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Abstract: Due to the increasing prices of medical care, and especially due to cardiovascular injury; scientists are 
looking for inexpensive and less invasive ways to diagnose myocardial ischemia. Many studies have shown 
that the variations of the ST-segment in the ECG signal are an indicator for ischemia. For this purpose, this 
work proposes an approach based on a heart cell group model and principle component analysis, using a 
decision tree classifier to differentiate between the ischemic and healthy beats. The cardiac based model is 
based on a physiological model of the electrical cycle of depolarization and repolarization of the atria and 
ventricles. The model parameters are estimated by minimizing the squared error between the generated 
signal and the recorded ECG. The approach is applied to beats from the Long-Term ST database, which 
consists of 86 subjects and more than 20,000 beats in which 80% of the beats are ischemic and 20% are 
healthy. A 10-fold cross validation test is performed over the dataset. The accuracy of this approach is 
91.62%, with sensitivity of 95.09% and specificity of 75.66%. 

1 INTRODUCTION 

Ischemic heart disease is the leading cause of death 
in the world with almost 14% of all deaths (AHA 
2005) Moreover, the average number of individuals 
who undergo a heart attack as a result of myocardial 
ischemia in the United States is approximately 1.5 
million cases, of which 500,000 are fatal (AHA 
2005). Myocardial ischemia is defined as the 
deprivation of oxygen in some portions of the 
cardiac tissue due to a blockage in the coronary 
artery. If the deprivation continues for an extended 
period, the effected cardiac tissue will die; thus, 
leading to a heart attack. Tissue that has died is no 
longer functional and diminishes the mechanical 
pumping function of the heart (Pardee 1920). 

Early detection of ischemia is crucial because, in 
most cases, the effects of myocardial ischemia are 
reversible if detected early enough (Long 1980). 
General screening of patients is vital to preventing 
myocardial infarction, since ischemia can be present 
without exhibiting symptoms.  

This work proposes a cardiac based model, 
Principle Component Analysis (PCA) and a C4.5 
decision tree classifier for the detection of 
myocardial ischemia. The cardiac model is based on 
a physiological model of the electrical cycle of 

depolarization and repolarization of the atria and 
ventricles. The Sinoatrial (SA) node, the 
Atrioventricular (AV) node, bundle branches, 
Purkinje fibers, and left and right ventricles are 
modelled as signal generators. The ECG is generated 
by the difference in signal amplitudes arriving at the 
positive and negative terminals of an ECG lead. The 
model parameters are estimated through the 
minimization of the squared error between the 
generated signal and the recorded ECG. In addition 
to the obtained model parameters, 50 of the 
components from applying PCA to the signal are 
used in the diagnosis.  A C4.5 decision tree is then 
used as a classifier to determine if a beat is healthy 
or ischemic. 

The purpose of using electrocardiogram signals 
for the diagnoses of myocardial ischemia is because 
it is one of the least expensive techniques available 
to physicians. Figure 1 shows a labelled ECG signal 
showing the P, Q, R, S, T waves, the ST segment 
and the J point. The use of the ST level in the 
detection of myocardial ischemia was hypothesized 
in 1920 (Pardee 1920). Examples of low cost 
methods are ST event alerts ($250 cost) and easy to 
administer) with sensitivity of 46% and specificity 
of 91% and exercise stress testing ($200-$300 cost) 
with 68% accuracy of 68% (R. Gianrossi 1989). 
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Figure 1: Labelled (ECG) signal.(Moody 2001). 

Significant research has been undertaken to 
develop a more accurate, less invasive, and less 
expensive method for detecting myocardial 
ischemia. Much of this research focuses on the use 
of ECG signals. These methods build models or use 
thresholds of the ST deviation to determine if a 
patient’s ECG signal might indicate ischemia.  

Previous techniques that dealt with ischemia 
classification and detection when monitoring ECG 
signals started with low accuracy that increased 
significantly over time. These techniques are based 
on the hypothesis that myocardial ischemia can be 
detected by monitoring the ST variations. 

Maglaveras et al. (N. Maglaveras 1994) have 
investigated a method for ischemia detection that 
uses supervised neural networks. The accuracy of 
this approach is of sensitivity of 73.0% and positive 
predictive accuracy of 69.5%. 

RV Andreao et al. (R.V. Andreao 2004) 
employed a Hidden Markov Model for beat 
segmentation with the application of ischemia 
detection. The accuracy of this model is of 
sensitivity of 83.0% and positive predictive accuracy 
of 85%. 

