
THE SWS MEDIATOR WITH WEBML/WEBRATIO AND
JABC/JETI: A COMPARISON

Tiziana Margaria∗, Christian Winkler∗, Christian Kubczak†, Bernhard Steffen†

∗Institute for Informatics, University of Potsdam, 14482 Potsdam, Germany,

†Department of Computer Science, University of Dortmund, 44227 Dortmund, Germany,

Marco Brambilla‡, Stefano Ceri‡, Dario Cerizza§, Emanuele Della Valle§, Federico M. Facca‡, Christina Tziviskou‡

‡Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

§CEFRIEL, Milano, Italy

Keywords: Semantic Web, Web services, jABC, WebML.

Abstract: In this paper we compare the SWS Challenge Mediator solutions provided using the WebML/Webratio and
the jABC/jETI approaches.

1 INTRODUCTION

In this paper we compare two solutions to the medi-
ation scenario of the SWS challenge 1 that are based
on the use of WebML (Ceri et al., 2002) and of the
jABC (Steffen et al., 2006; jABC Website, 2007) as
modelling and execution platforms.

We compare only the solutions to the first version
of the SWS Challenge scenario, since the jABC solu-
tion was discussed at the SWS review workshop only
for this first Phase. Nevertheless, the technical com-
parison of the approaches is of general interest and
valid also for the second phase of the scenario.

Both groups adopt a model based approach, sup-
ported by model driven design tools and environ-
ments. This allows modelling the mediator in a graph-
ical high level modelling language and supports the
derivation of an executable mediator from these mod-
els. The solutions are thus similar in their spirit, and
we provide here a first description and comparison of
the similarities and differences, at the modelling, lan-
guage, tool, and change management levels.

In the following, we briefly describe the two con-
crete solutions (Sect. 2 and 3) from the point of view
of the used technologies, then we sketch a comparison
(Sect. 4), we present a reduction of the two solutions
to their mere, common essence (Sect. 5), and finally
we conclude in Sect. 6.

1http://sws-challenge.org

2 WEBML

The specification of a WebML application (Ceri et al.,
2002) consists of a set of models: the application data
model (an extended Entity-Relationship model), one
or more hypertext models (i.e., different site views
or different service views), expressing the navigation
paths and the page composition of the Web applica-
tion or the chain of operations needed to describe a
Web service; the presentation model, describing the
visual aspects of the pages for user views. WebML
covers also the development of B2B Web applica-
tions implementing business processes, thereby sup-
porting full-fledged collaborative workflow-based ap-
plications, spanning multiple individuals, services,
and organizations. In such case the service view or
site view is partially generated by a BPMN model
representing the workflows involved in the applica-
tion. The core elements of a WebML diagram are
units. Each WebML unit has its own well defined
semantic and its execution complies with its seman-
tic. The composition of different units leads to the
description of the semantic of hypertext or Web ser-
vices. WebML provides standard units for querying
data (e.g. Index unit, Selector unit), modifying
data (e.g. Modifying unit). The WebML conceptual
model has been also extended with a service model
that includes a set of Web service units (Manolescu
et al., 2005), corresponding to the WSDL classes of

422

Margaria T., Winkler C., Kubczak C., Steffen B., Brambilla M., Ceri S., Cerizza D., Della Valle E., M. Facca F. and Tziviskou C. (2007).
THE SWS MEDIATOR WITH WEBML/WEBRATIO AND JABC/JETI: A COMPARISON.
In Proceedings of the Ninth International Conference on Enterprise Information Systems, pages 422-429
Copyright c© SciTePress



Figure 1: Overview of the main layers of the
WebML/WebRatio framework.

Figure 2: The WebML/WebRatio CASE tool.

Web service operations, and components for work-
flow management and tracking. The model supports
both the grounding of Web services to the XML
format of Web service messages, and datamediation
capabilities. In particular the Request-Response
and One-way operations are used to consume exter-
nal Web services, while Solicit and Response unit
are used to publish Web services; finally the Error
Response unit takes care of error handling and re-
turning messages to the invoker in case of errors.
The WebML methodology is supported by WebRatio
(WebModels s.r.l., 2007), a commercial CASE tool
that covers all design and development phases from
the BPMN modeling to the deployment of Web appli-
cations and Web services (see Figure 1).

