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Abstract: This paper presents our investigations towards a non-invasive custom-built thought-to-speech converter that 
decodes mental tasks into morse code, text and then speech. The proposed system is aimed primarily at 
people who have lost their ability to communicate via conventional means. The investigations presented 
here are part of our greater search for an appropriate set of features, classifiers and mental tasks that would 
maximise classification accuracy in such a system. Here Autoregressive (AR) coefficients and Power 
Spectral Density (PSD) features have been classified using a Support Vector Machine (SVM). The 
classification accuracy was higher with AR features compared to PSD. In addition, the use of an SVM to 
classify the AR coefficients increased the classification rate by up to 16.3% compared to that reported in 
different work, where other classifiers were used. It was also observed that the combination of mental tasks 
for which highest classification was obtained varied from subject to subject; hence the mental tasks to be 
used should be carefully chosen to match each subject.   

1 INTRODUCTION 

The development of techniques that offer alternative 
ways of communication by bypassing conventional 
means is an important and welcome advancement 
for improving quality of life. This is especially 
desirable in cases where the conventional means of 
communication, such as speech, is impaired. We 
envisage the development of a simple and wearable 
system that communicates by converting thoughts 
into speech via morse code and a text-to-speech 
converter.  

In this paper we present preliminary 
investigations towards the development of such a 
system. The investigations form part of our search 
for features, classifiers and mental tasks that are 
appropriate for utilisation in our system. In 
particular, we compare the classification accuracy 
obtained between combinations of mental task pairs 
when (i) autoregressive (AR) coefficients and Power 
Spectral Density (PSD) values are utilised as 
features; and (ii) Support Vector Machine (SVM),  
Linear Discriminant Analysis (LDA) and Neural 
Network (NN) are utilised as classifiers. Our 
investigations suggest that the combination of AR 
coefficients and SVM is more appropriate for our 
application, as an increase in classification accuracy 

ranging from 8.2-16.3% has been observed 
compared to classification of the same features using 
LDA and NN. 

The paper is organised as follows. Section 2 
provides a background into communication via 
thoughts and how morse code has been utilised for 
this purpose so far. This is followed by section 3 
where a description of the system envisaged, the 
objectives that motivated these preliminary 
investigations and a description of the methods 
utilised are provided. The findings are presented in 
section 4 followed by a discussion towards how 
these could be interpreted and understood as part of 
the proposed system. The main conclusions and 
plans for future work emerging from these 
investigations are outlined in section 5.  

2 BACKGROUND 

A number of conditions, such as amyotrophic lateral 
sclerosis, strokes and speech impairment, affect the 
ability to communicate with the environment 
through speech. The problem becomes more severe 
when limb or muscle control is also affected, since 
other means of communication e.g. typing, are 
eliminated. An alternative method of communication 
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is achieved by utilising brain activity as an input 
signal to a device for spelling purposes (brain-
computer interface, BCI). A BCI is “a 
communication system that does not depend on the 
brain’s normal output pathways of peripheral nerves 
and muscles” (Wolpaw et al., 2000). This 
technology is primarily aimed at people who have 
lost conventional means of communication, but 
whose brain function remains intact.  

Current BCI applications are limited by the 
trade-off between speed and accuracy. Thus, the 
most common application still remains 1-
dimensional cursor movement on a computer screen, 
which offers the ability to communicate with the 
environment when teamed with a “virtual 
keyboard”. Communication can be achieved by 
mentally controlling cursor movement on the screen 
for choosing letters on a “virtual keyboard” 
(Wolpaw et al, 2002) or to highlight the desired 
character from a scrolling list (Scherer et al., 2004). 
Different mental tasks are associated with left/right 
and/or up/down cursor movement, thus allowing the 
subject to pick characters and spell words. Despite 
the simplicity of these applications, current BCI 
systems are faced with som: (i) 25 bits/min is the 
maximum speed of communication reported 
(Vaughan et al., 2003). If we consider a character 
with 8 bit resolution this is equivalent to 3.13 
chars/min, which is not acceptable for normal 
speech; and (ii) current systems are bulky and non 
portable. It is envisaged that the development of 
custom-built hardware as part of the proposed 
system will provide a solution to both these issues. 
In addition, these can be aided if the “virtual 
keyboard” is substituted by a simplified set of 
characters whose choice is directly associated with 
particular mental tasks, thus eliminating the 
intermediate step of cursor movement. 

