
SERVICE DISCOVERY WITH SWE-ET AND DIANE
A Comparative Evaluation by Means of Solutions to a Common Scenario

Ulrich Küster1, Andrea Turati2, Maciej Zaremba4, B. König-Ries1, D. Cerizza2, E. Della Valle2

M. Brambilla3, S. Ceri3, F. M. Facca3 and C. Tziviskou3
1Institute for Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany

2CEFRIEL, Via Fucini 2, 20133 Milano, Italy
3Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

4DERI – National University of Ireland, IDA Industrial Estate, Lower Dangan, Galway, Ireland

Keywords: Semantic Matchmaking, Service Discovery, Evaluation, Comparison.

Abstract: Semantic service discovery and matchmaking has received increased attention within the last years. Various
approaches have been proposed but agreed upon criteria or common use and test cases to objectively evaluate
such approaches are widely lacking. In this paper we present an in-depth comparison of the solutions to
the discovery problems defined by the SWS-Challenge 2006. By means of this common and independently
developed scenario we can develop a much better understanding for the applied technologies in general, but
also and in particular for the trade-offs involved in the different approaches.

1 INTRODUCTION

Following the idea of the semantic web and the suc-
cess of service oriented computing (SOC), the ap-
plication of semantic technologies to automate cen-
tral tasks within SOC like service discovery, match-
making and binding has received increasing attention
within the last years. Many frameworks have been
proposed and are being actively developed, but up to
now there is no consensus about the most appropri-
ate formalism for semantic service description or the
best techniques to work with or reason about them.
Clearly a unified benchmark would be tremendously
helpful in order to compare the pros and cons of the
various approaches in an objective way. The Semantic
Web Services Challenge1 (Petrie, 2006) is attempting
to create such a benchmark. In a series of three work-
shops so far, participants have applied their technol-
ogy to a common set of scenarios and presented their
approaches to their peers. This way a good under-
standing of each others technology could be devel-
oped. In this paper we will present a comparative
evaluation of the solutions to the SWS-Challenge’s
discovery scenario, with a focus on the joint solu-
tion by the team from Politecnico Milano and CE-
FRIEL (Brambilla et al., 2006) on the one hand and

1http://www.sws-challenge.org

the one by University Jena (K̈uster and K̈onig-Ries,
2006a; K̈uster et al., 2006) on the other hand. We
will describe the various aspects of these approaches
in a structured way and elaborate on the trade-offs
involved in each technology. The rest of the paper
is organized as follows: In Section 2 we shortly de-
scribe the discovery scenario of the challenge. Sec-
tion 3 contains the detailed comparison of the differ-
ent solutions to that scenario and Section 4 presents
our conclusions.

2 THE SCENARIO

The SWS-Challenge presented two complementary
scenarios: themediation scenariointegrates a legacy
system supporting the RosettaNet protocol, thedis-
covery scenariois about how to identify possibly rel-
evant shipment services. In this paper we focus on the
latter.

The objective of the discovery scenario is to find
the best shipment service, taking into considera-
tion pickup location, delivery location, delivery time,
price and similar constraints. Thus the scenario pro-
vided implementations of several shipping services,
each of them with a WSDL and a more concise nat-
ural language description. What makes the scenario

430

Küster U., Turati A., Zaremba M., König-Ries B., Cerizza D., Della Valle E., Brambilla M., Ceri S., M. Facca F. and Tziviskou C. (2007).
SERVICE DISCOVERY WITH SWE-ET AND DIANE - A Comparative Evaluation by Means of Solutions to a Common Scenario.
In Proceedings of the Ninth International Conference on Enterprise Information Systems, pages 438-446
Copyright c© SciTePress

Table 1: Comparison between DIANE and SWE-ET.