2.1 The WebML Mediator

The solution for the mediation problem starts by de-
signing the data model underlying the RosettaNet
messages with an extended E-R model. We iden-

Figure 3: The BPMN editor integrated in the WebML edit-
ing environment.

tified three main entities: the Pip3APurchaseOrder,
the Partner and the ProductLineItem. Each
Pip3APurchaseOrder instance is related with one or
more ProductLineItem instances, one Partner repre-
senting the Buyer, one Partner representing the Seller
and one Partner representing the Receiver. Every Pro-
ductLineItem instance may have one Partner repre-
senting a Receiver for the single line.

Then the WebML solution models the high-level
scenario of the challenge using BPMN (see Figure
3). This model includes all parts of the scenario on
the whole – Blue’s side as well as the mediator and
Moon’s side – and describes the scenario workflow.

This model is used as a guidance in the produc-
tion of two WebML models that implement the work-
flow’s functionality. The BPMN workflow is split by
a corresponding annotation of the BPMN model into
two separate WebML models that represent two in-
dependent parts of the process: sending a purchase
order and receiving acknowledgments for the ordered
items. The generation of WebML diagrams is based
on an algorithm that populates the WebML diagram
with the standard general purpose units mentioned be-
fore, e.g. for receiving Web service calls and call-
ing Web services and sending Web service responses,
according to the BPMN model. The design of the
mediator is refined manually by configuring existing
units and adding new ones from the WebML unit li-
brary (no new unit had to be developed to cope with
the mediation scenario). It could be possible also to
model the mediator with out storing data but work-
ing only in memory. The data storage was preferred
to allow a better monitoring of the mediation pro-
cess. The conversion from RosettaNet messages is
handled by Adapter units that are configured by a
proper XSLT stylesheet that transforms messages in
an XML format compatible with WebML’s internal
data format. In the same way conversion to and from

THE SWS MEDIATOR WITH WEBML/WEBRATIO AND JABC/JETI: A COMPARISON

423



Figure 4: The jETI architecture: integrated generic web ser-
vice support.

Moon legacy messages are handled by proper XSLT
stylesheets that act as templates for SOAP messages
and that are then populated by runtime queries during
the workflow execution.

3 JABC/JETI

The jABC solution is realized within the jABC frame-
work (Steffen et al., 2006; jABC Website, 2007), an
environment for model-driven service orchestration
based on lightweight process coordination. It has
been used over the past 12 years for business pro-
cess and service logic modelling in several applica-
tion domains, including telecommunications, bioin-
formatics, supply chain management, e-commerce,
collaborative decision support systems, as well as for
software and system development. In this paper, we
restrict us to the jABC facilities relevant to producing
and consuming Web services.

Semantically, jABC models are control flow
graphs with fork/join parallelism, internally inter-
preted as Kripke Transition Systems (Müller-Olm
et al., 1999). This provides a kernel for a sound se-
mantical basis for description formalisms like BPNM,
BPEL, UML activity diagrams, and dataflow graphs,
and constitutes a lingua franca adequate for the
analysis and verification of properties, e.g. by
model checking (Müller-Olm et al., 1999). BPNM
and BPEL are considered different syntactic (visual)
means for representing jABC models tailored for spe-
cific communities of users. In this Challenge, we
chose to privilege the abstract semantic view of the
executable models over ’syntactic’ sugar, and there-
fore use only the jABC notation.

Concerning the data semantics, the

Using external Web services. As in WebML, the
jABC mediator is largely generated automatically.

Figure 5: Consuming and producing web services with
jABC/jETI.