Such a potential simplification could be achieved 
via the use of Morse Code (MC), which has already 
been utilised for communication for disabled people. 
In MC transmission of information is based on short 
and long elements of sound (dots and dashes) and 
was originally created for telegraph communication. 
The elegance of MC lays in its simplicity and the 
high speech reception and transmission rates. A 
skilled MC operator can receive MC in excess of 40 
words per minute (Coe, 2003). The world record for 
understanding MC was set in 1939 and still stands at 
75 words per minute (French, 1993).  Utilisation of 
MC for the disabled is commonly based on some 
form of muscle movement, such as operating a 

switch (Park et al, 1999) or a sip-puff straw (Levine 
et al., 1986). However, certain disabilities affect 
muscle movement, but even if not, then such 
systems are difficult to operate on a daily basis as 
they cause fatigue.  

The use of MC for directly translating thoughts 
into words has been considered in very few BCI 
systems, mainly as an extension to traditional BCI 
communication methods. In (Palaniappan, 2005) the 
“virtual keyboard” was substituted with the two MC 
elements, “.” and “-”, and the user chose through 
mentally controlling cursor movement. Another 
MC-BCI system is described in (Altschuler and 
Dowla, 1998) based on the attenuation of power in 
the μ band (8-13Hz) during motor imagery, whose 
duration corresponds either to a “.”or a “-” (shorter 
or longer motor imagery duration respectively). 
Spelling is achieved by interchanging motor imagery 
with baseline task (representing a “pause”). In 
addition, (Huan and Palaniappan, 2004) showed how 
communication in a BCI system could conceptually 
be achieved via a tri-state MC scheme and utilising a 
fuzzy ARTMAP as classifier. In such a system a “.”, 
a “-” or a “space” would be represented by 3 mental 
tasks and the continuous EEG would be sampled 
every, e.g., 0.5s, for decision making. In (Huan and 
Palaniappan, 2002) it is stated that the conversion of 
a mental task into one of the 3 MC elements would 
take 6ms of computation time; however this heavily 
depends on a number of operating system factors.  

The concept behind the latter two systems is 
closer to the concept of the proposed system, as the 
intermediate step of cursor movement is eliminated. 
The use of MC is advantageous as it simplifies the 
dictionary to 3 symbols, the choice of which will be 
achieved through 2 mental tasks. This reduces the 
system complexity and improves communication 
speed. Hence, we envisage the development of a 
portable, embedded, custom and wearable MC-based 
BCI system that could be used either as an assistive 
or as an enhancing communication aid. 

3 PERFORMANCE 
OPTIMISATION 

The proposed system is shown in figure 1 and 
consists of 4 parts: (1) EEG signals are recorded 
from a patient performing two mental tasks, each 
corresponding to either a “.” and “-” (depending on 
the task duration) or a “pause”. The patient is 
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Figure 1: The proposed MC-BCI system. 

mentally spelling letters and words in MC; (2) 
windows of specified duration of the recordings are 
processed and classified as “.”, “-” or “pause”; (3) 
MC is then converted into text, which is in turn 
converted to speech via a text-to-speech converter 
(4). At this stage our priority is to maximise correct 
interpretation of EEG data. Computational 
efficiency is not a key consideration as we will be 
designing custom hardware tailored to the chosen 
processing methods. Therefore, it is imperative to 
firstly converge on a particular combination of 
signal processing methods that could be used 
reliably in the proposed system. The preliminary 
investigations presented in this paper are associated 
with part 2 of the proposed system and are part of 
our greater search for the optimal combination of 
features and classifiers.  