Feature DIANE SWE-ET
Formalism DE and DSD (custom formalism) F-logic
Service Descriptions configurable set of possible effects WSMO service capabilities
Goal Descriptions fuzzy set of acceptable effects

(fuzziness to express preferences)
WSMO goal capabilities

Matchmaking set-based: subset value of optimally
configured offer in fuzzy request

rule-based: matching rules coded into wgMe-
diator (filter web service instances wrt. given
goal)

Negotiation integrated into matchmaking (nego-
tiable parameters tagged in offers)

integrated into the discovery process with ex-
ternal invocation through WebRatio grounding
(negotiable parameters tagged in offers)

Selection through fuzzy requests (integrated
into matchmaking)

done by the user through WebRatio interface

Invocation automatically done by framework automatically done by WebRatio grounding

interesting is the realistically heterogeneous nature of
the services descriptions, that focus on different char-
acteristics. For example, some specifications are:

• Muller specifies rates on request (cf. invokePrice
operation within the WSDL)

• Racer adds 12.50 for each collection order
• Runner requires weight, length and height if pack-

age weight exceeds 70 lbs, and states that collec-
tion is possible between 1am - 12pm

• Walker applies different rates depending on loca-
tion, and has some conditions about, for instance,
maximum package weight or pickup time

• Weasel ships only within the United States.

Discovery had to be performed by a set of predefined
requests with increasing complexity.

3 COMPARISON OF BOTH
APPROACHES

In the following we will compare the approaches
taken by University Jena as well as Politecnico Mi-
lano and CEFRIEL to tackle the discovery problem
introduced above. The solution by University Jena
is based on its DIANE-framework2 while the other
one is named SWE-ET3 and combines CEFRIEL’s
Glue discovery engine4 with the WebRatio frame-
work5 from Politecnico Milano.

We adopt a structured approach to compare both
solutions along several dimensions. Table 1 shows a
compact representation of the comparison result.

2http://hnsp.inf-bb.uni-jena.de/DIANE
3http://sweet.cefriel.it/
4http://glue.cefriel.it/
5http://www.webratio.com/

3.1 Formalism Used to Model
Ontologies

The goal of the DIANE project is to create a frame-
work that is able to completely automate the whole
process of service usage. Thus an ontology language
was needed that on the one hand is expressive enough
to precisely capture the necessary aspects of service
offers and requests but on the other hand is as re-
stricted as possible to ease the matchmaking process
and maintain efficient processability. Therefore the
approach followed by DIANE is to not use one of the
logics commonly employed for semantic service de-
scriptions, but to define its own language specifically
tailored towards the use case at hand. Consequently
DIANE uses its own ontology language, called DE
(DIANE Elements) and DSD (DIANE Service De-
scriptions) which has been introduced in (Klein et al.,
2005). Ontologies are very lightweight and the de-
scription elements of DSD used for ontologies can
best be characterized as a small subset of F-logic
(Kifer et al., 1995) without rules and quantifiers.

In contrast Glue – the discovery engine used in
SWE-ET – is directly based on F-logic. This was
motivated by the desire to create a discovery en-
gine that is compliant with WSMO (de Bruijn et al.,
2005a). At the time development on Glue started,
tools for translating WSML into reasoner-specific for-
mats were missing and WSML itself was a work-
in-progress. However, the WSML working group6

proposed a subset of OWL (named OWL–) that does
not fall outside a logic programming framework and
allows for a straight-forward combination with rule
languages (de Bruijn et al., 2005b). Additionally an
expressive datatype support was desired and WSML

6http://www.wsmo.org/wsml/

SERVICE DISCOVERY WITH SWE-ET AND DIANE - A Comparative Evaluation by Means of Solutions to a Common
Scenario

431

working group showed in (de Bruijn et al., 2004) that
OWL-E (Pan, J. Z. and Horrocks, I., 2004) (a proposal
for extending OWL with expressive datatype expres-
sion) can be added to OWL–, forming a new ontolog-
ical language named OWL-Flight. Since both OWL–

(Angele and Lausen, 2004) and OWL-Flight can be
translated into F-logic, it was decided to implement
Glue on a F-logic reasoner.

Thus the Glue approach models ontologies using
F-Logic and can benefit from the entailed expressiv-
ity: F-logic allows to represent classes, instances,
relationships among classes and instances, formulas
that use logic operators and quantifiers, rules, and so
on. F-logic provides a second-order, object-oriented-
style syntax for a first-order logical language. In other
words, as described in (Kifer and Lausen, 1989), F-
logic has an appearance of a higher-order-logic, but,
unlike it, is tractable and has a natural direct first-
order semantics. In addition, sound and complete
proof procedures for F-logic exist.

