
REPRESENTING LANGUAGES IN UML
A UML Profile for Language Engineering

Francisco Gort́azar, Abraham Duarte and Micael Gallego
Department of Computer Science, Universidad Rey Juan Carlos, Tulipán, Móstoles, Madrid, Spain

Keywords: UML profile, UML metamodel, Language Engineering, abstract syntax, concrete syntax, DSLs.

Abstract: In this paper a UML profile for textual concrete syntax specification is described. The profile provides the
necessary elements to associate the concrete syntax of a language L to an abstract syntax model of L. Such
augmented abstract syntax model is called the language model of L. This language model avoids keeping the
abstract and concrete syntaxes synchronized. We take advantage of the similarities between object oriented
modeling and BNF-based language specification, and use a profile to specify the dissimilarities.

1 INTRODUCTION

UML is a general purpose modeling language, com-
monly used in object oriented development. Currently
UML provides different notations for different parts
of the development process, from use cases to deploy
diagrams. One of the most known notations is the one
centered in object oriented modeling.

However, UML has been used for other tasks
different from software systems specification. For
these tasks UML is too general, and UML profiles
are used to tailor the model to a specific domain.
Some UML profile examples are: real-time applica-
tions (Aldawud et al., 2003; Backus and Vallecillo,
2004; Apvrille et al., 2004), aspect oriented modeling
(Aldawud et al., 2003), QoS (Cortellessa and Pompei,
2004; Asensio et al., 2001), agent systems modeling
(Huget, 2004; Marcos and Pryor, 2003), requirements
engineering (Heaven and Finkelstein, 2004), or XML-
Schema (Provost, 2002; Carlson, 2001; Bernauer
et al., 2004; Routledge et al., 2002), among others.

In this paper we present a UML profile for con-
crete syntax specification of textual languages. The
choice of a UML profile is motivated by the fact that
the abstract syntax is modeled in UML. Our aim is
to annotate this abstract syntax UML model with the
textual representation (concrete syntax) of elements
in the model. In our proposal, language structure (ab-
stract syntax) is provided by means of standard UML

elements, and concrete syntax is provided by means
of stereotypes of a UML profile that are applied to
elements of the abstract syntax model.

2 ABSTRACT SYNTAX

We are concerned with automatic IDE generation.
When aiding developers, development tools rely
heavily on the abstract syntax tree (AST) of the pro-
gram that is being developed. The AST is an in-
stance of an abstract syntax model which in our case
is defined with UML. As long as the abstract syntax
needs to be implemented by means of a programming
language, it is natural to express it with UML. For
instance, from the UML abstract syntax model Java
classes can be generated which represent the abstract
syntax model in Java. This is the case of IDEs such as
Eclipse1, or NetBeans2, among others.

In language definition, the same elements are used
systematically (Wimmer and Kramler, 2005; Alanen
and Porres, 2003; Antoniol et al., 2003; Hedin and
Magnusson, 2003; Lieberherr, 2005; Wile, 1997).
These elements, and their representation in the ab-
stract syntax model are described in the rest of this
section. Although the modeling decisions presented

1http://www.eclipse.org
2http://www.netbeans.org

3
Gortázar F., Duarte A. and Gallego M. (2007).
REPRESENTING LANGUAGES IN UML - A UML Profile for Language Engineering.
In Proceedings of the Second International Conference on Evaluation of Novel Approaches to Software Engineering , pages 3-9
DOI: 10.5220/0002586900030009
Copyright c© SciTePress

here are general, we show such decisions using an
sample language extracted from the literature (Fonde-
ment et al., 2006): the statechart language. Thus, we
will show during the rest of the paper how to define
the statechart language using the profile we have de-
fined.

In Section 3 we will show how to apply the con-
crete syntax profile to these elements to specify the
textual projection of the abstract syntax concepts.

2.1 Language Concepts

Classes and interfaces represent statechart language
concepts likestate, state machine, or transition. Lan-
guage concepts expose an inner structure which is
represented in the abstract syntax as associations and
attributes of classes. These concepts usually pertain
to some classification, which is expressed by means
of inheritance relationships.

