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Abstract: In this article we compare the convergence rates at increase of the number of processed trials of the three meth-
ods applied nowadays in electroencephalography research to denoising of event-related potentials: traditional
averaging, weighted averaging, and ERPSUB. We derive the weighted averaging procedure by maximizing
signal-to-noise ratio in the averaged subject responses and show, thereby, that maximizing signal-to-noise ra-
tio criterion is equivalent to minimizing the originally proposed mean-square error criterion in the sense of the
weighted averaging problem solving. Moreover, in order to characterize fully the performance of the selected
methods, we compare also noise reduction rates in estimates of event-related potentials provided by methods,
while the number of processed trials increases.

1 INTRODUCTION Moreover, besides improving the reliability of the
estimates of ERP characteristics, it is also important
) o _ to shorten the experiment time, because subjects un-
Reliable characterization of event-related potentials der consideration suffer from the long time lasting ex-
(ERPs) is a central task in electroencephalographyperiments. They get tired, lose attention and can not
(EEG) data processing. ERP is a concept used inadequately perform the experimental tasks anymore.
EEG research to denote brain electromagnetic poten-ag 5 consequence, data become less informative from
tials occurring as responses to the external or men-the experimental design point of view. Furthermore,
many neuropsychological studies and clinical diagno- long experiments may be too demanding.
sis (Huttunen et al., 2007; Luu et al., 2004; Makeig

et al., 1999; Naatanen, 1992). However, the signal- Basically, we need less trials to shorten the time
to—n(;ise o (SNR) is’ very Ibw in a si;wgle mea- Of the experiment. Hence, our attention is focused on

surement (trial) of the brain response following the Methods, which extract useful information from EEG
stimulation event, which makes it impossible to iden- data more ef_fecnvely than_ the convent_lonal averag-
tify ERP characteristics, such as amplitude and la- N9 does. This allows obtaining the desired accuracy
tency, reliably. In order to increase SNR and, hence, of ERP chara_ctenstlcs using ft_ewer trials and, hence,
estimate reliably ERP characteristics, many trials of Shorter experiment. We consider two methods that
equal length and synchronized to the same event are/Vere developed to increase SNR n the SUbJe(.:t aver-
measured from different locations on the scalp (chan- 29€S @S compared to the conventional averaging pro-
nels) and averaged channel-wise (see Sect. 2). Aver-cedure: weighted averaging (Hoke et al., 1984) and
ages of many trials for every channel are assumed toERPSUB (lvannikov etal., 2007).

have high SNR and important ERP characteristicscan  An important assumption underlying the averag-
be identified then from the averages with the accuracy ing in electroencephalography research is the ergod-
depending on the number of trials used for averaging. icity of the noise. However, we should be realistic and
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understand that this assumption is violated to some2 PRELIMINARIES
extent in practical applications. This leads us to a