To address the SWS-Challenge’s scenarios, both
teams modeled necessary domain ontologies to cap-
ture required concepts like date and time, weight and
dimensions, prices, locations, shipment etc. Despite
the much bigger expressivity of the full F-logic ap-
proach taken by Glue, the modelled ontologies look
fairly similar since the current scenario did not require
to use complex rules and restrictions in the ontologies.

3.2 Formalism Used to Model Goals
and Services

While the underlying ontologies are rather simple,
DSD supports more complex and expressive mod-
elling operators to be used in request and offer de-
scriptions. In DSD, service offers are described as the
set of effects they can provide wheras service requests
are described as the set of effects that are acceptable
for the requester. The semantics of DSD defines that
one effect out of the request effect set is requested and
one effect out of the offer effect set will be provided
by a service invocation7. Figure 1 shows excerpts of
the description of the Muller shipping service in an
intuitive graphical notation.

As mentioned, Muller is described by the set of
Shipped effects it can provide. Sets are denoted by
a diagonal line in the upper left corner of a concept.
Generally DSD sets are described by

• a type conditionto specify the class of admissable
instances (like Shipped, Country or Double)

7This may be changed by using special operators, called
iteration directives, see (K̈uster and K̈onig-Ries, 2006a)

upper

muller : Service
upper.profile

: ServiceProfilepresents

Address
IN,e,1
IN,x,1

fromAddress

toAddress

PhysicalEntity
IN,e,1
IN,x,1

cargo

WeightMeasure

Country

Cityy

city

locatedIn

WeightUnit

== pound

Double

<=50

Continent

 in {africa,
northAmerica,
europe, asia}

locatedIn

Shipped...
... effect

weight

val

pickupTime

Price
OUT,e,1

Currency

== usd

Double

currency

val

price

unit

Figure 1: Excerpts from the description of the Muller ship-
ping service. Muller allows shipping within Africa, North
America, Europe and Asia and transports only packages up
to 50 pounds.

• a number ofdirect conditionsto include or ex-
clude named instances (compare with the Con-
tinent set) or specify declarative conditions on
primitive types (compare with the Double set used
for the weight of a cargo)

• a number ofproperty conditionsthat recursively
specify the sets of admissable values for the prop-
erties of admissable instances (like theval and
unit property of the WeightMeasure set). Prop-
erty descriptions lead to service descriptions that
form trees as shown in Figure 1.

To express preferences, fuzzy sets may be used in-
stead of crisp sets in request descriptions: The higher
the set membership value, the higher the preference of
the requester. Fuzzy sets are constructed using fuzzy
variants of the type and direct condition introduced
above together withconnecting strategiesthat specify
how to compute the membership value of an instance
based on the membership values of its properties (A
weighted sum might for instance be used to compute
the set membership value of a Shipped-instance using
the values of its properties cargo, price, pickupTime,
. . .).

The concept of variables – a special type of set
– is used to represent necessary inputs and required
outputs of a service invocation. Variables are marked
with a gray background in Figure 1. Where allowed
by the offer description, variables enable the requester
to configure an offer (i.e. influence which of the of-
fered effects will be created). Muller for instance
takes the destination address and the cargo to ship as
input and provides the price of the shipping operation
as output. For more information on DSD, please refer

ICEIS 2007 - International Conference on Enterprise Information Systems

432

to (Küster and K̈onig-Ries, 2006a; Klein et al., 2005).
In Glue, web services and goal descriptions are

represented in F-logic, like ontologies. To model the
requests a shipping goal class was designed, captur-
ing the desired capabilities as post-conditions follow-
ing the WSMO modeling approach (de Bruijn et al.,
2005a). Likewise the semantics of the offer descrip-
tions were captured by a web service class for ship-
ment. The restrictions that must hold in order to in-
voke a service were modelled as assumption and the
result provided by an invocation as post-conditions.
As explained in (Della Valle and Cerizza, 2005), Glue
refines the WSMO discovery conceptual model by
making the notion of class of goals and class of web
service description explicit and by making a clear sep-
aration between instances and classes of goals and
web services.

An example of the F-logic description of the web
service instance for the Muller shipping service can
be found in section 3.4.

In a service description there could be properties
that need to be negotiated, in order to assume a spe-
cific value. Properties that require invocation of exter-
nal web services to gather more information are man-
aged in a special way. They are annotated with special
tags, so that Glue can invoke WebRatio when it rec-
ognizes these tags and WebRatio can negotiate them.
This aspect is detailed in section 3.4.