Additionally, T. Stamkopoulos et al. proposed an 
approach using nonlinear Principle Component 
Analysis (PCA) and neural networks in the 
identification of ischemic beats. The accuracy of this 
approach was 80% for healthy and 90% for ischemic 
beats when applied to the European ST-T Database 
(Stamkopoulos 1998). 

Similarly, Victor-Emil Neagoe applied a 
Gaussian Neuro-Fuzzy Approach and PCA toward 
the classification of myocardial ischemia. The 
accuracy shown in the paper was 100% for 50 
features. However, Neagoe dealt with only 
identifying ischemic and normal patients. Moreover, 
the number of training and testing data were 40 
patients, half used for training and half for testing 
(Victor-Emil Neagoe 2003). 

2 DATA SET AND  
PRE-PROCESSING 

Various ECG and intracardiac datasets are available 
for the use of modelling and detecting myocardial 
ischemia. The data sets preserve the privacy of the 
subjects as there are no direct or indirect identifiers 
linking back to them. 

2.1 Long Term ST Database 

The Long-Term ST Database from PhysioNet 
contains 86 Holter ECG recordings from 80 
independent patients. Holter recordings are ECG 
recordings recorded using portable recording 
devices, generally taken over a long period. These 
recordings were selected from the Holter libraries at 
Beth Israel Deaconess Medical Center in Boston, 
Physiolab (Laboratory of Biosignal Processing) of 
the Institute of Clinical Physiology in Pisa, Brigham 
and Womens Hospital in Boston, and the Zymed 
company. The recordings vary in length from 20 to 
24 hours. Each record contains either two or three 
ECG leads. The records are digitized at 250 Hz with 
12 bit resolution (Moody 2001). 

Complete annotations have been provided for the 
database. These annotations label the significant ST 
shifts and episodes, the beginning (3-point) of most 
ST segments has been annotated along with R wave 
annotations using a 16 second averaging window. 
The beats were detected using WQRS function as 
part of the WFDB package supplied by the 
Physionet (Moody 2001).  

To aid in the development of an ischemia 
classification algorithm, complete ST level 
annotations have also been provided. These 
annotations give the ST level, ST reference function, 
and the calculated ST deviation. The ST reference is 
expertly labelled moving average of the important 
ST shifts. The ST deviation is calculated by 
subtracting the ST level from the ST reference 
function shown in Figure 2 (Jager, Taddei & Moody 
2003).  

 
Figure 2: Example of ST deviation calculation. 

The data consists of 43 free records from 42 
patients and 43 fee records from 38 patients. The 
total number of beats used in this work is 20,528 for 
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both healthy and ischemic. The number of ischemic 
beats is 16,794, while that of the healthy beats is 
3734.  

In order to evaluate the proposed classifier, a ten 
fold cross validation is applied to the dataset. The 
ten fold cross validation is described as follows: 

1. Divide data into 10 set of size n/10 
2. Train on 9 sets and test on 1 set 
3. Repeat the process 10 times and take the 

mean of the accuracy. 

2.2 Signal Pre-processing 

As mentioned in the previous section, the beats are 
obtained automatically from the records using the 
‘WQRS’ function provided by the Physionet 
Toolkit. Each beat is then anchored such that the iso-
electric line prior to the P wave is set to zero. A 
wavelet decomposition approach is used to denoise 
the signal from high frequency noise (GD. Clifford 
2005).  

3 METHOD 

The classification approach utilizes a heart cell 
group model fitted to the patient’s ECG signal along 
with the principle component analysis of the signal. 
The method is described in the block diagram shown 
in Figure 3.  

A heart cell group model is used to generate a 
template ECG signal. Then, using a nonlinear 
constrained optimization technique, the model 
parameters are updated until reaching a certain error 
with the patient’s signal beat. The estimated model 
fitting the ECG signal are then used with the PCA 
components as features in the C4.5 decision tree 
classifier.  

 
Figure 3: Block diagram of the Ischemia diagnosing 
method. 

3.1 Heart Cell Group Model 

Electrocardiograms indicate the electric activity of 
the heart over the body surface. In general, two types 
of model have been developed to characterize the 
ECG signal. The first type is a model used for 
interpolating experimental data and can be fitted to 
ECG signals without having a reference to the 
physical system. The second type is a model that can 
characterize the ECG signal and can be related back 
to the heart activity. The objective of this work is the 
latter modelling approach, focusing on development 
of a model that can estimate the activation sequences 
of the heart cells from real patient ECG signals. This 
objective is called the inverse problem. The 
difficulty of this problem is that unless it is stated in 
a particular manner, the solution will not be uniquely 
defined. 