It follows a textual fragment of aStateMachine
as defined in (Fondement et al., 2006). The fragment
corresponds to aCompositeState definition:

CompositeState closed {
initial State locked
State unlocked

}

Figure 1 shows the fragment of the correspond-
ing abstract syntax. Three different concepts appear
in the abstract syntax model:State, which corre-
sponds to an abstract state;CompositeState, which
corresponds to a composite state (closed in the ex-
ample); andSimpleState which corresponds to a
simple state (locked).

CompositeState

State

-initial : boolean

-name : String

SimpleState

Figure 1: Language concepts.

2.2 Sequences

In most languages there are elements that are arranged
into sequences. In a statechart there are several exam-
ples of elements arranged into sequences, like states
and transitions. The language might impose restric-
tions on the bounds of a list. Commonly, the upper
bound is undefined, but the lower bound is usually

zero or one. For instance, a composite state in the stat-
echart language might contain no inner states. Lists of
elements are represented in UML as associations with
a multiplicity of 0..n, or 1..n.

Given the previous statechart example, Fig-
ure 2 shows the abstract syntax fragment corre-
sponding to the containment relationship between
CompositeState and its inner states. A com-
position association betweenCompositeState and
StateVertex is used to represent the containment re-
lationship. The name of this association isstates.
As long as a composite state might not have inner
states, the multiplicity of the association is 0..n.

CompositeState StateVertex-states

*

-container

0..1

Figure 2: Lists of elements.

2.3 Optional Elements

Optional elements are those that might appear in a
concrete position. These elements can be further di-
vided into two groups:

• Elements associated with a true/false value. When
they are present, they represent a true value, oth-
erwise, they represent a false value. These ele-
ments are represented in the abstract syntax with
a boolean property. In a state declaration such as
initial State unlocked, a state is declared as
the initial state. Figure 3 shows the corresponding
abstract syntax representation of such modifier.

State

-initial : boolean

-name : String

Figure 3: Optional elements of kind true/false.

• Elements associated with some structure. Con-
sider, for instance, the event that triggers a transi-
tion. When a transition is triggered by an event,
this is specified with the reserved wordon fol-
lowed by the name of the event that causes it. In
the abstract syntax model these kind of elements
are represented as an association with multiplicity
0..1. Figure 4 shows this example.

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

4

Transition Event
-trigger

0..1*

Figure 4: Optional elements of kind 0..1.

2.4 Tokens

Some elements such as identifiers, constants, etc, are
represented as string properties in the abstract syntax
model. Figure 3 shows a class that represents an ab-
stract state. The name of the state is represented as
the string propertyname, such aslocked.

3 CONCRETE SYNTAX PROFILE

The concrete syntax is specified by means of annotat-
ing the abstract syntax. This annotation is performed
by means of stereotypes defined in a UML profile
(calledConcrete Syntax) we have defined for this pur-
pose. The stereotypes of theConcrete Syntaxprofile
provide information of the textual projection of ab-
stract syntax elements. The profile is presented by
means of the application of the stereotypes to an ab-
stract syntax model of the statechart language.

3.1 Language Model

We propose to represent a language model as a model
with stereotype≪Options≫. The name tag of this
stereotype is used to represent the language name (Ta-
ble 1 and Figure 5).

Table 1:≪Options≫ stereotype.

Stereotype Base classes Tags

Options Model languageName

Tag Type Mult Constraint

languageName String 0..1

<<options>>

StateChart

{name = UMLStateChart }

Figure 5: The StateChart UML model.

3.2 Classes

Classes in the abstract syntax model represent con-
cepts of the language. These classes contain proper-
ties of one of the types defined in the previous section.
UML does not impose an order between these proper-
ties. However, the textual representation of the class
requires an order in which the syntactic definitions
of each property must be disposed. This is done by
means of applying the≪Syntax≫ stereotype to the
class. Thevalue tag of this stereotype allows defining
tokens, property references, and their arrangement:

• Tokens: are specified inside apostrophes. A ref-
erence to a token which has been defined and
has been named can be used enclosed in angular
parentheses “<” and “>”.

• Property references: are specified using the name
of the property. The concrete syntax of the proper-
ties is obtained from their respective stereotypes.

• Arrangement: elements are considered in order
from left to right.

