1999). In (Ramoser 2000), the common 
spatial patterns (CSP) method was proposed to 
classify multichannel EEG recordings. The CSP 
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Figure 1: The block diagram of the proposed feature extraction and feature subset selection technique. 

method weighs each electrode location for 
classification and uses the correlation between 
channels to increase the SNR of the extracted 
features. Although the performance is increased with 
CSP, it has been shown that this method requires a 
number of electrodes to improve classification 
accuracy and that it is very sensitive to electrode 
montage. Furthermore, since it uses the variance of 
each channel, this method does not account for the 
spatiotemporal differences in distinct frequency 
subbands. Recently, time-frequency methods have 
been proposed as an alternative strategy for the 
extraction of MI related patterns in BCI’s (Wang 
2004, Ince2006 and Ince 2007). These methods 
utilized the entire time-frequency plane of each 
channel and integrate components with different 
temporal and spectral characteristics. Promising 
results were reported on well known data sets while 
classifying multichannel EEG. One of the main 
difficulties with these methods is once again dealing 
with the high dimensionality of the data collected. 
Furthermore, the adaptation to important patterns is 
implemented either by only accounting for the 
discrimination power of individual electrode 
locations or simultaneous processing of a large 
number of electrodes. 
In this paper we tackle these problems by 
implementing a spatially adapted time-frequency 
plane feature extraction and classification strategy. 
To our knowledge this is the first time that an 
approach implements a joint processing of ECoG 
features with different time and frequency resolution 
coming from distinct cortical areas for classification 
purposes. The algorithm proposed in this paper 
requires no prior knowledge of relevant time-
frequency indices and related cortical areas. In 
particular, as a first step, the proposed approach 
implements a time-frequency plane feature 

extraction strategy on each channel from 
multichannel ECoG signals by using a dual-tree 
undecimated wavelet packet transform (UDWT). 
The dual-tree undecimated wavelet packet transform 
forms a redundant, structured feature dictionary with 
different t-f resolutions. In the next step, this 
redundant dictionary is used for classification. 
Rather than evaluating the individual discrimination 
performance of each electrode or candidate feature, 
the proposed approach selects a subset of features 
from the redundant structured dictionary by 
evaluating the classification performance of their 
combination using a wrapper strategy. This enables 
the algorithm to optimally select the most 
discriminative features coming from different 
cortical areas and/or time-frequency locations. A 
block diagram summarizing the technical concept is 
given in Figure 1. In order to evaluate the efficiency 
of the proposed method we test it on the ECoG 
dataset of BCI competition 2005.  

The paper is organized as follows. In the next 
section we describe the extraction of structural time-
frequency features with dual-tree undecimated 
wavelet transform. In the following section we 
discuss available feature selection procedures and 
details of our proposed solutions. We describe the 
multichannel ECoG data in section 4. Finally we 
provide experimental results in section 5 and discuss 
our findings in section 6. 

2 FEATURE EXTRACTION 

Let us describe our feature dictionary and explain 
how it is computed from the wavelet-based dual-tree 
structure. A schematic diagram of the dual tree is 
shown in Figure 2. As indicated in the previous 
sections, the ECoG can be divided into several 
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Figure 2: This dual tree uses 1-level in both planes. Each 
node of the horizontal tree is a frequency subbands. Node 
{1,1} represents unfiltered original signal, node{2,1} 
represents low pass filtered signal and node {3,1} high 
pass filtered. Each of these subbands is segmented in time 
into 3 segments, as shown in the vertical tree. Segment 
{1,1},{2,1} and {3,1} covers the whole subband, segment. 
{1,2},{2,2} and {3,2} covers the first and segments with 
time indices three the second half of it. 
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Figure 3: The pyramidal undecimated wavelet tree. 

frequency subbands with distinct and subject 
depended characteristic. In order to extract 
information from these rhythms, we examine 
subbands of the ECoG signal by using an 
undecimated wavelet transform. In each subband, a 
second pyramidal tree is utilized to extract the time 
varying characteristics of the subband.  