Several techniques have been employed for 
generating models to solve the forward and inverse 
problem. These techniques overcome the uniqueness 
problem by modelling the heart as a small number of 
moving dipoles. Some of these techniques apply the 
solution of Green’s theorem (Method of Moments) 
or Multi-Pole technique to determine the scattering 
of the electric waves over the heart. These methods 
are considered accurate. However, the main 
drawback of these techniques is the computational 
complexity (Gulrajani 1998). 

McSharry et al. presented a “dynamic ECG 
model” that incorporates the ECG features as a 
combination of Gaussian functions. Although this 
model is easy to build, it cannot be related to the 
heart cell activity (GD. Clifford 2005). 

3.1.1 Proposed Cell Group Model 

A Heart Cell Model (HCM) is proposed in this work 
based on the reconstruction of the ECG signal using 
a cell group model. This model accounts for the 
wave propagation of the SA node, the AV node, the 
bundle branches, Purkinje fibers, and left and right 
ventricles. We hypothesize that the electric activity 
of a heart cell group can be represented by a 
difference of two sigmoid functions. 

The electric activity of the myocardial cells is 
caused by the variation of the positively and 
negatively charged ions of the cells. As presented by 
researchers (Andrew J. Pullan 2005), the electric 
activity of the cell is given in Figure 4 and it can be 
approximated by a difference of two sigmoid 
functions as shown in Figure 5. 

 

A HEART CELL GROUP MODEL FOR THE IDENTIFICATION OF MYOCARDIAL ISCHEMIA

53



 

 
Figure 4: Conduction activity of the heart. 

 
Figure 5: Proposed heart cell activity. 

The cell group activity is modelled as the difference 
between two sigmoid functions: 
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where k represents the magnitude of the wave, a1 
and a2 control the rising slope, and c1 and c2 control 
the translation in the direction of the time axis.  

We hypothesize that the cumulative ECG signal 
is generated from the atrial and ventricular 
conduction activity. In this work, the P wave is 
assumed to be generated from the SA node activity; 
the PR interval from the AV node activity, and the 
QRS complex and T wave are generated from the 
activation of the bundle branches, the Purkinje fibers 
and, the right and left ventricles. 

3.1.2 ECG Generation 

As presented above, the ECG signal can be 
generated from the activation sequences of the heart 
cell groups. The same steps are used to generate the 
ECG from the modelled activation sequences. The 
model divides the heart into groups or nodes. Each 
node consists of a combination of cells at the SA 
node, the AV node, the bundle branches, the 
Purkinje fibers and, the right and left ventricles. 
Each node activation and deactivation sequence is 
represented as the difference between two sigmoid 
functions. The variables in the sigmoid functions 
consist of the magnitude, inflection (activation) 
point and the inclination slope. By summing the 
potential difference of the node signals at the 
positive and negative terminals of each lead, the 
ECG signal is generated: 

 ( )
[ ], , , , ,

ÊCG
i SA AV Bb Pf LV RV

i if f f
∈

+ −= −∑ , (2) 

where: 
• SA and AV represent the activity of the 

SA and the AV node respectively. 
• Bb and Pf represent the activity of the 

bundle branches and Purkinje fibers 
respectively 

• LV and RV represent the activity of the 
Left and right ventricles respectively  

• f + and f − are the difference between 
two sigmoid functions as presented in (1) 
for each of the nodes at the positive and 
negative probes respectively 

 
The following sections presents how the ECG 

wave features are generated. The features are the P 
wave, the PR segment, the Q wave, the R wave, and 
the S wave (QRS complex), ST segment, and T 
wave.  

3.1.3 P Wave Generation 

The P wave is generated from the potential 
difference between the electric conduction activity 
measured at the atrial cells at the positive and 
negative probes. In this approach, the atrial 
conduction activity at a single probe is estimated by 
equation (1). Moreover, it is hypothesized that the P 
wave can be generated from the conduction activity 
of the SA node:  

 ( )wave SA SAP f f+ −= − , (3) 

The generation of the P wave using the 
difference of sigmoid estimation is shown in Figure 
6. 
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Figure 6: P wave generation using the differential sigmoid 
model. 
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3.1.4 PR Segment Generation 

The PR segment occurs as the impulse travels from 
the AV node through the conducting tissue (bundle 
branches, and Purkinje fibers) towards the 
ventricles. Most of the delay in the PR segment 
occurs in the AV node. The PR segment is generally 
at the baseline; however, variations might occur due 
to certain heart diseases. Thus, by modelling the 
electric activity of the AV node as proposed in (1), 
and similar to the procedure shown in (3), we are 
able to generate the variations in the PR segment as 
shown in Figure 7. 
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Figure 7: PR interval generation using the differential 
sigmoid model. 