A special arrangement can be specified when a set
of elements can appear in any order. Inner states and
transitions within a composite state are such a case.
In the statechart language the following declarations
are valid:

State state1
State state2
Transition from state1 to state2
State state3

The ≪Syntax≫ stereotype allows the specifica-
tion of this kind of situations, with the ()! operator,
used in conjunction with the| operator with the usual
BNF semantics:

(elem1 | elem2 | ... | elemN)!

The semantics of the ()! operator consists of rec-
ognizing as many elements of the setelem1...elemN
as possible, without taking care of their order (Figure
6).

<<syntax>>

CompositeState

{value = initial "CompositeState" name "{" (states|transitions)! "}" }

Figure 6: Unordered groups.

REPRESENTING LANGUAGES IN UML - A UML Profile for Language Engineering

5

3.3 Abstract Classes and Interfaces

It is common that elements of the abstract syntax
model are related to each other by means of inher-
itance relationships. For instance, an abstract class
might represent any state, and classes derived from it
might represent concrete state declarations (such as a
simple state and a composite state). The abstract class
is part of the conceptual model. However, it does not
have a textual representation. We propose to represent
abstract concepts with the≪LanguageElement≫
stereotype.

Properties defined in these classes can still be
used in the≪Syntax≫ stereotype of subclasses. In
Figure 7 thename property, although defined in the
State class, appears in the≪Syntax≫ stereotype of
CompositeState.

<<LanguageElement>>

State

<<tokenRef>>-name : String{value = identifier}

<<syntax>>-initial : boolean{value = "initial"}

<<syntax>>

SimpleState

{value = initial "State" name }

Figure 7: Referencing inherited properties.

3.4 The Root Class

There is a class in the abstract syntax model which
represents the root of the AST. This is called the root
element. We propose to annotate the root element
with the≪Root≫ stereotype (Table 2). Tags of this
stereotype are aimed at token definition.

3.5 Token Definition

Tokens are the vocabulary of the language. There are
different kinds of tokens, like reserved words, identi-
fiers, constants, among others.

We propose to define tokens as enumeration liter-
als of a special enumeration type. There is an enu-
meration literal for each token with a corresponding

Table 2:≪Root≫ stereotype.

Stereotype Base classes Tags

Root Class tokens, macros, scopes,

initialScope

Tag Type Mult Constraint

tokens Enumeration 0..1

macros Enumeration 0..1

scopes Enumeration 0..1

initialScope
Enumeration

Literal
0..1

!scopes.isEmpty()

and

scopes.contains(

self)

name. The≪TokenDef≫ stereotype (Table 3) is ap-
plied to each enumeration literal. Tags of this stereo-
type are used to represent the token pattern, the scope
information, the skip information, the token prece-
dence and the action to be executed each time the to-
ken is recognized.

Table 3:≪TokenDef≫ stereotype.

Stereotype Base classes Tags

TokenDef EnumerationLiteral pattern, skip, action,

scopes

Tag Type Mult Constraint

pattern String 1..1 JFlex regexp

skip Bolean 1..1

action String 0..1 Java code

scopes
Enumeration

Literal
0..n

Figure 8 shows the definition of a token for
identifiers, represented as the enumeration literal
identifier. Thepattern tag contains the regular
expression. This regular expression is given in JFlex3

format.

3.6 String Properties

String properties store identifiers, constants, and sim-
ilar elements. To specify which kind of token is
allowed for a given string property, we propose to
stereotype the property with stereotype≪TokenRef≫

3The Fast Scanner Generator for Java. http://jflex.de

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

6

<<enumeration>>

Tokens

<<tokenDef>>identifier{pattern = [:jletter:][:jletterdigit:]*}

<<syntax>>

<<root>>

StateMachine

{value = "StateMachine" name top ,

tokens = Tokens}

Figure 8: Token definition.

(Table 4). The tag of this stereotype references the
enumeration literal which corresponds to the kind of
token accepted.

Table 4:≪TokenRef≫ stereotype.

Stereotype Base classes Tags

TokenRef EnumerationLiteral token, scope

Tag Type Mult Constraint

token
Enumeration

Literal
1..1

self.isStereotypedWit

h(TokenDef)

scope
Enumeration

Literal
1..1

self.isStereotypedWit

h(Scope)

Figure 9 shows the classState. This class con-
tains a string property aimed at containing the state’s
name. The stereotype≪TokenRef≫ is applied to this
property, and itsvaluetag references the enumeration
literal corresponding to identifiers.