2.1 Undecimated Wavelet Transform  

Discrete Wavelet Transform (DWT) and its variants 
have been extensively used in 1D and 2D signal 
analysis (Vetterli 2001). However, the 
downsampling operator at the outputs of each filter 
produces a shift variant decomposition. In practice, a 
shift in the signal is reflected by abrupt changes in 
the extracted expansion coefficients or related 
features. In (Unser 1995) the undecimated wavelet 
transform is proposed to extract subband energy 
features which are shift invariant. This is achieved 
by removing the downsampling operation. The 
output at any level of pyramidal filter bank is 
computed by using an appropriate filter which is 
derived by upsampling the basic filter.  
A filter g(n) with a z-transform G(z) that satisfies the 
quadrature mirror filter condition  

          1 1( ) ( ) ( ) ( ) 1G z G z G z G z− −+ − − =              (1) 

is used to construct the pyramidal filter bank (Figure 
3). The high-pass filter h(n) is obtained by shifting 

and modulating g(n). Specifically, the z transform of 
h(n) is chosen as 

                       1( ) ( ).H z zG z−= −                       (2) 

The subsequent filters in the filter bank are then 
generated by increasing the width of f(n) and g(n) at 
every step, e.g., 
 
              2

1( ) ( )
i

iG z G z+ =  

             2
1( ) ( )

i

iH z H z+ = , (i=0,1,. . . . ., N).       (3) 
 
In the signal domain, the filter generation can be 
expressed as 
 

1 2
( ) [ ] iig k g+ ↑

=  

                           1 2
( ) [ ] iih k h+ ↑

=                             (4) 

where the notation m↑[]  denotes the up-sampling 
operation by a factor of m. 
 The horizontal pyramidal tree of Fig.2 provides 
subband decomposition of the ECoG signal.  Next, 
we segment the signal in each subband with 
rectangular time windows. Such an approach will 
extract the temporal information in each subband. 
As in the frequency decomposition tree, every node 
of the frequency tree is segmented into time 
segments with a pyramidal tree structure. Each 
parent time window covers a space as the union of 
its children windows. In a given level, the length of 
a window is equal to L/2t where L is the length of 
signal and t denotes the level. The time segmentation 
explained above forms the second branch (vertical) 
of the double tree. After segmenting the signal in 
time and frequency, we retain the energy of each 
node of the dual-tree as a feature. By using a dual 
tree structure we could calculate a rich library of 
features describing the ECoG activities with several 
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spectro-temporal resolutions. From now on we keep 
the index information of the dual tree structure to be 
used in the later stage for dimension reduction via 
pruning. 

To summarize this section the reader is referred to 
the double tree structure in Fig. 2. Note that the dual 
tree structure satisfies two conditions: 
- For a given node in the frequency tree, the mother 
band covers the same frequency band width (BW) as 
the union of its children  

1 2( )Mother Child ChildBW BW BW⊃ ∪   (5) 

- This same condition is also satisfied along the time 
axis. For a given node, the number of time samples 
(TS) of the mother window is equal to that of the 
union of its children.  

1 2( )Mother Child ChildTS TS TS⊃ ∪   (6) 

These two properties allow us to prune the tree 
structure. When a particular feature index is 
selected, one can remove those indices from the dual 
tree structure that overlap in time and frequency 
with the selected index. Let T be the number of 
levels use to decompose the signal in time and F be 
the number levels use to decompose the signal in the 
frequency domain, there will be 2(F+1)-1 subbands 
(including the original signal) and 2(T+1)-1 time 
segments for each subband. This will make the total 
number of potential features NF=(2(F+1)-1)(2(T+1)-1). 

3 SUBSET SELECTION 

Calculating the dual-tree features for each electrode 
location forms a redundant feature dictionary. The 
redundancy comes from the dual tree structure. As 
explained in the previous section the dual tree has 
total NF=(2(F+1)-1)(2(T+1)-1) features for each signal 
where F is the total number of frequency levels and 
T the total number of time levels.  In a typical case, 
T=3, F=4 and over 64 electrodes are used resulting 
in a dictionary with around thirty thousand features. 
In such a high dimensional space (NF=29760) the 
classifier may easily go into over-learning and 
provide a lower generalization capability.  

Here, we incorporate the structural relationship 
between features in the dictionary and use several 
feature subset selection strategies to reduce the 
dimensionality of the feature set. Since the features 
are calculated in a tree structure, efficient algorithms 
were proposed in the past for dimensionality 
reduction. In (Saito 1996) a pruning approach was 
proposed which utilizes the relationship between the 
mother and children subspaces to decrease the 

dimensionality of the feature set. In particular, each 
tree is individually pruned from bottom to top by 
maximizing a distance function. The resulting 
features are sorted according to their discrimination 
power and the top subset is used for classification. 
Although such a filtering strategy with pruning will 
provide significant dimension reduction by keeping 
the most predictive features, it does not account for 
the interrelations between features in the final 
classification stage. Here, we reshape and combine 
the pruning procedure for feature selection with a 
wrapper strategy. In particular, we quantify the 
efficiency of each feature subset by evaluating its 
classification accuracy with a cost measure and we 
use this cost to reformulate our dictionary via 
pruning.  