situation, when the variance of the noise is different |n this article we used EEG data that were introduced
across trials. It then turns out that SNR in the aver- and studied in (Huttunen et al., 2007) and (Kalyakin
aged responses can be boosted by weighting the tri-et al., 2007). The same data were utilized also for the
als inversely to the variance of the noise they contain. purposes of testing in (lvannikov et al., 2007). The
The formal derivation of this result was originally ob- data collection experimental design was targeted to
tained in (Hoke et al., 1984) by minimizing the mean- elicit mismatch negativity (MMN) component of au-
square error criterion. In (Davila and Mobin, 1992) a ditory ERP. In fact, MMN has turned out to be espe-
similar technique has also been derived by maximiz- cjally useful for the investigation of the brain basis of
ing SNR in the average using Rayleigh quotient and human auditory cognition (Naatanen, 1992).
solving the generalized eigenvalue problem. Later,  |nthe data collection experiments, the experimen-
in (Leski, 2002) robust version of weighted averag- ta| paradigm proposed in (Pihko et al., 1995) was
ing was proposed and further developed into com- ysed. It is based on a sequence of standard stim-
putationally more effective algorithm in (Leski and yjj consisting of continuously (uninterruptedly) alter-
Gacek, 2004). In this paper we obtain essentially nated sounds of 600 Hz and 800 Hz, each lasting 100
same result as in (Hoke et al., 1984) by maximiz- ms. Two types of deviant stimuli are randomly pre-
ing SNR criterion, but using different derivation pro- - sented in this sequence with the frequency of 600 Hz
cedure than that used in (Davila and Mobin, 1992) and duration of 30 ms or 50 ms. The measured trials
and show, thereby, that SNR criterion is equivalent contain 300 ms of recordings before the start of the
to the mean-square error criterion in the sense of the deviant tone and 350 ms after the start of the deviant
weighted averaging problem solving. tone. Measurements were collected with the sam-
ERPSUB method utilizes the problem specific as- pling rate 200 Hz, thus, giving 130 time points for
sumptions for ERP/noise linear subspaces separatioreach trial. There were 102 participants (or subjects)
in multichannel EEG data and results in more effec- jnyolved in the data collection experiment. Measure-
tive denoising of ERPs comparing to the conventional ments were recorded using 12-electrodes scheme re-
averaging (lvannikov et al., 2007). Method automat- gylting in 350 trials collected for each of 102 subjects,
ically solves the component classification problem each of the two deviants and each of the nine chan-
for a priori known dimensionality of ERP subspace. nels of EEG data (i.e., C3, C4, Cz, F3, F4, Fz, Pz,
Moreover, it contains also means for estimating the 1, M2) and the two channels of electrooculography
dimensionality of ERP subspace, if prior knowledge (EOG) data (i.e., ER, EL). An additional nose elec-
is absent, with the accuracy depending on the close-trode was used as a reference point.
ness of the data properties to the values provided by  \\e assume that each recorded t(t) contains
the ideal assumptions. _ \ _ both the weighted sum of the time-locked brain re-
Since we are interested in decreasing the experi-sponses (t) assumed to be deterministic through all
mental time (minimizing number of trials necessary trja|s and the weighted sum of the noise sourdgs),
for reliable ERP identification), in this paper we con- g,ch as spontaneous EEG and artifacts (Vigario,
centrate on and compare the convergence rates of ERR gg7: Jung et al., 2000). Noisa§(t) are assumed to
estimates provided by selected methods (traditional po ncorrelated with each other and vetit). Then,
averaging_ approach, weighted averagi_ng, .and ERP-\ithout loss of generality we can assume W)v
SUB), while the number of processed trials |ncreases.§((t), andnk(t) are zero mean variables, since data

i\i/lo%reo(?vt?]re’ '&;Ldoe(;st,o gxgr%;ggpﬁgegzgigﬁlgz always can be centered. Hence, the simplest additive
P ! PAre 1 odel to describe the phenomenon reads as

the noise reduction rates in ERP estimates for the

same conditions. _ o X (t) = (1) +nk(t), 1)
The structure of the work is as follows. First, in _

Sect. 2, we describe the experimental data and formu-wherei = 1,...,N,t =1,...,T, andk = 1,...,K. Here

late the research area. Then, in Sect. 3, the methoddN denotes the number of measured tridlsjs the

are discussed. Section 4 represents the experimentahumber of time points per trial, and denotes the
results. In Sect. 5, conclusions are drawn. number of measured channels. The conventional av-

eraging operation is performed for each channel sep-
arately and is described by formula:

N
MO=g S AO=F0 D, @
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wheres‘(t) is the time-locked ERP constituent (sig- and try to maximize its value in order to determine
nal of interest) andhﬁ (t) is the noise constituent in  the optimal values ad's. For this purpose, taking the
the average. The resulting average in (2) is assumed topartial derivatives ob2 ando? with respect taa;, we
have higher SNR than the single trial does that is con- have

firmed by practical experience and theoretical compu- 0 0% o2 N _ .
tations (Naatanen, 1992; Furst and Blau, 1991). da 205 J_Zlal’ vi<izN, (8)

2

%zzajcﬁi,v1§i§N. 9)
3 METHOD DESCRIPTION 0a;
Therefore, the partial derivative of SNR with respect

