REPRESENTING LANGUAGES IN UML
A UML Profile for Language Engineering

Francisco Goézar, Abraham Duarte and Micael Gallego
Department of Computer Science, Universidad Rey Juan Carlos ahulyibstoles, Madrid, Spain

Keywords: UML profile, UML metamodel, Language Engineering, abstract syntax, concrete syntax, DSLs.

Abstract: In this paper a UML profile for textual concrete syntax specification is described. The profile provides the
necessary elements to associate the concrete syntax of a language L to an abstract syntax model of L. Such
augmented abstract syntax model is called the language model of L. This language model avoids keeping the
abstract and concrete syntaxes synchronized. We take advantage of the similarities between object oriented
modeling and BNF-based language specification, and use a profile to specify the dissimilarities.

1 INTRODUCTION elements, and concrete syntax is provided by means
of stereotypes of a UML profile that are applied to

UML is a general purpose modeling language, com- elements of the abstract syntax model.

monly used in object oriented development. Currently

UML provides different notations for different parts

of the development process, from use cases to deploy? ABSTRACT SYNTAX

diagrams. One of the most known notations is the one

centered in object oriented modeling. We are concerned with automatic IDE generation.
_ However, UML has been used for other tasks \yhen ajding developers, development tools rely

different from softyvare systems specification. _For heavily on the abstract syntax tree (AST) of the pro-

these tasks UML s too general, and UML profiles 4o that is being developed. The AST is an in-

are used to tailor the model to a specific domain. giance of an abstract syntax model which in our case

Some UML profile examples are: real-time applica- g gefined with UML. As long as the abstract syntax

tions (Aldayvud et al., 2003; Backus_ and VaIIeciII_o, needs to be implemented by means of a programming
2004; Apvrille et al., 2004), aspect oriented modeling language, it is natural to express it with UML. For

(Aldawud etal., 2003), QoS (Cortellessa and POMPpei, jnsiance, from the UML abstract syntax model Java
2004; Asensio et al., 2001), agent systems modeling ¢|asses can be generated which represent the abstract

(Huget, 2004; Marcos and Pryor, 2003), requirements gy nay model in Java. This is the case of IDEs such as
engineering (Heaven and Finkelstein, 2004), or XML- Eclipsé, or NetBeand among others.

Schema (Ffrovost, 2002; Carlson, 2001; Bernauer |, janguage definition, the same elements are used
etal., 2004; Routledge et al., 2002), among others. gy stematically (Wimmer and Kramler, 2005; Alanen
In this paper we present a UML profile for con- 504 porres, 2003; Antoniol et al., 2003; Hedin and
crete syntax specification of textual languages. The Magnusson, 2003; Lieberherr, 2005: Wile, 1997).
choice of a UML profile is motivated by the fact that thege elements, and their representation in the ab-
the abstract syntax is modeled in UML. Our aim i gract syntax model are described in the rest of this

to annotate this abstract syntax UML model with the gection. Although the modeling decisions presented
textual representation (concrete syntax) of elements

in the model. In our proposal, language structure (ab- http://iwww.eclipse.org
stract syntax) is provided by means of standard UML 2http://www.netbeans.org

Gortazar F,, Duarte A. and Gallego M. (2007).

REPRESENTING LANGUAGES IN UML - A UML Profile for Language Engineering.

In Proceedings of the Second International Conference on Evaluation of Novel Approaches to Software Engineering , pages 3-9
DOI: 10.5220/0002586900030009

Copyright © SciTePress

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

here are general, we show such decisions using anzero or one. For instance, a composite state in the stat-
sample language extracted from the literature (Fonde-echart language might contain no inner states. Lists of
ment et al., 2006): the statechart language. Thus, weelements are represented in UML as associations with

will show during the rest of the paper how to define a multiplicity of 0.n, or 1.n.

the statechart language using the profile we have de-
fined.
In Section 3 we will show how to apply the con-

crete syntax profile to these elements to specify the ConpositeState and its inner states.
position association betweefonposi teState and

textual projection of the abstract syntax concepts.

Given the previous statechart example, Fig-

ure 2 shows the abstract syntax fragment corre-
sponding to the containment relationship between

A com-

St at eVert ex is used to represent the containment re-

2.1 Language Concepts

lationship. The name of this associationsisat es.