The jETI framework (Java Electronic Tool Integra-
tion) (Kubczak et al., 2006; Margaria et al., 2005;
Arenas et al., 2006) that enhances the jABC to support
seamless integration of remote services (both REST
and Web) can generate basic service types (called
SIBs, Service-Independent Building Blocks) from the
WSDL file of a third party service, and export the
orchestrated/choreographed services inside the jABC
(called SLGs, Service Logic Graphs) as Web services.

Fig. 4 shows the distributed architecture of this
infrastructure. SIBs are analogous to the WebML
units: both concepts represent the atomic function-
ality of an involved service. In the jABC, domain-
specific SIB palettes are shareable among projects,
and organized in a project-specific structure and with
project-specific terminology. This is a simple way
for adopting or adapting to different ontologies within
the same application domain. Domain-specific SIB
palettes are complemented by a library of SIBs that
offer basic functionalities (e.g. SIBs for I/O or mem-
ory handling), or control structures (as used here), or
handling of data structures like matrices (e.g. in our
bioinformatics applications (Margaria et al., 2006)).

Using Web service components inside the jABC
requires a valid WSDL file, or alternatively the URL
with a signature. As shown in Fig. 5(top), jETI’s SIB
generator extracts the information about the function-
ality defined in the WSDL file and creates a SIB for
each function. Input parameters are handled as hierar-
chical SIB parameters: they enable the user to freely
define input values for the web service, using the pre-
existing graphical user interface of the jABC.

This is useful to face the dynamic scenarios of the
Mediation problem without need of programming: if
a web service changes its interface, as in the next level
of the Mediator scenario, we only need to reimport its
WSDL description into a (new) SIB.

By generating Web service SIBs, the execution
of the service remains on the server. The SIB sim-
ply serves as a communication component with the

ICEIS 2007 - International Conference on Enterprise Information Systems

424



Figure 6: The hierarchical input parameters of a generated
Web Service SIB.

Web service, in this example the Apache AXIS frame-
work2 to call the specific web service. In this solution,
the scenario’s data and status information are main-
tained in the session memory. We do not need to load
or store data persistently during the mediation.

Producing Web services. To export a composite
jABC service as a Web service we use our technol-
ogy to generate stand-alone web services from fully
implemented composite services available as jABC
SLGs.3 As shown in Fig. 5(bottom)

1. Since it is required to provide the mediator as a
service, we first transform the composite, hierar-
chical SLG of the mediator into a single SIB, us-
ing the subgraph feature of the jABC - as we usu-
ally do to provide hierarchical models as a single
functionality. This creates a GraphSIB represent-
ing the corresponding SLG. Its implementation is
the argument SLG, executable within the jABC

2Apache’s Axis Website - http://ws.apache.org/axis
3Of course, it is also possible to export single SIBs as

web services, this way offering a translation to the WS-
world of preexisting jABC libraries.

Tracer, the interpreter (or a virtual machine) for
SLGs.

2. To provide a Web service mediator completely in-
dependent of the jABC, we use the code generator
plugin (Steffen et al., 2006) to obtain executable
source code from the GraphSIB. This code is then
deployed on a server using the AXIS framework,
this way making the functionality accessible to
other users. We then generate a WSDL descrip-
tion that contains all the necessary information to
access the deployed service as a web service.
This way, users can call the newly added web ser-
vice the way they are used to, independently from
the jABC.

Choreography. jABC originated in the context of
the verification of distributed systems (Müller-Olm
et al., 1999), therefore SLGs are inherently adequate
as choreography models. The SIBs can physically run
in a distributed architecture. They communicate di-
rectly or with a shared space (called the context). The
SLGs are fully hierarchical: SIBs can themselves be
implemented via SLGs. The macro mechanism de-
scribed in (Steffen et al., 1997) allows defining what
communication actions of an SLG are visible to the
environment (for choreography). Hierarchy is how-
ever not needed for the mediator solution. Orchestra-
tion is as far as the jABC is concerned just a degener-
ate case of choreography.

Data Semantics. The static data semantics is cap-
tured automatically during the WSDL-to-SIB import
as the SIB parameters.