3.1 Weighted Averaging toa is given by

a0 200%

2
Y552 _ g
The variance of the sum of stochastic variables can OSNRi _ 93 %n~ 9 %q

,V1I<i<N.  (10)

be expressed through the formula 05 (02)?
) N N 5 Saddle points in the;'s coordinate space can be
o lei t) | = Zlﬁ (% (t))+2% Covj, (3)  found by equating the numerator of equation (10) to
i= i= i< zero assuming? # 0. Therefore, the problem can be

whereCovy; = E[x (1) (t)] denotes the covariance €XPressed through a system of equations

between the two zero mean stochastic variables or tri- 2¢N 2\ 62— 62(a02) =0
alsx; (t) andx; (t), ando denotes the standard devia- (03 zi=lal> On— 05(@0,) =0,
tion. To simplify the following discussion we omit the v1<i<N. (11)

channel index throughout the paper assuming that p ] o
all channels are treated in the similar way. Therefore, Subtracting any two equations in this system, we ob-
for the weighted sum/average of triafg ; ax; (t) tain

and taking into account that the covariance of the 05 = ajcﬁj,V1§ i,j <N. (12)
two perfectly linearly correlated signals equals to the _ @2 .
product of their standard deviations, we have Plugginga; = 2 a back to the system of equations

N (11),wegeta sylstem of identical equations after some
o2 (Zaixi (t)> = manipulations. Moreover, since the values of weight-
i= ing coefficientsa;’s were not fixed in this operation,
N N N-1 N they can be arbitrary within the constraint (12). This
Zla1.20§+ Zlaizcﬁi + 202 Zi a Y a, (4  means,inturn, that
1= 1= =

=I+1

‘ aio; =ajo5 =C,V1<i,j <N, (13)
whereaZ denotes the variance of the signal arfdis :
the variance of the noise irth trial. Then the portions ~ whereC can be any constant. Hence, the solution has
of the total variances2 and o2 that are contributed ~ a form

by the time-locked signals and noise sources, corre- a = %7 V1<i<N. (14)
spondingly, to the weighted sum (normal average in Opy;
cases; =, Vi =1,...,N) of N trials read as Itis easy to check that this extremum point is the max-
N imum by substitutingy = 0% +A,¥V1<i<Nin(11),
O'é — o'g ( a@) , (5) whereA > 0 is an infinitelylsmall shift.
i= Assuming SNR in a single trial is very low (this

follows from the magnitude level of the time-locked
2 2 ©6) sighal~ 3-54V compared to the magnitude level of

the trial itself ~ 50-10QV), we can disregard the
variance contributed by the time-locked signal to the
trial and approximate

i=
We define SNR in the weighted sumMftrials as
the variance of ERP constituent in this sum divided

by the variance of the noise constituent: cﬁi ~ 0)%. (15)
SNR; = o2 7 Thus, we can approximately compute the coefficients
T2 ) a;’s by arbitrarily fixingC constant first.

n
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Note that in (Hoke et al., 1984) the minimization with the static conditions matri& stays the same for
of the mean-square error leads to a single unique so-all trials within the experiment. Therefore, we are al-
lution, whereas in our case the maximization of SNR lowed to form a data matrix by concatenating matrices
yields an infinite set of solutions due to the arbitrary X; channel-wise:
choice ofC in (14). This result can be explained by (19)
the obvious reasoning that only the ratio betwagn
is emphasized by SNR criterion (the weighted sum WhereX = [X3 Xo ... Xy] is the matrix of con-
can be multiplied by any number keeping SNR on catenated measurements of sikex TN andY =
a same level), whereas the solution based on mini-[Y2 Y2 ... Yn]is the matrix of concatenated realiza-
mizing mean-square error criterion is associated with tions of the sources of the same size. Matrix equiva-
the original level of ERP signal and with the highest lentof (2) can now be written as
SNR as well. Hence, in order to correct the level of 1N 1N