As long as a composite state might not have inner
Classes and interfaces represent statechart languagstates, the multiplicity of the association isrD..

concepts likestate state machingor transition Lan-
guage concepts expose an inner structure which is
represented in the abstract syntax as associations an
attributes of classes. These concepts usually pertain
to some classification, which is expressed by means
of inheritance relationships.

It follows a textual fragment of &t at eMachi ne

-container
0..1

ompositeState

-states | %tateVertex
‘\

Figure 2: Lists of elements.

as defined in (Fondement et al., 2006). The fragment2.3 Optional Elements

corresponds to @onposi t eSt at e definition:

ConpositeState closed {
initial State |ocked
State unl ocked

Figure 1 shows the fragment of the correspond-
ing abstract syntax. Three different concepts appear
in the abstract syntax modeBt at e, which corre-
sponds to an abstract sta@nposi t eSt at e, which
corresponds to a composite statéqsed in the ex-
ample); andSi npl eSt at e which corresponds to a
simple statel(ocked).

State

-name : String
-initial : boolean

T

| CompositeState SimpleState

Figure 1: Language concepts.

2.2 Sequences

In most languages there are elements that are arranged
into sequences. In a statechart there are several exam-
ples of elements arranged into sequences, like states
and transitions. The language might impose restric-
tions on the bounds of a list. Commonly, the upper
bound is undefined, but the lower bound is usually

Optional elements are those that might appear in a
concrete position. These elements can be further di-
vided into two groups:

o Elements associated with a true/false value. When

they are present, they represent a true value, oth-
erwise, they represent a false value. These ele-
ments are represented in the abstract syntax with
a boolean property. In a state declaration such as
initial State unlocked, astate is declared as

the initial state. Figure 3 shows the corresponding
abstract syntax representation of such modifier.

State

-name : String
-initial : boolean

Figure 3: Optional elements of kind true/false.

Elements associated with some structure. Con-
sider, for instance, the event that triggers a transi-
tion. When a transition is triggered by an event,
this is specified with the reserved wood fol-
lowed by the name of the event that causes it. In
the abstract syntax model these kind of elements
are represented as an association with multiplicity
0..1. Figure 4 shows this example.

REPRESENTING LANGUAGES IN UML - A UML Profile for Language Engineering

3.2 Classes

Transition -trigger Event
* 0..1 Classes in the abstract syntax model represent con-

cepts of the language. These classes contain proper-

Figure 4: Optional elements of kind 0..1. ties of one of the types defined in the previous section.
UML does not impose an order between these proper-
2.4 Tokens ties. However, the textual representation of the class

requires an order in which the syntactic definitions

Some elements such as identifiers, constants, etc, ar®f each property must be disposed. This is done by
represented as string properties in the abstract syntaxneans of applying the<Syntax>>> stereotype to the
model. Figure 3 shows a class that represents an abclass. Thevalue tag of this stereotype allows defining
stract state. The name of the state is represented agokens, property references, and their arrangement:

the string propertyiare, such ad ocked. e Tokens are specified inside apostrophes. A ref-
erence to a token which has been defined and
has been named can be used enclosed in angular

3 CONCRETE SYNTAX PROFILE parentheses<” and “>".

e Property referencesare specified using the name
The concrete syntax is specified by means of annotat- of the property. The concrete syntax of the proper-
ing the abstract syntax. This annotation is performed ties is obtained from their respective stereotypes.
by means of stereotypes defined in a UML profile
(calledConcrete Syntgxwve have defined for this pur-
pose. The stereotypes of t®ncrete Syntaprofile
provide information of the textual projection of ab- A special arrangement can be specified when a set
stract syntax elements. The profile is presented by of elements can appear in any order. Inner states and
means of the application of the stereotypes to an ab-transitions within a composite state are such a case.

e Arrangement elements are considered in order
from left to right.

stract syntax model of the statechart language. In the statechart language the following declarations
are valid:
3.1 Language Model & are stitel