These parameters, additional semantic properties
attached to the SIBs, possibly imported from an on-
tology, and the SIB branch labels are visible to the
model checker (Steffen et al., 2006), which allows au-
tomatically proving global compliance constraints on
the business logic of an SLG. These constraints are
expressible in mu-calculus and its derivatives, a fam-
ily of modal (temporal) logics.

Additionally, arbitrary relations between data ele-
ments can be provided as local checking expressions,
with the expressiveness of Java. This facility allows
expressing and checking pre and post conditions.

Neither the local checker nor the model checker
were used for the mediation solution.

3.1 The jABC Mediator

In the Mediator scenario, we have a rather flat domain
structure for the SWS specific services (see Fig. 7

THE SWS MEDIATOR WITH WEBML/WEBRATIO AND JABC/JETI: A COMPARISON

425



Table 1: Comparison of the presented technologies.

Function WebML jABC
BPMN model Manually modelled from the SWSC

task description. Manually anno-
tated to steer the WebML genera-
tion to meet the challenge’s needs.

Not a distinct model, just an abstract
jABC graph.

Mediator control flow WebML model structure with stan-
dard units generated from BP
model. Units are then configured
and other units are added from the
library manually (no need for any im-
plementation, no code generation,
just component configuration).

Manually created SLG along the
SWSC task description (by refining
the abstract model equivalent to the
BPMN model), using automatically
generated- and standard SIBs.

Data Management ER-model manually created from
analyzing the RosettaNet mes-
sages and adding status informa-
tion. Used to keep data persistent.

ER-model possible, manually cre-
ated from analyzing the RosettaNet
messages. Not necessary due to
WSDL import. The data for the me-
diator are kept in the session mem-
ory.

Web Service invocation Generic standard units for calls to
WSs

Automatically generated SIBs rep-
resenting WS functions.

Web Service publishing Generic standard units for receiving
SOAP messages.

WSs automatically generated and
published from jABC SLGs.

Passing data to a Web Ser-
vice

Data must be included in the SOAP
messages. SOAP (XML) message
templates have to be created in ad-
vance.

Data is passed to the WSs via the
generated SIB parameters.

Receiving data from a Web
Service

Data are extracted from the raw
SOAP messages.

Data is received from the WSs via
the generated SIB parameters that
are correct by construction.

Handling XML messages Standard units for handling XML
messages exist, performing XSL
transformations on XML messages.

No need to handle raw XML mes-
sages.

Monitoring User Interface Standard units to generate web
pages, displaying database data.

Monitoring of flow graphs and state
information within the SLG Tracer
(interpreter).

left): we only distinguish SWS from common ser-
vices, and we import the entities in the domain of dis-
course (part of an underlying ontology) through the
WSDL import.

As shown in Fig. 6, we obtain directly the full
structure of the XML messages. Here, we see for ex-
ample the rich hierarchical parameter structure of the
OMServiceCreateNewOrder SIB.

The workflow is created manually, by drag and
drop from the palette of automatically produced
SIBs 4. It is executed using the Tracer plugin, the
jABC interpreter for jABC service models, which
uses the jETI facility to communicate with the remote
services provided by the SWS Challenge hosts.

4We are working on the automatic generation of the
workflow from declarative specifications.

We provide the jABC Mediator service as a Web
service with the already described technology.

We only mention for ease of comparison with
the other approaches that the data adaptation requires
only the reimport of the changed WSDL descriptions
into SIBs, which is automatic and the process adap-
tation requires a manual modification of the SLG,
which happens graphically in the jABC.

4 COMPARISON

Table 1 summarizes the profiles of the two solutions,
which we describe in more detail below:

ICEIS 2007 - International Conference on Enterprise Information Systems

426



Figure 8: The compared Mediators: Functional correspondence of the WebML (left) and jABC (right) solutions.

Figure 7: The SWS Mediator SIBs and the abstract process
model.