Four different types of methods are considered 
for feature selection in this study. The structure in 
Figure 1 is general representation of each of the four 
methods. The left most box in Figure 1 is the rich 
time-frequency feature dictionary. On the right end a 
linear discriminant (LDA) is used both for 
classification and extracting the relationship among 
combinations of features. This output is fed to a cost 
function to measure the discrimination power for 
that combination of features. This measure will be 
used to select the best among all other feature 
combinations. Furthermore, depending on the 
selected feature index, a pruning operation will be 
implemented to reduce the dimensionality in the rich 
feature dictionary.  

In this particular study, the Fisher Discrimination 
(FD) criterion is used as a cost function.  

( )2

1 2
2 2
1 2

FD
μ μ
σ σ

−
=

+
.                    (7) 

The four different strategies mentioned above are: 
Sequential forward feature selection (SFFS), SFFS 
with pruning (SFFS-P), Cost function based pruning 
and feature Selection (CFS), and CFS with principal 
component analysis (PCA) post processing. 

3.1 Sequential Forward Feature 
Selection: SFFS 

The SFFS is a wrapper strategy which selects a 
subset of features one by one. A cost function is 
used on classifier output to measure the efficiency of 
each feature. By using LDA, the feature vectors are 
projected on a one dimensional space. Then the FD 
criterion was used to estimate the efficiency of the 
projection. After this search is done over all feature 
vectors, the best feature index is selected by 
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Figure 4: The 8x8 electrode grid was placed on the right 
hemisphere over the motor cortex (Modified from Lal
2005). For surface Laplacian derivation only marked 
electrodes are used. (b) The timing diagram of the 
experimental paradigm. The go cue for motor imagery is 
given at second one. A three second time window starting 
after 500ms of go cue is used to classify ECoG data. 

comparing the cost values of each feature vector. In 
the next step the feature vector which will do the 
best in combination with the first selected ones is 
identified by searching over the remaining feature 
vectors. This procedure is run until a desired number 
of features is reached. Note that SFFS uses all the 
boxes and connections in Figure 1 except for the 
feedback from the cost function to the dictionary. 
Since no dimension reduction is implemented on the 
entire feature space, this approach has high 
computational complexity. 

3.2 SFFS with Pruning: SFFS-P 

The SFFS-P is also a wrapper strategy with an 
additional pruning module for dimension reduction. 
Once a feature index is selected, the corresponding 
frequency tree and time tree indexes are calculated 
on the dual-tree. Then the nodes that overlap with 
the selected feature index in time and frequency are 
removed. Next, the feature which will do best in 
combination with the first selected feature is 
identified by searching the pruned dictionary.  In 
other words, the dictionary is pruned based on the 
last selected feature. This procedure is run until the 
desired number of features is reached. Therefore, the 
only difference between SFFS and SFFS-P is that 
pruning is done on the dictionary based on the 
selected features. This provides a fast decrease in the 
number of candidate features and complexity is 
much smaller than SFFS. 

3.3 Cost Function based Pruning and 
Feature Selection (CFS) 

The CFS is a filtering approach that uses the 
structure in the feature dictionary for pruning. After 
finalizing the pruning procedure for each electrode 
location, it uses a cost function to rank the features.  
In particular, it uses the FD criterion to rank the 
features. It does not use either the LDA or the 
feedback path in Figure 1. Instead, using the FD 
measure, a cost value is computed for each node on 
the double tree individually. Then a pruning 
algorithm is run on the double tree by keeping the 
nodes with maximum discrimination. Once a node is 
selected all nodes overlapping with the selected one 
are removed. This procedure is iterated until no 
pruning can be implemented. After pruning the dual-
trees for each electrode location, the resulting 
feature set is sorted according to their corresponding 
discrimination power and input to the classifier. In 
this way the most predictive features were entered to 
the classification module. Since no feedback is used 
from the classifier, the CFS has lower computational 
complexity than the other two methods.  

The CFS method works as a filter on the electrodes 
by only keeping those indices with maximum 
discrimination power. However, since features are 
evaluated according to their discrimination power 
individually, such a method does not account for the 
correlations between features. In (Ince 2006 and 
Ince 2007) PCA analysis is performed on a subset of 
top sorted features to obtain a decorrelated feature 
set. The PCA post processed features are sorted 
according to their corresponding eigenvalues in 
decreasing order and used in classification. Here we 
will also use the PCA as a post processing step with 
the CFS to obtain a deccorelated feature set. We will 
refer this method as CFS-PCA. 