<<LanguageElement>>

State

<<tokenRef>>-name : String{value = identifier}

<<syntax>>-initial : boolean{value = "initial"}

Figure 9: String properties.

3.7 Boolean Properties

Boolean properties usually refer to some feature
which might or might not be present. Their value

usually depends on the presence of a token, or a
set of tokens, in the document. Figure 9 shows the
case of an initial state. An state is the initial state
if the stringinitial appears just before theState
reserved word. We propose to apply the stereotype
≪Syntax≫ to these boolean properties. (Table 5).
The value tag of this stereotype contains the set of
tokens which sets the value of the property. If these
tokens are present, the property is set to true, other-
wise, the property is set to false.

Table 5:≪Syntax≫ stereotype.

Stereotype Base classes Tags

Syntax Class, Interface, Property,

EnumerationLiteral

value

Tag Type Mult Constraint

value String 1..1
()! Operator allowed just

when applied to classes

3.8 Lists

Lists usually contain elements of the same type,
sometimes with a separator. This separator might ap-
pear between each pair of elements, or at the and of
each one. In Figure 10, thetransitions property is
stereotyped with the≪SyntaxList≫ stereotype (Ta-
ble 6). This stereotype contains aseparator tag used
to specify the separator (if any), which might be a to-
ken or sequence of tokens. TheendSeparator tag
holds a boolean value representing whether the sepa-
rator must appear between each pair of elements or at
the end of each element.

Table 6:≪SyntaxList≫ stereotype.

Stereotype Base classes Tags

SyntaxList Property separator,

endSeparator

Tag Type Mult Constraint

separator String 1..1 Token sequence

endSeparator Boolean 1..1 Token sequence

3.9 Optional Elements

Optional elements are usually specified by means of
an association with a zero lower bound. However,
more information is sometimes needed. First, some
elements, when they are present, appear together with

REPRESENTING LANGUAGES IN UML - A UML Profile for Language Engineering

7

<<syntax>>

CompositeState

{value = initial "CompositeState" name "{" (states|transitions)! "}" }

<<syntax>>

Transition

{value = "Transition" "from" source "to" target trigger }

<<tokenRef>>-source : String{value = identifier}

<<tokenRef>>-target : String{value = identifier}

<<syntaxList>>

-transitions *

1

Figure 10:≪SyntaxList≫ usage.

other elements. Second, some elements, when they
are not present, are substituted by other elements. The
following is an example of the first situation:

Transition from state1 to state2 on anEvent

In a transition, it is possible to indicate the event
that causes it. In the statechart language, when this
event is specified, it must be preceded by theon re-
served word. It is necessary to provide a mechanism
for specifying this information.

Figure 11 shows our proposal for the previ-
ous example. Thetrigger property is stereotyped
with the stereotype≪Optional≫ (Table 7). The
previousSyntaxDescription tag contains the to-
kens that must appear before the element when it is
present. There is also alaterSyntaxDescription
tag which refers to the tokens that must appear just
after the element.

Table 7:≪Optional≫ stereotype.

Stereotype Base

classes

Tags

Optional Property

previousSyntaxDescription,

laterSyntaxDescription,

alternativeSyntaxDescription

Tag Type Mult Constraint

previousSD String 0..1 Token sequence

laterSD String 0..1 Token sequence

alternativeSD String 0..1 Token sequence

It follows an example of the second situation
(taken from the Java language):

<<syntax>>

Transition

{value = "Transition" "from" source "to" target trigger }

<<tokenRef>>-source : String{value = identifier}

<<tokenRef>>-target : String{value = identifier}

<<syntax>>

Event

{value = name }

-name : String

<<optional>>

{previousSyntaxDescription = "on" }

-trigger 0..1

*

Figure 11: Optional elements.

public abstract void methodOne();
public void methodTwo() { ... }

A method declaration might have a body. If
so, the body is enclosed in brackets. When there
is no body, it is substituted by a semicolon. The
alternativeSyntaxDescription tag could be used
to define which tokens must appear instead of the
body when it is not present.

4 CONCLUSION

We have shown how to represent languages in UML,
such that representation expresses abstract and con-
crete syntaxes. The representation is based on a UML
profile to convey the concrete syntax of languages to
the object oriented model of the abstract syntax.