State state2
We propose to represent a language model as a modelransition fromstatel to state2
with stereotype<Options>>. Thename tag of this ~ State state3
stereotype is used to represent the language name (Ta- The « Syntax>> stereotype allows the specifica-

ble 1 and Figure 5). tion of this kind of situations, with the ()! operator,
used in conjunction with theoperator with the usual
Table 1:<Options>> stereotype. BNF semantics:
(eleml | elen2 | ... | elenmN)!
Stereotype Base classes Tags . .
The semantics of the ()! operator consists of rec-
Options Model languageName ognizing as many elements of the seent. . . el enN
as possible, without taking care of their order (Figure
Tag Type Mult Constraint 6)-
languageName String 0..1 T

CompositeState

= initial "CompositeState" name "{" (states|transitions)! "}"

<<options>>

StateChart
ame = UMLStateChart }

Figure 6: Unordered groups.

Figure 5: The StateChart UML model.

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

3.3 Abstract Classes and Interfaces Table 2:<Root>> stereotype.

It is common that elements of the abstract syntax Stereotype | Base classes Tags
model are related to each other by means of inher- | oot Class tokens, macros, scopes,
itance relationships. For instance, an abstract class initialScope

might represent any state, and classes derived from it
might represent concrete state declarations (such as &
simple state and a composite state). The abstract clas
is part of the conceptual model. However, it does not | tokens Enumeration | 0..1
have a textual representation. We propose to represen

Tag Type Mult Constraint

; macros Enumeration 0..1
abstract concepts with the<LanguageElement>>
stereotype. scopes Enumeration 0..1
Pr(_)perties defined in these classes can still be Iscopes.iSEmpty()
used in the«Syntax>> stereotype of subclasses. In initialScope Enumeration [o | and
Figure 7 thenane property, although defined in the Literal scopes.contains(

self)

St at e class, appears in the Syntax>>> stereotype of
Conposi teSt at e.

name. The«TokenDef>>> stereotype (Table 3) is ap-

e getlement>> plied to each enumeration literal. Tags of this stereo-
State type are used to represent the token pattern, the scope
information, the skip information, the token prece-
enRef>>-name : String{value = identifier dence and the action to be executed each time the to-
ntax>>-initial : boolean{value = "initial"} ken is recognized.

Table 3: < TokenDef>>> stereotype.

Stereotype Base classes Tags
<<syntax>>
SimpleState TokenDef EnumerationLiteral | pattern, skip, action,
scopes
lue = initial "State" name }
Tag Type Mult Constraint
Figure 7: Referencing inherited properties. pattern | String 1.1 JFlex regexp
skip Bolean 1.1
action String 0..1 Java code
3.4 The Root Class Enumeration
SCOPES | 1 iteral 0.

There is a class in the abstract syntax model which _ o

represents the root of the AST. This is called the root ~ Figure 8 shows the definition of a token for
element. We propose to annotate the root elementidentifiers, represented as the enumeration literal
with the <Root>> stereotype (Table 2). Tags of this identifier. Thepattern tag contains the regular

stereotype are aimed at token definition. expression. This regular expression is given in JFlex
format.

3.5 Token Definition 3.6 String Properties

Tokens are the vocabulary of the language. There are
different kinds of tokens, like reserved words, identi- ilar elements. To specify which kind of token is

fiers, constants, among others. allowed for a given string property, we propose to

We propose to define t(_)kens as enumer'ation liter- stereotype the property with stereotyg@okenRef=>>
als of a special enumeration type. There is an enu-

meration literal for each token with a corresponding 3The Fast Scanner Generator for Java. http://jflex.de

String properties store identifiers, constants, and sim-

REPRESENTING LANGUAGES IN UML - A UML Profile for Language Engineering

<<syntax>>
<<root>>

StateMachine

= "StateMachine" name top
s = Tokens}

<<enumeration>>
Tokens

Def>>identifier{pattern = [:jletter:][:jletterdigit:]*}

Figure 8: Token definition.
(Table 4). The tag of this stereotype references the
enumeration literal which corresponds to the kind of
token accepted.

Table 4: < TokenRef>>> stereotype.

Stereotype Base classes Tags
TokenRef EnumerationLiteral | token, scope
Tag Type Mult Constraint
Enumeration self.isStereotypedWit
token Literal L1 h(TokenDef)
scone Enumeration 11 self.isStereotypedWit
P Literal v h(Scope)

Figure 9 shows the clast ate. This class con-
tains a string property aimed at containing the state’s
name. The stereotyp&TokenRef>> is applied to this
property, and itvaluetag references the enumeration
literal corresponding to identifiers.