3.1 Methods 

3.1.1 Feature extraction 

AR models are commonly utilised in EEG analysis 
(Wright et al., 1990). More specifically, the 
estimated AR coefficients have been shown to 
capture well the differences between various mental 
tasks, and as a result are frequently used as features 
in mental task classification and BCIs (Guger et al., 
2000). Eq. 1, 
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represents an AR(p) model where p is the model 
order, xt is the time series to be modelled, aτ, 
τ=1,…,p are the estimated coefficients of the pth-
order AR model and εt is zero-mean random noise 
(commonly Gaussian with unit variance). In EEG 
analysis an AR(p) is fitted to the data and the pth 
dimensional vector of estimated coefficients 
represents the different mental tasks, as a variation 
of the coefficients depending on the mental task is 
observed. The AR model order used in EEG analysis 

ranges from 5 up to 13 (Lopes daSilva, 1998). For 
the specific dataset used here an order of 6 was 
chosen as suggested in (Keirn and Aunon, 1990). 
Estimation of the coefficients is possile via a number 
of ways – here we used the method of Least Squares. 

The second set of features utilised is PSD values 
obtained via parametric spectral analysis. In 
particular an AR(p) model (here p=6) is first fitted 
on the data and the power spectrum is subsequently 
obtained from the estimated coefficients via 
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where ak, k=1,…,p are the estimated coefficients, f is 

a vector of chosen frequencies, 2ˆ
p

σ  is the estimated 

noise variance and N is the number of samples. The 
advantage of parametric methods for spectrum 
estimation is the ability to specify a set of 
frequencies of interest over which the spectrum is 
estimated.  

3.1.2 Classification 

The choice of the classifier should have little effect 
on the classification rate if the chosen features are 
good representations of the data to be classified. 
Given that the features capture the data 
characteristics well, then classification becomes an 
easier problem. However, the properties of the 
classifier must be well-matched to the feature 
dimensionality or separability (linear or non-linear). 
The problem of choosing a classifier is enhanced if 
the feature dimensionality is high, as this does not 
allow the visualisation of the features and, 
consequently, whether they are linearly separable or 
not.  

SVMs offer a solution to this issue, as both 
linear and non-linear classification can be obtained 
simply by changing the “kernel” function utilised 
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(Burges, 1998). Due to the fairly new development 
of SVMs they are not commonly utilised in BCI 
systems (see (Gysels and Celka, 2004) for an 
example). Thus, their performance for mental task 
classification has not been widely assessed and their 
application in such systems can be considered novel.  

SVMs belong to the family of kernel based 
classifiers. The main concept of SVMs is to 
implicitly map the data into the feature space where 
a hyperplane (decision boundary) separating the 
classes may exist. This implicit mapping is achieved 
via the use of Kernels, which are functions that 
return the scalar product in the feature space by 
performing calculations in the data space. The 
simplest case is a linear SVM trained to classify 
linearly separable data. After re-normalisation, the 
training data, { }ii yx ,  for i=1, …, m and 

{ }1,1−∈iy , must satisfy the constraints  
 

1for      1 +=+≥+ iybiwx  (3)

1for      1 −=−≤+ iybiwx
 

(4)

 
where w is a vector containing the hyperplane 
parameters and b is an offset. The points for which 
the equalities in the above equations hold have the 
smallest distance to the decision boundary and they 
are called the support vectors. The distance between 
the two parallel hyperplanes on which the support 
vectors for the respective classes lie is called the 
margin. Thus, the SVM finds a decision boundary 
that maximises the margin. Finding the decision 
boundary then becomes a constrained optimization 

problem amounting to minimisation of 
2w subject 

to the constraints in (3) and (4) and is solved using 
Lagrange optimisation framework. The general 
solution is given by 

 
∑=
i iii xxyxf ,)( α  (5)

In the case of non-linear classification, Kernels 
(functions of varying shapes, e.g. polynomial or 
Radial Basis Function) are used to map the data into 
a higher dimensional feature space in which a linear 
separating hyperplane could be found. The general 
solution is then of the form: 

 
∑=
i iii xxKyxf ,)( α  (6)

Depending on the choice of the Kernel function 
SVMs can provide both linear and non-linear 
classification, hence a direct comparison between 

the two can be made without having to resort to 
utilisation of different classifiers.  