ERP signal to original in the weighted average with

weighting coefficients fixed as in (14), whetds ar-

bitrary, we need to multiplyziN:laixi (t) by a correc- )

tion factora that eliminates uncertainty introduced by~ Furthermore, in the framework of the model (18)
it is assumed that ak measurements in every multi-
dimensional trialX; are linearly independent and the
number of sources does not exceed the number of

arbitrariness ofC. Apparentlya depends or€ and
channels. These assumptions are introduced to ensure

plays role of a constraint imposed @anda;’s that
specifies only single set af’s preserving the original

that measurements form the basis for the linear space
of the same dimension as sources do. This, in turn,

level of ERP signal in the weighted average. From (5)
guarantees the existence of the pure signal and noise

a is obviously expressed through the formula
1 1
02/02 shia subspaces in theory. Both assumptions are practically

addressed by reasonable selectioK@ndT param-

eters. Moreover, we assume that subspaces of ERP
signals and noise are statistically independent. The
imposed assumptions, except the one concerning the
linear independence of measurements, are rather strict
and can not be completely justified in practical ap-
plications. However, they are necessary on the stage
of the method development. In real situations one is
instructed to reinterpret the results of the method ac-
cording to the types and extent of the assumptions’
‘violations.

The main idea of ERPSUB is to use the relevant
information stored in data along all time, trial, and
channel dimensions, while separating ERP/noise sub-
spaces. In contrary, most of the Independent Com-
ponent Analysis (ICA) methods also applied in EEG
) data processing to ERP/noise sources separation ex-
In the contemporary research EEG data is often con- y i the information kept along the time and chan-
sidered in the scope of the linear instantaneous noise-q| dimensions only, whereas the trial dimension is
less mixing model, which is also assumed in this pa- ignored (Hyvarinen et al., 2001; Jung et al., 2000:
per: Vigario, 1997). Traditional averaging is one-channel
technique, and it exploits the information hidden in

X=A-Y,

(20)

o= (16)

After embedding the correction factarinto (14)
the final solution for the weighting coefficients be-
comes

N
a:o,;z/zogjz,v1gigN (17)
=1
that coincides with the results from (Hoke et al.,
1984). These values of the weighting coefficients are
unigue in the sense that they are connected to the orig
inal level of ERP signal and, thus, do not require mul-

tiplication by the correction factax, which equals to
1 in this case.

3.2 ERPSUB

X =AY, Vi=1,...,N, (18)

whereX; is a matrix of sizeK x T, which contains
measurements frol channels and one trial of length
T time points); is a matrix of size&K x T, which con-
tains the realizations df sources of lengtfl time
points, andA stands for the mixing matrix. It is as-
sumed that every row iX; has zero mean for alj i.e.

trial dimension only for ERP denoising. Weighted av-
eraging is also one-channel procedure, but it utilizes
the information taken from trial and time dimensions
for the purposes of ERP denoising. ERPSUB exploits
the fact that after the averaging the variance of data
should decrease along the directions in the noise sub-

the data are centered. In addition we assume that thespace, while the variance along the signal directions
mixing matrix A does not change in time. Practically should stay on the original level in ideal conditions.
it means that for one subject during one experiment This means that after whitening, which should make
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Figure 1: The averaged over 102 subjects MSD tracks provigedaditional averaging, weighted averaging and ERPSUB

(nine EEG channels, 30ms deviant, logarithmic scale).

subspaces orthogonal and standardize the data to SimERPSUB:

ilar variances along all directions, and averaging ERP 1 \wniten the centered concatenated data:
components should have the largest variances in con-
trary to the noise components, and, hence, subspaces

can be extracted by standard linear Principal Com-
ponent Analysis (PCA) algorithm (Hyvarinen et al.,
2001; Oja, 1992). In practice, however, the variance

of data most likely will reduce along all directions af-

ter the averaging, because subspaces are overlapped?-

and additive noise is always present, and, thus, pure
signal/noise subspaces do not exist. In this case the

results are interpreted in terms of SNR: higher SNR 3.
is obtained in data projected to the directions describ-
ing larger data variations after whitening and aver-
aging. Thus, practically, we intend to separate the

subspace of dimensioNgrp having maximal possi-
ble SNR from the subspace of dimensikin- Negrp

with the minimal possible SNR. As one can see, ERP-

SUB is based on a sequence of linear transformations

applied in a problem-specific manner to multidimen-
sional EEG data and results in effective denoising of

ERP signals (lvannikov et al., 2007).