Workflow:
WebML covers the high level specification of the
business flow by means of BPMN models. A
coarse WebML skeleton is automatically gener-
ated from the BPMN model. This model contains
standard units for the web service calls. Other
functions that are necessary to complete these
calls have to be configured to meet the actual re-
quirements.
The jABC abstract model is essentially equiva-
lent to the BPMN model. It can be refined man-
ually into the mediator graph. As done here, the
main domain specific (peculiar to the SWS Chal-
lenge) components (SIBs) used in this model are
automatically generated from the Web Service’s

WSDL descriptions. The SLG also contains stan-
dard control SIBs (provided with the jABC as a
library) to realize the specific control flow for the
SWSC scenario descriptions.

Data Model:
The WebML model comprises a data description
model consisting of an E-R model that is derived
from analyzing the data structures in the Roset-
taNet messages. This E-R model is used to store
the BP’s data as well as status information regard-
ing the state of the process execution. It is also
possible to use in memory data storage as config-
uration option.
The jABC mediator does not use persistent data
storage since it keeps the information in the ses-
sion memory. The same ER-model could however
also be realized persistently via the DB-Schema
plugin, if necessary.

Dealing with WS:
The WebML solution offers four generic WS-
related functional units to use or realize a Web
Service’s functionality: two units to issue calls to
a WS, one for sending a request and one for also
waiting for a response, and two units to provide a
WS functionality, one to wait for a request and one
for also sending a reply. These units are param-
eterized (configured) with the WSDL description
and with SOAP message templates that realize the
particular WS functionality and return the results
of the WS call as SOAP message. These units can
also be configured dynamically at runtime passing
as parameter the dynamic end point, as shown in
the discovery scenario. Such feature is particular

THE SWS MEDIATOR WITH WEBML/WEBRATIO AND JABC/JETI: A COMPARISON

427



Figure 9: The Reduced WebML and jABC solutions.

useful if combined with dynamic Adapter units
since it allows to interact with arbitrary Web ser-
vices and to store the results in the internal data
model regardless of the invoked Web services.
The jABC solution realizes a dedicated access to
external Web services: for each WS functionality,
a separate SIB is automatically generated from the
corresponding WSDL description. These SIBs
are already fully instantiated: they provide access
to the data exchanged with the WS through auto-
matically generated SIB parameters, that can be
accessed in each jABC model. Similarly, a stand-
alone WS (including the corresponding WSDL)
can be generated from each jABC SLG and auto-
matically provided on a web server.

Dealing with XML messages: To deal with Web Ser-
vices WebML has to prepare the corresponding
SOAP (XML) messages, that are passed to the
units that execute the call to a WS. If a WS re-
turns a result, this value has to be extracted from
the returned SOAP message as well. To do so,
WebML offers standard units that perform (lift-
ing and lowering) XSL transformations on XML
messages. Eventually this operations can be per-
formed directly in units that perform the actual
Web service calls. The use of lifting and lower-
ing adapters grants a more generic approach since
they can be configured dynamically.
As in the jABC there is no need to deal with raw
XML messages, no such special functions are re-
quired. The messages are created within the SIBs
according to the structure prescribed by the origi-
nal WSDL, which is reflected later in the complex

parameters of the SIBs and thus known to them.

State Monitoring:
The WebML language offers standard abilities to
display information from a relational database on
a web page. This functionality can be efficiently
used to monitor the state of the model work-
flow, as this information is stored in a relational
database as well.
The jABC offers white box monitoring via its
SLG interpreter, the Tracer plugin, which allows
monitoring variables and communication activity
of the whole hierarchical SLG, at wish separately
for each hierarchy level and each thread, in case of
a distributed execution. Additionally the Learn-
Lib plugin (Raffelt et al., 2005) provides black
box monitoring and automatic (re-)construction of
a user-level model, based on the observation of the
conversation with the environment.

5 BOILING DOWN TO THE
ESSENCE

Figure 8 compares the WebML and the jABC work-
flows, with a layout that respects the functionalities
within the mediator solutions. Taking into account the
discussed differences, it is easy to reduce the WebML
solution to the jABC solution in a systematic way.