3.1.3 Data 

At this stage we utilise EEG data that is available 
online. The dataset chosen is well-known and has 
been used in various BCI applications. It contains 
EEG signals recorded by Keirn and Aunon during 5 
mental tasks and is available from (http://www.cs 
.colostate.edu/~anderson). Each mental task lasted 
10s and subjects participated in recordings over 5 
trials and a number of sessions (subjects 2 and 7 
participated in 1 session, subject 5 in 3 and subjects 
1, 3, 4 and 6 in 2). The data was recorded with a 
sampling rate of 250Hz from 6 EEG electrodes 
placed at locations C3, C4, P3, P4 and O1 (more 
details on the recording protocol can be found in 
(Keirn and Aunon, 1990)). The 5 mental tasks are: 
(1) Baseline: subjects are relaxed and should be 
thinking of nothing particular; (2) Multiplication: 
subjects are asked to perform non-trivial mental 
multiplication problems; it is highly likely that a 
solution was not arrived at by the end of the 
allocated recording time; (3) Rotation: a 3-
dimensional geometric figure is shown on the screen 
for 30s, after which the subjects are asked to 
mentally rotate the figure about an axis; (4) Letter 
composition: subjects are asked to mentally 
compose a letter, continuing its composition from 
where it was left off at the end of each trial; and (5) 
Counting: subjects are asked to count sequentially 
by imagining the numbers being written on a 
blackboard and rubbed off before the next number is 
written. In each trial counting resumes from where it 
was left off in the previous trial. 

This dataset has been chosen for two reasons. 
Firstly, it contains recordings from mental tasks that 
are traditionally associated with BCI systems. 
Secondly, it allows the investigation of a large 
combination of mental task pairs as it contains 
recordings from 5 different tasks – this will allow us 
to identify whether the choice of tasks depends on 
the subject and whether other non-traditional tasks 
should also be investigated. In addition, a third good 
reason is that it allows direct comparison with 
results from the literature. 

4 RESULTS 

To allow a direct comparison of the results with 
those presented in (Huan and Palaniappan, 2004), 
we used data from 2 sessions and 4 subjects 
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(subjects 1, 3, 5 and 6). The data was split in non-
overlapping segments of 0.5s duration, resulting in 
200 segments per task per subject, over 2 sessions. 
The SVM classification rate was averaged over 10 
trials, where in each trial a randomly chosen set of 
100 segments was used for training, with the 
remaining segments used for testing. All 10 pair 
combinations of the 5 mental tasks were classified 
and the pair of tasks with the maximum average 
classification rate for each subject was identified. 
The average classification rate was estimated as 
(TP1+TP2)/2, where TPi (true positive) is the number 
of segments classified correctly for mental task i. 
The feature vectors describing each 0.5s segment are 
36-dimensional in the AR(6) case and 300-
dimensional in the PSD values case (6 AR 
coefficients and 50 PSD values per electrode; the 
final feature vectors consisted of the concatenated 
AR coefficients and PSD values for all electrodes 
respectively).  

The classification results for the AR(6) features 
are presented in table 1. It can be seen that the 
choice of classifier had a positive effect on the 
classification accuracy. The use of an SVM 
increased the accuracy by up to nearly 13% 
compared to that obtained for the same features 
using LDA and by up to 16.3% using an NN (see 
table 2 for details), as presented in (Huan and 
Palaniappan, 2004). In theory, the choice of 
classifier has a smaller effect on the classification 
rate if the features utilised represent the data well. 
Nonetheless, the use of an SVM with RBF Kernel 
increases the classification rate by a large margin 
and, hence these results indicate that the use of an 
SVM is more appropriate for these features. In 
addition, the pair of tasks which provided the highest 
average classification was different than the 
equivalent pair from (Huan and Palaniappan, 2004). 
However, it was also observed that the task pair 
which gave highest average classification varied 
with each subject, in agreement with (Huan and 
Palaniappan, 2004). Hence a particular task pair for 
which optimal operation can be obtained should be 
identified for each subject. In addition, performance 
could be improved if the tasks utilised had a more 
intuitive connection with the way of thinking 
associated with MC.  