<<Languagektlement>>
State

tokenRef>>-name : String{value = identifier}
yntax>>-initial : boolean{value = "initial"}

Figure 9: String properties.

3.7 Boolean Properties

Boolean properties usually refer to some feature
which might or might not be present. Their value

usually depends on the presence of a token, or a
set of tokens, in the document. Figure 9 shows the
case of an initial state. An state is the initial state
if the stringi nitial appears just before tHs at e
reserved word. We propose to apply the stereotype
< Syntax>> to these boolean properties. (Table 5).
Theval ue tag of this stereotype contains the set of
tokens which sets the value of the property. If these
tokens are present, the property is set to true, other-
wise, the property is set to false.

Table 5: <« Syntax>> stereotype.

Stereotype Base classes Tags

Syntax Class, Interface, Property, value

EnumerationLiteral

Tag Type Mult Constraint

()! Operator allowed just

value when applied to classes

String I:.1

3.8 Lists

Lists usually contain elements of the same type,
sometimes with a separator. This separator might ap-
pear between each pair of elements, or at the and of
each one. In Figure 10, the ansi t i ons property is
stereotyped with the«SyntaxList>>> stereotype (Ta-

ble 6). This stereotype containsepar at or tag used

to specify the separator (if any), which might be a to-
ken or sequence of tokens. ThedSeparat or tag
holds a boolean value representing whether the sepa-
rator must appear between each pair of elements or at
the end of each element.

Table 6: <« SyntaxList>> stereotype.

Stereotype Base classes Tags
SyntaxList Property separator,
endSeparator
Tag Type Mult Constraint
separator String 1.1 Token sequence
endSeparator Boolean | 1..1 Token sequence

3.9 Optional Elements

Optional elements are usually specified by means of
an association with a zero lower bound. However,

more information is sometimes needed. First, some
elements, when they are present, appear together with

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

<<syntax>> <<syntax>>
CompositeState Transition

| "CompositeState" name "{" (states|transitions)! "}"

ransition" "from" source "to" target trigger }

1

f>>-source : String{value = identifier}
f>>-target : String{value = identifier}

<<syntaxList>>

-transitions | * *
<<syntax>>
Transition <<optional>>
ransition" "from" source "to" target trigger {previousSyntaxDescription =|"on" }
f>>-source : String{value = identifier} -trigger 0.1
f>>-target : String{value = identifier}
<<syntax>>

. . Event
Figure 10:<SyntaxList> usage.
alue = name }

]

Figure 11: Optional elements.

other elements. Second, some elements, when they
are not present, are substituted by other elements. The
following is an example of the first situation:

me : String

Transition fromstatel to state2 on anEvent

In a transition, it is possible to indicate the event . . ,
that causes |t In t_he statechart language, when thisgﬂg: : E \allgisarﬁgi hgng\c,i\D?v)at?oglofwey,
event is specified, it must be preceded by dhere-
served word. It is necessary to provide a mechanism A method declaration might have a body. If
for specifying this information. so, the body is enclosed in brackets. When there
ous example. Therigger property is stereotyped al ter nati vesynt axDescri ptiontag co_uld be used
with the stereotype<Optional> (Table 7). The 10 define W_hl_ch tokens must appear instead of the
previ ousSynt axDescri ption tag contains the to- Pody when itis not present.
kens that must appear before the element when it is
present. There is alsolat er Synt axDescri ption
tag which refers to the tokens that must appear just4 CONCLUSION
after the element.