• As mentioned before, the WebML model needs a
pair of lifting and lowering actions for each web
service call to create and decode the needed XML

ICEIS 2007 - International Conference on Enterprise Information Systems

428



Figure 10: Message interpretation units within the WebML
solution.

messages. These transformations are not neces-
sary in the jABC solution, as it does not reduce
communication to the level of exchanging raw
XML messages. So all the service units dealing
with the transformation of XML messages in the
WebML model are crossed out in black in Fig. 10.

• All units dealing with database access in the
WebML model are additionally identified and
crossed out in red in Fig. 10. These components
do not arise in the jABC modelling, which allows
to also virtualize these access functions.

• The jABC models error handling explicitly while
the WebML solution does not (even if the mod-
eling language offers support for that). Therefore
we remove the error handling SIBs from the jABC
solution.

The remaining workflow, shown in Fig. 9, repre-
sents the essence of the desired solution, abstracted
from approach-specific details of the communication,
storage, and error handling choices.

6 CONCLUSION

In this paper we presented two solutions to the medi-
ation in a Semantic Web Service scenario described
in the SWS challenge 20065. The two approaches,
WebML and jABC, offered two different views on
the mediation problem, both in terms of the design-
time modeling of the solution and of the runtime ex-
ecution platform. Both approaches presented advan-
tages and drawbacks. jABC offered a more abstract
and synthetic view of the solution, e.g., disregarding

5http://sws-challenge.org

some grounding details of the communication; on the
other hand, WebML offered a wider coverage of the
technical details and of the efficient runtime execu-
tion. The WebML approach is based on software en-
gineering and web engineering practices, while jABC
takes more advantage of the SOA and web service de-
sign fields. Both the methods are not natively meant
to face Semantic Web applications, but both proved to
adapt rather well to this new class of problems.

REFERENCES

Arenas, A., Bicarregui, J., and Margaria, T. (2006). The
fmics view on the verified software repository. In
IDPT - Conf. on Integrated Design and Process Tech-
nology. Society for Design and Process Science.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai,
S., and Matera, M. (2002). Designing Data-Intensive
Web Applications. Morgan Kauffmann.

jABC Website (2007). Universität Dortmund.
http://www.jabc.de.

Kubczak, C., Steffen, B., and Margaria, T. (2006). The jabc
approach to mediation and choreography. 2nd Seman-
tic Web Service Challenge Worksh.

Manolescu, I., Brambilla, M., Ceri, S., Comai, S., and
Fraternali, P. (2005). Model-driven design and de-
ployment of service-enabled web applications. ACM
Trans. Internet Techn., 5(3):439–479.

Margaria, T., Kubczak, C., Njoku, M., and Steffen, B.
(2006). Model-based design of distributed collabora-
tive bioinformatics processes in the jabc. In ICECCS
2006, Stanford, CA, pages 169–176. IEEE CS Press.

Margaria, T., Nagel, R., and Steffen, B. (2005). Remote in-
tegration and coordination of verification tools in jeti.
In Proc. ECBS’05, pages 431–436. IEEE CS Press.

Müller-Olm, M., Schmidt, D., and Steffen, B. (1999).
Model-checking: A tutorial introduction. In SAS, 6th
InT: Static Analysis Symposium, LNCS N.1694, pages
330–354. Springer Verlag.

Raffelt, H., Steffen, B., and Berg, T. (2005). Learnlib: a
library for automata learning and experimentation. In
ACM SIGSOFT FMICS’05, Lisbon, P, pages 62–71.

Steffen, B., Margaria, T., Braun, V., and Kalt, N. (1997).
Hierarchical service definition. In Annual Review of
Communication, pages 847–856. Int. Engin. Consor-
tium Chicago (USA), IEC.

Steffen, B., Margaria, T., Nagel, R., Jörges, S., and
Kubczak, C. (2006). Model-Driven Development with
the jABC. In HVC - IBM Haifa Verification Confer-
ence, LNCS N.4383. Springer Verlag.

WebModels s.r.l. (2007). Webratio site development suite.
http://www.webratio.com.

THE SWS MEDIATOR WITH WEBML/WEBRATIO AND JABC/JETI: A COMPARISON

429