Evaluation of the profile has been done applying
it to a statechart language as defined in (Fondement
et al., 2006). This stereotyped model has been used to
generate useful language support tools such as parsers
and editors.

By means of unifying abstract and concrete syntax
definition into a single model, we avoid the synchro-
nization needed between the abstract syntax model
and its corresponding concrete syntax specification.
We exploit the similarities between both kind of arti-
facts, and express the dissimilarities by means of an
UML profile. This profile conveys the concrete syn-
tax information that cannot be directly expressed by
means of UML.

ENASE 2007 - International Conference on Evaluation on Novel Approaches to Software Engineering

8

Further work includes mapping known language
specification formalisms equivalent to this one from
and to this UML representation of a language. In par-
ticular we are interested in recovering grammar infor-
mation for re-engineering and reverse engineering of
grammar software.

ACKNOWLEDGEMENTS

This work has been partially supported by MCyT
TIN2005-08943-C02-02 and URJC-CM-2006-CET-
0603.

REFERENCES

Alanen, M. and Porres, I. (2003). A relation between
context-free grammars and meta object facility meta-
models.

Aldawud, O., Elrad, T., and Bader, A. (2003). Uml profile
for aspect-oriented software development.

Antoniol, G., Penta, M. D., and Merlo, E. (2003). Yaab
(yet another ast browser): Using ocl to navigate asts.
In IWPC ’03: Proceedings of the 11th IEEE In-
ternational Workshop on Program Comprehension,
page 13, Washington, DC, USA. IEEE Computer So-
ciety.

Apvrille, L., Courtiat, J.-P., Lohr, C., and de Saqui-Sannes,
P. (2004). Turtle: A real-time uml profile supported by
a formal validation toolkit.IEEE Trans. Softw. Eng.,
30(7):473–487.

Asensio, J. I., Villagr, V. A., de Vergara, J. E. L., and
Berrocal, J. (2001). Uml profiles for the specification
and instrumentation of qos management information
in distributed object-based applications.

Backus, L. and Vallecillo, A. (2004). An introduction to
uml profiles. UPGRADE, The European Journal for
the Informatics Professional, 5(2):5–13.

Bernauer, M., Kappel, G., and Kramler, G. (2004). Rep-
resenting xml schema in uml - a comparison of ap-
proaches. InICWE, pages 440–444.

Carlson, D. (2001). Modeling xml vocabularies with uml.

Cortellessa, V. and Pompei, A. (2004). Towards a uml pro-
file for qos: a contribution in the reliability domain.
In WOSP ’04: Proceedings of the 4th international
workshop on Software and performance, pages 197–
206, New York, NY, USA. ACM Press.

Fondement, F., Schnekenburger, R., Gérard, S., and Muller,
P.-A. (2006). Metamodel-Aware Textual Concrete
Syntax Specification. Technical report.

Heaven, W. and Finkelstein, A. (2004). Uml profile to sup-
port requirements engineering with kaos.IEE Pro-
ceedings - Software, 151(1):10–27.

Hedin, G. and Magnusson, E. (2003). Jastadd: an aspect-
oriented compiler construction system.Sci. Comput.
Program., 47(1):37–58.

Huget, M.-P. (2004). Agent uml notation for multiagent
system design.IEEE Internet Computing, 8(4):63–71.

Lieberherr, K. J. (2005). Object-oriented programming with
class dictionaries.LISP and Symbolic Computation,
1:185–212.

Marcos, C. A. and Pryor, J. (2003). Una extensin de uml
para sistemas de agentes.

Provost, W. (2002). Uml for w3c xml schema design.

Routledge, N., Bird, L., and Goodchild, A. (2002). Uml and
xml schema. InADC ’02: Proceedings of the 13th
Australasian database conference, pages 157–166,
Darlinghurst, Australia, Australia. Australian Com-
puter Society, Inc.

Wile, D. S. (1997). Abstract syntax from concrete syntax.
In ICSE ’97: Proceedings of the 19th international
conference on Software engineering, pages 472–480,
New York, NY, USA. ACM Press.

Wimmer, M. and Kramler, G. (2005). Bridging grammar-
ware and modelware. InMoDELS Satellite Events,
pages 159–168.

REPRESENTING LANGUAGES IN UML - A UML Profile for Language Engineering

9