Not surprisingly, F-logic was sufficiently expres-
sive to capture all details of the given offer and goal
descriptions. However F-logic is not a temporal logic,
therefore a date-time ontology (including concepts
like distance between two different instants of time)
has been modeled in order to have the possibility to
manage temporal constraints for the scenario.

Glue needs to exploit the notion of current time
given by WebRatio. When a goal description is in-
serted by means of the graphical interface of WebRa-
tio, the value of the current time is passed from We-
bRatio to Glue together with the goal description so
that Glue can use it during the matchmaking.

In DIANE, since DSD classes and instances are
internally represented as Java classes, custom Java
code may be injected into instances and classes. In
order to deal with temporal aspects, DIANE could
exploit a special time instancenow that could access
the System time to assert the actual date and time.
On the other hand, the lack of rules and arithmetic
expressions in DSD were hindering the modeling of
some aspects of offer and goal descriptions. Rule-
based price computations (e.g. different prices based
upon the delivery continent) could not be expressed
in DSD. As a workaround for that problem the com-
putation of the price was delegated to an external web

service similar to what was anyway required by one
out of the five available offers (see Section 3.4). Be-
side that, DSD currently also does not support the ex-
pression of arithmetic computations8 as needed for in-
stance to model that a shipping price is made up of a
constanc factor multiplied with the weight of a pack-
age. The workaround for the problem is the same.

Even though finally all aspects could be captured
in both SWE-ET or DIANE, the greater expressivity
of the F-logic approach taken by Glue proved advan-
tageous in the above mentioned cases.

3.3 The Process of Matchmaking

Reasoning: Since DSD does not build on any com-
mon logic formalism it cannot benefit from standard
reasoning tools. Instead a special custom reason-
ing operationsubsethas been defined that solves the
problem of service matchmaking.

For a list of given DSD offer descriptionsO and
a given DSD requestr, a matchmaker has to answer
two questions for eacho∈O: What is the subset value
of o’s effect sets inr ’s fuzzy effect sets (how well iso
contained in whatr requests) and which configuration
of o yields the best such value? Thussubset(O, r) re-
turns a list of altered offersO′, sorted by the fuzzy
subset value of eacho′i ∈ O′ wrt. r (called match
value) and eacho′i ∈ O′ corresponds to exactly one
o j ∈ O whereo′i differs from o j exactly by the fact
that all input variables ino j have been filled with a
concrete instance value.

The current Java based implementation of sub-
set steps through the graphs of eachoi and r syn-
chronously in order to calculate the matching value
in [0,1] as well as the optimal filling of all input
variables. It is worth mentioning that thus the DSD
matcher does not only passively select the most ap-
propriate offer but also actively configures and opti-
mize each offer where possible. The expressivity of
DSD has been tailored with the goal to support effi-
cient computability ofsubset. For further information
on matchmaking of DSD descriptions please refer to
(Klein et al., 2005).

In contrast to DSD, which defines a custom rea-
soning operation, Glue can build upon standard rea-
soning tools for F-logic. Flora-29 – a plug-in of the
XSB inference engine10 based on Prolog – was cho-
sen as inference engine. The language of Flora-2 is a
dialect of F-logic with numerous extensions, includ-
ing HiLog and Transaction Logic. In Glue, discovery
returns all the web services descriptions that match

8This is currently work in progress
9http://flora.sourceforge.net/

10http://xsb.sourceforge.net/

SERVICE DISCOVERY WITH SWE-ET AND DIANE - A Comparative Evaluation by Means of Solutions to a Common
Scenario

433

the request at predefined levels. The level is computed
by evaluating a wgMediator (a WSMO entity that is in
charge of mediating between web service and goal),
that basically specifies a set of F-logic rules specific
to match instances of particular web services classes
with an instance of a particular goal class. Given a
goal instance, in order to identify all instances of the
web services classes that match it, each rule is ap-
plied on a web service description at a time, resulting
in a value that states whether the rule is satisfied or
not. Depending on what rules are satisfied, a discrete
value stating the level of match is returned.

For example, in the wgMediator for shipment four
level of match were defined. The last one is the level
associated to the least accurate match, in which only
the following rules must be satisfied:

• the weight of the good declared in the goal must
be lower than the maximum that the service ac-
cepts for shipping

• pickup and delivery locations requested in the
goal must be covered by the service.