The classification rates for the PSD features are 
presented in table 3. The rates obtained are much 
lower than the ones reported in (Palaniappan et al., 
2002). This could be attributed to three reasons. 
Firstly, in this work classification between pairs of 
tasks was obtained as opposed to between 3 tasks as  
in   (Palaniappan et al., 2002)  hence  a  direct  

comparison is not appropriate. Secondly, the PSD 
features are already of high dimension (300-
dimensional) and an SVM may not be appropriate 
for classification when the feature space is already 
of high dimension. Thirdly, the classification rates 
presented  in  (Palaniappan   et  al.,    2002)    were 
averaged for a single training set whose ordering of 
the training patterns was randomly varied 10 times, 
hence the high classification rate reported may have 
been a side-effect of the particular choice of training 
set. In addition, another issue with utilisation of PSD 
values as features is the partial spectrum overlarp of 
certain artefacts (such as eye movements) with EEG 
activity, which can potentially adversely affect the 
classification rate.  

Table 1: Maximum average classification rate (%) for 
AR(6) features with SVM. Results presented are averaged 
over 10 trials. 

Subj. Class. 
Rate 

Tasks Kernel 

1 88.4 Letter vs 
multiplication 

RBF 

3 87.9 Letter vs 
counting 

RBF 

5 83.9 Roration vs 
counting 

RBF 

6 92.4 Counting vs 
multiplication 

Linear 

Table 2: Maximum average classification rate (%) for 
AR(6) features. Column 2 presents our results, while 
columns 3 and 4 give the best rates presented in (Huan and 
Palaniappan, 2004) for LDA and NN. 

Subj. SVM LDA NN 
1 88.4 80.2 78.9 
3 87.9 73.6 73.9 
5 83.9 71.4 67.6 
6 92.4 84.3 77.6 

Table 3: Maximum average classification rate (%) for 
power spectrum values with SVM. Results presented are 
averaged over 10 trials.  

Subj. Class. 
Rate 

Tasks Kernel 

1 58.0 Letter vs 
multiplication 

RBF 

3 56.6 Letter vs 
counting 

RBF 

5 68.0 Roration vs 
counting 

RBF 

6 60.2 Counting vs 
multiplication 

Polyno-
mial 

The feature vectors were created by 
concatenating the estimated AR coefficients from all 
6 electrodes. However, the wearability and 
portability of an MC-based BCI is facilitated by 
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employing a small number of electrodes –ideally 
two, or even a single, electrode(s). It may be 
possible to obtain higher classification rates by 
utilising a single electrode that is more relevant to 
the specific mental task rather than using a 
combination of electrodes, all of which are not as 
relevant to the task. This is also advantageous as it 
decreases the feature dimensionality. 

5 CONCLUSIONS 

This paper presents the results of initial 
investigations in the search for appropriate features 
and classifier towards the development of a thought-
to-speech converter. The results indicate that the use 
of an SVM for the classification of AR coefficients 
is more appropriate than LDA and NN and will be 
utilised in the development of the proposed system.  

The proposed system is promising as it offers the 
ability to communicate more efficiently via direct 
conversion of thoughts into speech. In order to 
ensure optimal operation other aspects of the system 
must also be investigated. Firstly, a more extensive 
set of features and classifiers will be examined such 
that the optimal combination in terms of maximising 
accuracy is determined – computational efficiency is 
not a consideration as the system will be customised 
and capable of parallel processing. Secondly, these 
investigations suggest that different combinations of 
mental tasks seem to be more appropriate for 
different subjects. We are going to look into finding 
a combination of tasks that are more intuitive and 
more closely related to the concept of MC, as this 
could improve classification accuracy and facilitate 
easier operation.  
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