4 MULTICHANNEL ECoG DATA 

In order to evaluate the performance of the proposed 
method we used the multichannel ECoG (Lal 2005) 
dataset of BCI competition 2005 
(ida.first.fraunhofer.de/projects/bci/competition_iii/) 
During the BCI experiment, a subject had to perform 
imagined movements of either the left small finger 
or the tongue. The ECoG data was recorded using an 
8x8 ECoG platinum electrode grid which was placed 
on the contralateral (right) motor cortex as shown in 
Figure 4. All recordings were performed with a 
sampling rate of 1000Hz. Every trial consisted of 
either an imagined tongue or an imagined finger 
movement and was recorded for 3 seconds duration. 
To avoid visually evoked potentials being reflected 
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Figure 6: Discriminant cortical areas (a) Laplacian (b) 
Monopolar. The number of selected features from 
different electrode locations in Laplacian derivation for 
SFFS-P (c) and for CSF(d) are given. The darker areas 
indicate a higher number of features are selected from 
these regions. Note that SFFS-P provides a balanced 
feature distribution. The CSF selected most of 27 features 
from the same region. 

 
Figure 5: The cross validation error curves for the 
different methods in the training data. 

by the data, the recording intervals started 0.5 
seconds after the visual cue had ended. Each channel 
was filtered with a low pass filter in 0-120Hz band. 
The filtered data was down sampled by a factor 4 to 
250Hz. Each trial was expanded from 750 samples 
into 768 samples by symmetric extension on the 
right side to enable segmentation in a pyramidal tree 
structure. Besides monopolar data, we also consider 
ECoG data that is processed using a surface 
Laplacian derivation. More specifically, each 
electrode data is subtracted from the weighted 
average of the surrounding 6 electrodes. The 
electrodes on the border are eliminated from the 
analysis resulting in a total of 36 electrodes (See 
Figure 4). For monopolar data all 64 electrodes were 
used for analysis. We used 278 trials for training and 
100 trials for testing. The training and test data were 
recorded from the same subject and with the same 
task, but on two different days with about 1 week in 
between. 

5 RESULTS 

To extract the dual tree features we select T=3 and 
F=4. For a 125 Hz bandwidth, the frequency tree 
provided around 8Hz resolution at the finest level.  
Along the time axis, the time resolution was 375ms. 
The 12 tap Daubechies filter (db6) was used in 
constructing the frequency tree of the UDWT. In 
order to learn the most discriminant time-frequency 
indices and the corresponding cortical areas we 
utilized a 10 times 10 fold cross validation in the 
training dataset. The optimal feature number at 
which the classification error is minimal is selected 
from the averaged cross validation error curves. 
Then, the learned feature indices are used in testing 
the classifier on the test set. The results obtained 
with the different methods are presented in Table.1. 

We note that the SFFS and SFFS-P provided the 
highest classification accuracy with only three 
features on the test set using the Laplacian 
derivation. Although a lower error rate was achieved 
by CFS with the training data, interestingly, the 
testing error rate of the CFS was higher than those of 
the other methods. We also note that a large number 
of features were used by CFS to achieve 9.9% error 
rate in the training set. In contrast, the SFFS and 
SFFS-P algorithms used only 3 features to achieve 
the minimum 10.2% error rate. The cross validation 
error curves versus the number of features are given 
in Figure 5. Since the results using Laplacian 
derivation outperformed those obtained with 

monopolar data, only the results corresponding to 
the former are provided. 
As can be seen clearly from these curves, SFFS and 
SFFS-P select the best combination of features and 
achieve the minimal error with only three features. 
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Table 1: The cross validation (CV) and test error rates of different methods and related number of features (NoF) used for 
final classification. 