Execution framework and semantics: DSD as-
sumes a common ontology used by all participants
of the matchmaking process. A middleware frame-
work is supplied to support service usage. During
setup the common domain ontologies need to be de-
ployed at the middleware. Afterwards, offer descrip-
tions (specified in DSD and based on those ontolo-
gies) can be published to a repository within the mid-
dleware. Requests as well as offers are internally rep-
resented as Java objects. A request agent handles the
automatic execution of requests that are sent to the
middleware. It causes the matcher agent to match the
request against the available offers (see above), picks
the best matching offer, forwards it to an invocation
agent and takes care that the outputs of the service
invocation are sent back to the requester.

Glue embraces the notion of mediation as spec-
ified in (de Bruijn et al., 2005a). Every element
involved in the discovery process is inserted in the
reasoner as a F-logic description. During discovery,
the reasoner performs inferences upon these descrip-
tions. The result of the inference process represents
the result of the discovery. In particular, duringsetup
timethe F-logic descriptions of web services and goal
classes are inserted in Glue, as well as the F-logic de-
scriptions of both domain ontologies and all the re-
quired mediators. Atpublishing time, provider en-
tities publish instances of web service descriptions
simply by referring to the correct class of web ser-
vice description and providing values to all the nec-
essary parameters. Then, atdiscovery time, when
a user formalizes a goal instance, the goal class the

goal instance belongs to is selected. By using a set of
appropriated ggMediators, other semantically equiv-
alent goals are identified by translating the original
goal. Then, for each goal previously identified, Glue
takes the web service class that match it by using a
wgMediator, which connects a goal class to a web
service class. In other words, the instances of web
services descriptions can be roughly filtered on the
basis of the target of the detected wgMediators. Fi-
nally, a matchmaking between the goal instance de-
scription and the web services instances descriptions
is performed and then the user can select (and invoke)
one of the remaining web services descriptions in or-
der to satisfy the goal.

Selection: Regarding selection the views taken by
SWE-ET and DIANE are quite different. In the SWE-
ET framework, discovery and selection are viewed as
separate tasks. Glue as a discovery engine is able to
discover a set of web services that can satisfy a speci-
fied request, which is represented by a goal. Selection
is viewed as an additional step that follows the dis-
covery and is responsible for choosing a single web
service to be invoked, starting from the set of web
services returned by discovery. For this reason, Glue
does not include selection. In the Glue approach, se-
lection has to be left in charge of the user, which is
the only entity that can take such a decision. Glue
only supports the user’s decision by applying ranking
of the results corresponding to the above mentioned
match levels. Glue does so by assigning a value to
each matching rules that represents the importance of
that rules.

In contrast DIANE is aiming at completely au-
tomating the whole process of service usage. This is
only possible if selection is performed by the match-
making process, too. This in turn is feasible only
if it is possible to precisely capture user preferences
within service requests and efficiently use that ad-
ditional information during matchmaking. The first
is achieved through DSD’s fuzzy elements, the lat-
ter through the application of the specifically tailored
subset operation used for matchmaking. Thus DSD
is able to provide a more finegrained matching com-
pared to Glue at the price of restricted expressivity
and limited compatibility to other semantic service
frameworks.

3.4 Dynamic Aspects of Service
Descriptions

Section 3.2 shows how to model static aspects of a
web service description, assuming no dynamic de-
pendencies. However, one shipping service (Muller)

ICEIS 2007 - International Conference on Enterprise Information Systems

434

required to inquire the price of a shipping operation
dynamically by calling a particular web service end-
point.

To cope with such requirements, DSD supports a
simple choreography to interact with services where
an arbitrary number ofestimation stepsis followed
by a single execution step. Estimation steps must
not have effects on the real world and can be used to
gather dynamical information from a service provider.
In Figure 1, Muller declares that given the shipping
address and the cargo properties as input, the price
of a shipping operation can be retrieved as output of
the first estimation step (denoted by markersOUT,e,1
andIN,e,1)11.

Thus – if necessary – the matcher will initiate a
call of the associated operation and dynamically com-
plement Muller’s description corresponding to the
retrieved information. This procedure was flexible
enough to support all dynamic aspects contained in
the scenario. Additionally it was used to delegate
arithmetic computations as well as the evaluation of
rules needed to compute the price for a shipping to an
external web service to overcome some of the expres-
sivity limits of DSD (compare to Section 3.2).