Z=DY2AWTX, (21)

where matrice® andW are taken from the eigen-
value decompositioe = W DW' of the estimated
covariance matriz = XX /(TN —1).

Average the whitened data:

Z=DY2W'X. (22)

Apply the standard linear PCA to the averaged
whitened data

VIERP = ANERPV_VTD_l/Z\NTYa (23)

where matrixW' is obtained from the eigenvalue
decompositioZ' /(T — 1) = WDW' andAng,

is the diagonal projection matrix having ones on
Nerp first diagonal elements corresponding to the
components contributing energy to ERP (maximal
SNR) subspace and zeros otherwise. Hiskg:p

is the amount of assumed ERP sources present in
EEG measurements. In practice, when pure sig-
nal/noise subspaces do not exNtrp has differ-

ent meaning interpreted in terms of SNR. In this
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Figure 2: The averaged over 102 subjects tracks of the rémgaioise variance in ERP estimates provided by traditional
averaging, weighted averaging and ERPSUB (nine EEG chsyB@ins deviant, logarithmic scale).

caseNerp is the amount of the components hav- noise:

ing largest SNR, which in our opinion describe Xerp =W DY WY grp. (25)
ERP and noise variations in channels in propor-
tions providing suitable SNR and tolerable ERP
energy loss. Henc&grp is a matrix of the av-
eraged components, where all components from XerA :WDl/ZV_VYéRH. (26)
noise (minimal SNR) subspace are zeroed. Note

that ERP components have the largest correspond-

ing eigenvalues and, thus, the component classi-

fication problem is solved automatically for fixed 4 EXPERIMENTAL RESULTS

Nerp- In addition, if the difference between eigen- ) ) ) ) ) _
value providing optimal separation of the compo- 1S h|g_hly sensitive to the trials hav!ng s_mall portions
nents into subspaces in the sense of SNR and gRpOf variance concentrated on short time intervals. Gen-
X; can be decomposed into the components usi,«,gtion and are usually recorded at the saturation state of

A similar relation applies also to a single trial de-
noising:

the same transformation as in (23): the amplifier, when parts of the trials are truncated re-
. sulting in peaks alternating with flat periods. Satura-
Yire = DneeW D Y2WTX, (24) tion state occurs, when signal exceeds the dynamical

range of the amplifier. The weighting coefficieats
4. The matrix\_('ERp containing only averaged com- assigned for such trials are very large following the al-
ponents related to ERP subspace is then trans-gorithm. As a consequence, when trials are weighted,
formed back to the original data space (channels) peaks in truncated trials become very strong against
to result in the subject average with the reduced a background of other trials’ amplitude resulting in a
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high frequency noise in the averaged signal. To an- filtered trials are affected, when new trial is added to
nul the harmful consequences introduced by the trun- processing, the difference between the two adjacent
cated trials we performed the trial rejection procedure ERP estimates becomes more significant.

for our data before doing the computations. The suc-
cessful upper limit of the trial's variance for the trial
removal was 3QV2, which finally rejected all trun-
cated trials in our database.

Therefore, in order to have a complete and fair
comparative picture of the methods’ performance, we
also computed averaged over 102 subjects remaining
noise variances in ERP estimates obtained under the

Apparently, for our problem the converged ERP same conditions as used in the first test (see Fig. 2).
estimate (subject average) is indicated by only in- We used the following estimate of the noise variance
significant change introduced by the consequent trial. in the averaged brain responses taken from (van de
We measure the amount of change between the twoVelde, 2000):
subsequent ERP estimates in one channel for method 1N .