3.1.5 QRS Complex and T Wave Generation 

The QRS complex and the T wave denote the 
interval for the beginning and end of the ventricular 
activation. When generating the QRS complex, the 
activity of the cell groups of the bundle branches, 
Purkinje fibers, and left and right ventricles are 
modelled during the ventricular cycle. The 
representation of the model for the QRS complex 
and T wave in an ECG signal is dependent on the 
difference between the positive and negative 
electrodes at the modelled cell groups. Figure 8 
through Figure 10 show how each wave of the QRS 
complex and the T wave are generated using the 
differential sigmoid model. 
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Figure 8: R wave and T wave generation. 
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Figure 9: R wave and T wave generation. 
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Figure 10: S wave and T wave generation. 
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Figure 11: ST segment generation. 

3.1.6 Parameter Estimation and Signal 
Fitting 

This section discusses how to determine the 
parameters of the activation sequences in order to 
generate a real patient ECG signal. In order to 
achieve this task, a parameter estimation of the 
proposed model (1) and (2) is performed using the 
minimization of the least squares with the real ECG 
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signal. This process was performed with the help of 
the fmincon function, in Matlab, which finds a 
constrained minimum of a function for several 
variables. The function being minimized is given:  

 ( )2

ÊCG
signal

Error ECG f= −∑ , (4) 

The constraints applied to the function are that 
the atrial activity occurs prior to that of the 
ventricles. Moreover, the activation of the cell 
activity is constrained to occur prior to that of the 
deactivation. Additionally, the slopes of the 
activation are higher than those of the deactivation 
curves.  

A template initial condition with known 
parameters for ÊCGf  is used to set the initial condition 
for the optimization process. Additionally, a 
dynamic template is generated for each beat. This 
choice of the template depends on the sign of the R 
peak. This allows more accuracy during the 
nonlinear optimization process. The highest cross-
correlation point between the initial template the 
patient signal is then chosen.  

Figure 12 shows the real and estimated ECG 
signal. It can be seen that the ‘fitted’ signal 
generated from the model matches the original 
patient signal. The model parameters used to 
generate the fitted signal are used as features in the 
classification process. 
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Figure 12: Estimated signal and original ECG signal. 

3.2 Principle Component Analysis 

Principle Component Analysis (PCA) is a linear 
transform where the basis functions are taken from 
the statistics of the signal, and can thus be adaptive. 
It is optimal in the sense of energy compaction, i.e it 
places as much energy as possible in as few 
coefficients as possible. The PCA is typically 
implemented using Singular Value Decomposition. 
The transform is generally not separable, and thus 
the full matrix multiplication must be performed: 

 ,TX U x x UX= = , (5) 

where the U is the basis for the transform. U is 
estimated from a number of xi where [ ]0 :i k∈ "  

 
[ ]
( )
1 2

T
k

T

U V x x x A

U eigvec AA

Σ = =

=

…
. (6) 

3.3 C4.5 or J48 Decision Tree 

Decision trees represent a supervised approach to 
classification. A decision tree is a simple structure 
where non-terminal nodes represent tests on one or 
more attributes and terminal nodes reflect decision 
outcomes. Generally, a decision tree algorithm 
chooses the attributes that best differentiates the 
output attribute values. The Weka classifier package 
(Eibe Frank 2007) has its own version of C4.5 
known as J48. Weka’s J48 is used in this work to 
solve the classification problem.  

4 RESULTS 

The HCM-PCA/C4.5 classifier is applied to the 
Long Term ST-Database. The proposed approach is 
compared to the technique proposed in 
(Stamkopoulos 1998). As mentioned before, the beat 
is detected using an automatic tool ‘wqrs’ provided 
by Physionet. The high frequency noise in the signal 
is removed using wavelet decomposition (Clifford 
2006). The model is fitted to the model by 
minimizing the sum squared error using a 
constrained optimization process. The constraints 
are used to maintain the order of the heart’s 
activation sequences. That is, the atrial activation 
occurs prior to that of the ventricles and the 
depolarization event occurs prior to the 
repolarization. The model parameters are used in the 
classification process, i.e. as features to determine 
whether a beat is ischemic or healthy.  
A C4.5 decision tree is used in the classification 
process. As mentioned above, a 10 fold cross 
validation is performed. The classification method is 
applied with and without using the PCA components 
as features. Using the model parameters without the 
PCA features, the accuracy is 87.83% with 
sensitivity and specificity of 92.62% and 65.69%, 
respectively. Using the PCA features without the 
model parameters leads to an accuracy of 87.83% 
with sensitivity and specificity of 93.8% and 72.7%. 
However, when using the PCA features in addition 
to the model parameters, the accuracy increases to 
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91.62% with sensitivity of 94.89% and sensitivity of 
75.66%. Sensitivity and specificity are defined as the 
accuracy of detecting the ischemic beat and the 
accuracy of detecting the non ischemic beat 
respectively. The confusion matrices for the 
proposed approaches are given in Table 1, Table 2, 
and  Table 3 respectively. Confusion matrix is a 
visualization tool that presents the instances 
classified as ischemic or healthy in its columns and 
the actual classification in its rows. 