Originally Glue had not been able to deal with dy-
namic aspects. In order to overcome this limitation,
Glue has been extended by making a clear separation
among:

• discovery capabilities, which represent the static
description of the service

• negotiation capabilities, which represent the dy-
namic description of the service that needs to be
evaluated by invoking it

• selection capabilities, which include non-
functional descriptions.

This extension has had a minimal impact on the
SWE-ET infrastructure. It has been sufficient to add
new features to the execution semantics at the end of
the entire discovery process, in order to perform the
negotiation.

When a web service is published in Glue, in the
case that the service includes special parameters that
need to be negotiated (e.g. shipping price), its de-
scription has to be annotated with special tags, which
point out what parameters have to be negotiated. For
example, the following code shows how theprice of
the Muller service has been modeled in order to en-
able negotiation. In particular, with respect to the
code shown below, a tag stating that it is necessary

11Details how to execute that estimation step are specified
in an offer’s grounding, which is beyond the scope of this
paper. Please refer to (Küster and K̈onig-Ries, 2006b) for
further information.

to invoke theinvokePriceoperation of the Muller ser-
vice in order to negotiate the values of the price has
been added. In addition, the request message (in-
vokePriceRequest) that has to be sent to start the ne-
gotiation has been added to Muller’s description.

wsdInstance_Shipment11:wsdClass_Shipment[
nonFunctionalProperties->_#[
dc_title->’Muller Shipment Service’
...],

capability->_#:capabilityWSD_Shipment[
assumption->_#:
restrictionsOnShipmentService[

maximalGoodWeight->50,
...],

postcondition->_#:
providesShipmentService[

pickupLocations->>{africa, ...},
price->>{
_#:shipmentPricing[
basePrice->0,

//negotiate_operation:
//Muller/invokePrice(out Price)

pricePerWeight->0,
additionalPricePerCollect->(-1)

] ...
].
invokePriceRequest[
country=>location,
packageInformation[
weight=>integer,
lenth=>integer,
height=>integer,
width=>integer

]
].

At the first step of the discovery, Glue deals with
the static descriptions of services only. When it iden-
tifies a service description in which there are some pa-
rameters that have been annotated with a special tag
(i.e. thenegotiateoperationtag in the previous exam-
ple), Glue starts a negotiation by delegating it to We-
bRatio. In other words, Glue is responsible for mod-
eling a service description (including also its nego-
tiation capabilities) and starting the negotiation pro-
cess when it is necessary to dynamically get the value
of a parameter. WebRatio is responsible for handling
the actual invocation (including the grounding toward
SOAP messages). After negotiation, WebRatio re-
turns the actual value for the parameter, so that Glue
can update the service description adding this value.
Finally, Glue evaluates whether the updated instance
of service satisfies the goal by applying the appropri-
ate rules and accepts or rejects the service correspond-
ingly.

SERVICE DISCOVERY WITH SWE-ET AND DIANE - A Comparative Evaluation by Means of Solutions to a Common
Scenario

435

3.5 Invocation

Automated invocation of offers is directly supported
by DIANE. In case of the before mentioned estima-
tion steps the corresponding invocations can be initi-
ated by the matcher directly and can be performed in-
terweaved with the matchmaking process. Regarding
the final execution of the service, the matcher – as out-
lined in Section 3.3 – outputs a list of readily config-
ured offers, i.e. offers where all necessary input val-
ues have been set. The remaining task performed by
the invocation agent is to perform the necessary low-
ering to create an appropriate XML message to send
to the offer implementation and perform lifting on the
returned response message. This is done using sim-
ple declarative mapping rules that map between DSD
concepts and XML data (see (Küster and K̈onig-Ries,
2006b) for details).

In the SWE-ET approach matchmaking and in-
vocation are performed using different technologies.
Invocation of a web service is not directly executed
by Glue, but is left to the application in which Glue
is integrated – in the case of phase-III of the SWS-
Challenge an external invocation component imple-
mented within the WebRatio framework. This ap-
proach is described in (Zaremba et al., 2007).