We have shown how to represent languages in UML,

Table 7:<Optional>> stereotype. such that representation expresses abstract and con-
crete syntaxes. The representation is based on a UML
Stereotype Base Tags profile to convey the concrete syntax of languages to
N the object oriented model of the abstract syntax.
previousSyntaxDescription, Evaluation of the profile has been done applying
Optional Property | laterSyntaxDescription, it to a statechart language as defined in (Fondement
alternativeSyntaxDescription etal., 2006). This stereotyped model has been used to
generate useful language support tools such as parsers
Tag Type | Mult Constraint and editors.
previousSD String | 0..1 | Token sequence .BY.me.anS of u_nlfylng abstract and goncrete syntax
definition into a single model, we avoid the synchro-
laterSD String [0..1 | Token sequence nization needed between the abstract syntax model
alternativeSD | String | 0.1 | Token sequence and its cqrrequn(_jing_concrete syntax specificati(_)n.
We exploit the similarities between both kind of arti-

facts, and express the dissimilarities by means of an
UML profile. This profile conveys the concrete syn-
It follows an example of the second situation tax information that cannot be directly expressed by
(taken from the Java language): means of UML.

REPRESENTING LANGUAGES IN UML - A UML Profile for Language Engineering

Further work includes mapping known language Hedin, G. and Magnusson, E. (2003). Jastadd: an aspect-
specification formalisms equivalent to this one from oriented compiler construction systerci. Comput.
and to this UML representation of a language. In par- Program, 47(1):37-58.
ticular we are interested in recovering grammar infor- Huget, M.-P. (2004). Agent uml notation for multiagent
mation for re-engineering and reverse engineering of system designEEE Internet Computing3(4):63-71.

grammar software. Lieberherr, K. J. (2005). Object-oriented programming with
class dictionaries.LISP and Symbolic Computatipn
1:185-212.
Marcos, C. A. and Pryor, J. (2003). Una extensin de uml
ACKNOWLEDGEMENTS para sistemas de agentes.

Provost, W. (2002). Uml for w3c xml schema design.

This work has been partially supported by MCyT . edge, N., Bird, L., and Goodchild, A. (2002). Uml and

TIN2005-08943-C02-02 and URJC-CM-2006-CET- xml schema. IPADC '02: Proceedings of the 13th

0603. Australasian database conferencpages 157-166,
Darlinghurst, Australia, Australia. Australian Com-
puter Society, Inc.

Wile, D. S. (1997). Abstract syntax from concrete syntax.
REFERENCES In ICSE '97: Proceedings of the 19th international
conference on Software engineerimpges 472-480,

Alanen, M. and Porres, I. (2003). A relation between New York, NY, USA. ACM Press.
context-free grammars and meta object facility meta- \wimmer, M. and Kramler, G. (2005). Bridging grammar-
models. ware and modelware. IMoDELS Satellite Events
Aldawud, O., Elrad, T., and Bader, A. (2003). Uml profile pages 159-168.

for aspect-oriented software development.

Antoniol, G., Penta, M. D., and Merlo, E. (2003). Yaab
(yet another ast browser): Using ocl to navigate asts.
In IWPC '03: Proceedings of the 11th IEEE In-
ternational Workshop on Program Comprehension
page 13, Washington, DC, USA. IEEE Computer So-
ciety.

Apvrille, L., Courtiat, J.-P., Lohr, C., and de Saqui-Sannes,
P. (2004). Turtle: A real-time uml profile supported by
a formal validation toolkit.IEEE Trans. Softw. Eng.
30(7):473-487.

Asensio, J. I., Villagr, V. A., de Vergara, J. E. L., and
Berrocal, J. (2001). Uml profiles for the specification
and instrumentation of qos management information
in distributed object-based applications.

Backus, L. and Vallecillo, A. (2004). An introduction to
uml profiles. UPGRADE, The European Journal for
the Informatics Professionagh(2):5-13.

Bernauer, M., Kappel, G., and Kramler, G. (2004). Rep-
resenting xml schema in uml - a comparison of ap-
proaches. INCWE, pages 440-444.

Carlson, D. (2001). Modeling xml vocabularies with uml.

Cortellessa, V. and Pompei, A. (2004). Towards a uml pro-
file for qos: a contribution in the reliability domain.
In WOSP '04: Proceedings of the 4th international
workshop on Software and performangages 197—
206, New York, NY, USA. ACM Press.

Fondement, F., Schnekenburger, Rer&d, S., and Muller,
P.-A. (2006). Metamodel-Aware Textual Concrete
Syntax Specification. Technical report.

Heaven, W. and Finkelstein, A. (2004). Uml profile to sup-
port requirements engineering with kaotEE Pro-
ceedings - Softward 51(1):10-27.