Table 1: Confusion Matrix for HCM /C4.5 approach. 

Classified as 
 Ischemic Healthy 

Ischemic 15608 1255 
Healthy 1243 2421 

Table 2: Confusion Matrix for PCA/C4.5 approach. 

Classified as 
 Ischemic Healthy 
Ischemic 15877 986 
Healthy 1044 2620 

Table 3: Confusion Matrix for HCM-PCA/C4.5 approach. 

Classified as 
 Ischemic Healthy 
Ischemic 16035 828 
Healthy 892 2772 

It can be seen from Table 1 and Table 2 that the 
sensitivity of the proposed approach increases by 
10% when using the PCA components in addition to 
the model parameters as features in the C4.5 
decision tree classifier. 

As mentioned above, the proposed approach is 
compared to the techniques of (Stamkopoulos 1998) 
as applied to the LT-ST database.  

Table 4: Comparison between the proposed approach and 
previous methods. 

Approach Accuracy Sensitivity Specificity 
HCM-PCA/C4.5 91.62% 94.89% 75.66% 

Stamkopoulos 86.76% 91.73% 63.86% 

It can be appreciated from Table 4 that the 
proposed HCM-PCA/C4.5 approach performs better 
than the previous methods by (Stamkopoulos 1998) 
for the LT-ST database. However, we have not been 
able to replicate the results of (Victor-Emil Neagoe 
2003). 

The importance in the proposed model, HCM, is 
that it can be related back to the heart’s physical and 

electrical activity. It can be seen that the parameters 
of the HCM can be used in the detection of ischemic 
and healthy heart beats. This is due to the fact that 
the model parameters captured the information 
regarding the ECG waves and segments, such as 
slope, interval duration, magnitude and segment’s 
variation. 

5 CONCLUSIONS 

A HCA-PCA/C4.5 approach is presented in this 
work to diagnose ischemic and healthy beats. The 
proposed approach is applied to the LT-ST database 
provided by Physionet. The approach showed 
excellent results when diagnosing ischemic and 
healthy beats. The proposed modelling approach 
provides a method to identify the features of ECG 
signals and an estimate to the cellular eclectic 
activity useful for ischemia detection. Finally, the 
proposed classification approach can be extended to 
detect different cardiac diseases. 
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APPENDIX 

The cost function for the constrained optimization 
function is obtained by replacing (1) into (2): 

 ( )

2

, , ,
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⎛ ⎞
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Subject to the constraints: ( ) ( )1,3 2, 4i i
c c< , ( ) ( )1,3 1,3SA AV

c c< , 

( ) ( )1,3 1,3SA Rvep
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( ) ( )2 , 4 1,3Rven Lvep
c c< , ( ) ( )2 , 4 1,3Rven Rvep

c c< ,, ( ) ( )1,3 1,3Rvep Lvep
c c< , 

( ) ( )2 , 4 2, 4Lvep Rvep
c c< , ( ) ( )1,3 1,3Rvep Lven

c c< , ( ) ( )2 , 4 2, 4Lven Rvep
c c< , 

( ) ( )1,3 1,3Lvep Lven
c c< ,, ( ) ( )2 , 4 2 , 4Lven Lvep

c c< , 

( ) ( )4 2
0.05 0.12

SA SA
c c< − < , ( ) ( )4 2

0.05 0.12
SA SA

c c< − <  

( ) ( )4 2
0.05 0.10

AV AV
c c< − < , ( ) ( )3 1

0.05 0.08
Rvep Rvep

c c< − < , 

( ) ( )4 2
0.05 0.10

Rvep Rvep
c c< − < , ( ) ( )4 2

0.05 0.03
Rven Rven

c c< − < , 

( ) ( )3 1
0.05 0.03

Lvep Lvep
c c< − < , ( ) ( )4 2

0.05 0.10
Lvep Lvep

c c< − < , 

( ) ( )3 4
0.05 0.10

Lvep Lvep
c c< − < . 
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