3.6 Comparison with Other Solutions

DERI12 has provided a solution that is quite similar
to the one of CEFRIEL-Politecnico di Milano. In
particular both are based on the same framework for
Semantic Web services - WSMO. In this section we
emphasize the main differences between the two so-
lutions.

The solution by DERI is based upon WSMX –
the WSMO execution environment – and thus na-
tively supports WSML, in the contrary to Glue where
WSMO is encoded in F-logic by means of Flora-2
syntax. Semantic Web services, goals and ontolo-
gies have been modeled directly in WSMT13, which
provides versatile support for modeling WSMO ele-
ments.

Since logical rules have been used quite exten-
sively in order to explicitly describe various ship-
ping criteria of different shippers, DERI expresses
the rules by means of WSML-Rule flavor of WSML,
while CEFRIEL expressed them in the same formal-
ism used also for goals and services descriptions. In-
stead of Flora-2, DERI used KAON214 interfaced via

12http://www.deri.org
13http://wsmt.sourceforge.net
14http://kaon2.semanticweb.org

the WSML2Reasoner15 framework as internal rea-
soner to inference over the provided functionality of
a service. KAON2 comes with support for elabo-
rate rules and arithmetic expressions, therefore the
WSMX Discovery component did not have to resort
to an external arithmetic services but required calcu-
lations were carried out internally within the context
of reasoner.

Similarly to Flora-2, KAON2 is a high preci-
sion reasoner giving explicit responses without the
direct support for fuzziness or preferences. DERI
has provided simple support for the preferences via
non-functional properties within a goal which specify
which criteria should be taken into the account when
selecting the most suitable service.

The DERI submission directly supports service
contracting as necessary in the case of Muller where
the shipping price had to be dynamically obtained.
WSMO Choreography expressed in ontologized Ab-
stract State Machines (snippet below) has been used
for specifying the necessary interaction with the ser-
vice. This contracting Choreography is utilized dur-
ing the discovery phase and its result (i.e. price in this
case) is integrated into the reasoning context. Once
the service has been selected for the execution phase
there is a separate Choreography allowing to consume
service functionality.

choreography contracting#choreogr
stateSignature
in mu#pQuoteReq withGrounding { ... }
out mu#pQuoteResp withGrounding { ... }
forall {?pQuoteReq} with (
?pRequest memberOf mu#pQuoteReq) do

add(# memberOf mu#pQuoteResp)
endForall

WSMX uses a dedicated Communication Man-
ager component for handling the external commu-
nication with service requesters and with involved
services. The Communication Manager manages
adapters which are responsible to perform the neces-
sary lifting and lowering (i.e. translate between XML
and WSML). Lifting is required when moving from
syntactic data representation to a rich ontology model,
while lowering does the opposite, namely mapping
downwards to non-semantic data models (e.g. XML,
EDI, RosettaNet, others).

4 CONCLUSIONS

Overall the discovery performed by SWE-ET on the
one hand and DIANE on the other is quite different.

15http://tools.deri.org/wsml2reasoner

ICEIS 2007 - International Conference on Enterprise Information Systems

436

DIANE uses a fuzzy set based approach to match-
making. Offers are modelled as the configurable set
of effects a service can provide wheras requests are
modelled as the fuzzy set of similar effects a user is
willing to accept. This maximizes the chance to find
a match and allows to integrate user preferences, thus
providing a very finegrained ranking of matching of-
fers. But to achieve this and still maintain efficient
computability the expressivity of the employed lan-
guage (DSD) had to be restricted quite strictly. An
example will be given below.

Glue in contrast uses a very different matchmak-
ing philosophy. Glue performs matchmaking based
on the notion of a single goal instance and the avail-
able web service instances. Matchmaking is then per-
formed by evaluating rules that check whether a par-
ticular web service instance under consideration is
suitable for the particular goal at hand. In princi-
ple this eases the matchmaking since it is easier to
compare two instances than to compare a fuzzy with
a configurable set. Thus – in turn – Glue is able to
support a much more expressive language (F-logic)
without compromising efficient computability.

To illustrate the trade-offs, assume the following
two examples: A shipper supports collection of pack-
ages on Monday through Friday, the preferred day can
be specified within the ordering process. A requester
accepts collection on either Friday, Saturday or Sun-
day. Using DIANE’s set based approach, this could
be directly encoded and the matcher would correctly
detect a match and automatically choose Friday as the
proper collection day. In the SWE-ET approach this
could not be captured directly (since it requires set-
based matching).