LABEL by MSD score: G2LABEL _ Var{ﬁ Z(,l)' XABEL (1 (27)
1=

wLABEL

LABEL
AN-1

wherex; (t) is the modified trialx; (t) obtained
after application of method LABEL, angg “ABEL s
the estimate of the remaining noise variance in ERP
estimate obtained after application of method LABEL
involving N trials. For instancex!"A (t) = &x; (t),
whered; is computed as in (17) replacingg with
he approximation from (15) for all=1,...,N; and

1 T
LABEL _ — wLABEL o 2
MSDRSEL = £ 5 (xK2EL (1) )

wherext BEL (t) denotes ERP estimate obtained after
application of a particular method LABEL involving
N trials. Thus, for example, for ERPSUBRPSUR)
equals to a row in the matrix of averaged filtered chan- ¢
Poilf,v)éfgﬁtggr;ii?ggiilgﬁAtg)th:e;g\? ?;‘ii;‘;’dﬁﬁ;ﬁnel' x-RPSUB(t) equals to a row in the matrix of filtered
a's are computed as in (17) substituting approxima- trial _XERH corresponding to the considered channel.
tion from (15) foroﬁi foralli=1,...,N. To compare In this test the performance order of the methods ap-

the convergence rates of ERP estimates provided bypgared to be fjifferent: ERPSUB has shown now the
methods under consideration at increase of the num-fnighest effectiveness in the sense of the noise reduc-

ber of processed trials, we computed averaged overtion rate, since the remaining noise variance in ERP
102 subjects MSD values fod = 1 350 (MSD estimate provided by ERPSUB, in general, decreased
tracks) for each method (see Figj“is. We did this faster than for other methods at increase of the num-

for the nine EEG channels and for 30ms deviant only, ber of processed trials. This outstand_ing performance
where ERP appeared to be the strongest. The valuet@" be explained here by the algorithmic nature of
of Nerp parameter of ERPSUB method was set to 3, ERPSUB, which simultaneously operates through all

that is, a good choice of maximal SNR subspace di- time, trial, and channel dimensions that allows more
mensié)n for our data, because signal loss is insignif- efficient extraction of the information discriminating

icant and noise reduction is sufficiently high result- ERP and noise from data. The conventional averag-

ing in essential SNR increase (Ivannikov et al., 2007). N9 has shown the lowest noise reduction rate in ERP
According to the obtained results, the weighted av- €Stimate following the results of the test.

eraging procedure outperforms both the traditional

averaging scheme and ERPSUB algorithm, because

MSD provided by weighted averaging, in general,de- 5 CONCLUSIONS

creases faster than for other methods at increase of

the number of processed trials. The superiority of the In this article we compared the performance of the
weighted averaging here is probably a consequence ofthree methods used nowadays in EEG research for
the core idea underlying the method. Weighted aver- ERP denoising: conventional averaging, weighted av-
aging is designed in a way that trials are 'equalized’ eraging and ERPSUB. For this purpose we carried out
in the sense of the variance. This should make the two tests investigating the convergence and the noise
convergence of the ERP estimate smoother and fasterreduction rates in ERP estimates provided by the se-
Although application of ERPSUB should result in lected methods at increase of the number of processed
higher noise reduction rate than the conventional av- trials. The convergencerate of ERP estimate appeared
erage provides (lvannikov et al., 2007), ERPSUB to be the highest for the weighted averaging technique
has shown the lowest convergence rate of MSD to and the lowest for ERPSUB. However, ERPSUB has
zero. Most likely this happens, because new-coming shown stronger noise reduction power than the tra-
trial influences the denoising of all previous trials by ditional and weighted averaging methods have. The
changing the projection axes. Since the shapes of allnoise reduction rate in ERP estimate provided by the
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traditional averaging was the poorest among testedKalyakin, |., Gonzalez, N., Joutsensalo, J., Huttunen, T.

methods.

The paper touches practical issues the neuropsy-
chology researchers are faced with during EEG/ERP
data processing and analyzing. Namely, it points out
the bottlenecks of the traditional averaging technique
used for the time-locked brain responses denoising.
The roots of these bottlenecks are connected to the
violation of the assumptions underlying the averag-
ing in real applications and insufficiently powerful
'decoding’ of the relevant information ’encrypted’ in
the data. The weighted averaging method addresses
the bottlenecks, which arise due to the violation of
the assumptions underlying traditional averaging. We
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