  Training Test 
Method CV Error (%) NoF Error (%) 
SFFS 10.2 3 7 
SFFS-P 10.2 3 7 
CSF 9.9 27 18 

 
 
Laplacian 

CSF-PCA 9.6 11 8 
SFFS 12.6 3 20 
SFFS-P 10.3 4 9 
CSF 11.7 22 12 

 
Monopolar 

CSF-PCA 11.2 14 8 
 

Furthermore, using the structure of the feature 
dictionary, SFFS-P achieves this result with reduced 
complexity due to pruning. The pruning process 
provides a dimension reduction and feature 
decorrelation. CFS, on the other hand, achieves the 
minimal error using a large number of features. The 
interactions among the selected features cannot be 
taken into account with this approach. In addition 
the correlated neighbor areas may result in a 
duplication of information in the sorted features. In 
order to decorrelate the features a Principal 
Component Analysis (PCA) was employed on the 
CFS ordered features. This post processing step 
provided lower error rates than those achieved by 
CFS alone. The test error rate was 8% for the PCA 
post processed features. It should be noted here that 
CFS-PCA produced comparable results with those 
of SFFS and SFFS-P. However one should note that 
PCA induces an additional complexity.  This method 
requires all 32 features to be extracted from ECoG 
which leads to a much higher computational 
complexity compared to three features selected by 
SFFS and SFFS-P. 
Since the testing data was recorded on another date, 
the variability in the ECoG signal is expected. The 
results obtained indicate that the CFS algorithm is 
very sensitive to this type of variability. Although 
the cross validation error in the training set was low, 
the testing error rate was much higher compared to 
other methods. We believe that the correlated 
activity across cortical areas is an important reason 
why CFS selects the same information repeatedly. 
Since the SFFS and SFFS-P have the advantage of 
examining the interactions between different cortical 
areas and t-f locations, these subset selection 
algorithms can form a more effective subset of 
features for classification. In order to support our 
hypothesis we show the discriminatory cortical maps 
of monopolar and Laplacian derivations in Figure 6. 
In order to generate these images we used the most 

discriminant feature of each electrode location and 
produced an image over the 8x8 grid to present the 
distribution of the most discriminative locations. 
Furthermore, we mark the electrode locations 
selected by SFFS, SFFS-P, and CFS for 
classification. After inspecting Figure 6 (a) and (b) 
we noticed that a large number of neighbor electrode 
locations carry discriminant information. The CFS 
method used a large number of electrodes from this 
region for classification. In contrast, the SFFS and 
SFFS-P methods selected another cortical area from 
upper side of the grid. Even though this electrode 
location does not seem to be very discriminative, it 
played a key role in achieving a lower classification 
rate on the validation data. 

Since only three features are used by SFFS and 
SFFS-P, they are more robust to intra-subject 
variability of ECoG signals. Note also that the error 
rate in monopolar derivation is much higher than 
that of the Laplacian derivation. We observed large 
DC changes in ECoG signals in the test data set. 
Since the Laplacian derivation provides a 
differential operator, large baseline wanders 
affecting many electrodes are eliminated in this 
setup. However, for the monopolar recordings the 
features are very sensitive to this type of changes. 

Note also that the validation accuracy of SFFS 
and SFFS-P in the test set is higher than the cross 
validation accuracy. One of the underlying reasons 
could be that the subject can control his/her brain 
patterns with a higher accuracy with the increasing 
number of trials. In addition the SNR of the signals 
might have improved over time due to tissue 
electrode interaction. 

Finally, we compared our proposed method’s 
test result with those of achieved at the BCI 
competition in 2005 using the same ECoG data. The 
classification accuracies and methods used in each 
method are presented in Table 2. Our method 
achieved the best result of 7% error with both SFFS 
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Table 2: The comparison of the proposed method with the 
best three methods from the BCI 2005 competition. 

Features Used Classifier Error (%) 
UDWT based 
subband energies 

LDA 7 

Common Spatial 
Subspace 
Decomposition 

Linear SVM 9 

ICA combined with 
spectral power and 
AR coefficients 

Regularized 
logistic 

regression 

13 

Spectral power of 
manually selected 
channels 

Logistic 
regression 

14 

and SFFS-P methods. We note that our proposed 
approach has outperformed both CSP and AR model 
based techniques.  

6 CONCLUSIONS 

In this paper we proposed a new feature extraction 
and classification strategy for multi-channel ECoG 
recordings in a BCI task. Rather than using 
predefined frequency indices or manually selecting 
cortical areas, the algorithm implemented an 
automatic feature extraction and subset selection 
procedure over a redundant time-frequency feature 
dictionary. This feature dictionary was obtained by 
decomposing the ECoG signals into subbands with 
an undecimated wavelet transform and then 
segmenting each subbband in time successively. By 
combining a wrapper strategy with dictionary 
pruning, the method achieved 93% classification 
accuracy using only three features. The results we 
obtained show that the proposed method is a good 
candidate for the construction of an ECoG based 
invasive BCI system with very low computational 
complexity and high classification accuracy. 
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