Now assume the requester had required a particu-
lar collection day instead of allowing multiple options
but the conditions of the shipping (regarding price,
available collection times, . . .) vary depending on the
chosen collection day. This could be easily modelled
correctly in SWE-ET but not directly expressed using
DSD (lack of expressivity regarding rules).

It should be mentioned however, that in both cases
certain workarounds allow the respectively inferior
approach to deal with the issue at hand. This is also
reflected by the fact that both approaches were suc-
cessfully applied to solve the SWS-Challenge discov-
ery scenarios released so far.

REFERENCES

Angele, J. and Lausen, G. (2004). Ontologies in F-logic. In
Handbook on Ontologies, pages 29–50.

Brambilla, M., Celino, I., Ceri, S., Cerizza, D., della Valle,

E., Facca, F., and Tziviskou, C. (2006). Improvements
and Future Perspectives on Web Engineering Meth-
ods for Automating Web Services Mediation, Chore-
ography and Discovery: SWS-challenge phase III. In
Third Workshop of the Semantic Web Service Chal-
lenge 2006, Athens, GA, USA.

de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp,
M., Keller, U., Kifer, M., König-Ries, B., Kopecky, J.,
Lara, R., Lausen, H., Oren, E., Polleres, A., Roman,
D., Scicluna, J., and Stollberg, M. (2005a). Web ser-
vice modeling ontology (wsmo). W3C Member Sub-
mission 3 June 2005.

de Bruijn, J., Polleres, A., Lara, R., and Fensel, D. (2004).
D20.3 OWL flight. Technical report, WSML.

de Bruijn, J., Polleres, A., Lara, R., and Fensel, D. (2005b).
D20.1 OWL–. Technical report, WSML.

Della Valle, E. and Cerizza, D. (2005). The mediators cen-
tric approach to automatic web service discovery of
glue. InMEDIATE2005, volume 168 ofCEUR Work-
shop Proceedings, pages 35–50. CEUR-WS.org.

Kifer, M. and Lausen, G. (1989). F-logic: A higher-order
language for reasoning about objects, inheritance, and
scheme. InProc. ACM SIGMOD Conf., page 134,
Portland, OR.

Kifer, M., Lausen, G., and Wu, J. (1995). Logical founda-
tions of object-oriented and frame-based languages.J.
ACM, 42(4):741–843.

Klein, M., König-Ries, B., and M̈ussig, M. (2005). What is
needed for semantic service descriptions - a proposal
for suitable language constructs.International Jour-
nal on Web and Grid Services (IJWGS), 1(3/4):328–
364.

Küster, U. and K̈onig-Ries, B. (2006a). Discovery and
mediation using diane service descriptions. InThird
Workshop of the Semantic Web Service Challenge
2006, Athens, GA, USA.

Küster, U. and K̈onig-Ries, B. (2006b). Dynamic binding
for BPEL processes - a lightweight approach fo inte-
grate semantics into web services. InSecond Inter-
national Workshop on Engineering Service-Oriented
Applications: Design and Composition (WESOA06)
at ICSOC06, Chicago, Illinois, USA.

Küster, U., K̈onig-Ries, B., and Klein, M. (2006). Discov-
ery and mediation using diane service descriptions. In
Second Workshop of the Semantic Web Service Chal-
lenge 2006, Budva, Montenegro.

Pan, J. Z. and Horrocks, I. (2004). OWL-E: Extending owl
with expressive datatype expressions. Technical re-
port, IMG/2004/KR-SW-01/v1.0, Victoria University
of Manchester.

Petrie, C. (2006). It’s the programming, stupid.IEEE Inter-
net Computing, 10(3):96, 95.

Zaremba, M., Vitvar, T., Moran, M., Brambilla, M., Ceri, S.,
Cerizza, D., Valle, E. D., Facca, F. M., and Tziviskou,
C. (2007). Towards semantic interoperabilty: In-
depth comparison of two approaches to solve medi-
ation tasks. InComparative Evaluation of Seman-
tic Web Service Frameworks Special Session at ICEIS
2007.

SERVICE DISCOVERY WITH SWE-ET AND DIANE - A Comparative Evaluation by Means of Solutions to a Common
Scenario

437

