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Abstract. Cryptographic enforcement of access control mechanisms relies on
encrypting protected data with the keys stored by authorized users. This approach
poses the problem of the distribution of secret keys. In this paper, a key manage-
ment scheme is presented where each user stores a single key and is capable of
efficiently calculating appropriate keys needed to access requested data. The pro-
posed scheme does not require to encrypt the same data (key) multiple times with
the keys of different users or groups of users. It is designed especially for the
purpose of access control. Thanks to that, the space needed for storing public
parameters is significantly reduced. Furthermore, the proposed method supports
flexible updates when user’s access rights change.

1 Introduction

Advances in information and communication technologies bring with numerous bene-
fits also concerns with respect to security issues. The data no longer resides on main-
frames physically isolated within an organization, where physical security measures
can be taken to safeguard the data and the system. Modern solutions are evolving to-
wards open, interconnected environment where storage outsourcing and operations on
untrusted servers happen frequently. Open access data storage standards pose new chal-
lenges on security technologies. The old server-centric protection model locks data in a
database server and uses a traditional access control model to permit access to data. To
facilitate current developments, a data-centric protection model is required, where data
is cryptographically protected and allowed to be outsourced or even freely float on the
network. In many cases there is a need to replicate the data and send it to the clients.
Examples are distributed databases, grid computing, enterprise rights management sys-
tems and peer-to-peer data management systems in general. Consider for example the
development of Electronic Health Records (EHRS). It aims at increased availability and
sharing of patient records. Records are shared among different healthcare providers, ex-
ternal wellness services and relatives. As the healthcare data is very sensitive, privacy
and security have to be taken care of. Today this often means that access to EHRs is
restricted to a controlled environment of care institutions. This limitation can be over-
come by the more flexible data-centric protection.

In this paper, we address the key management problem of the data-centric protection
model. Namely, when the data is encrypted, the access control policies have to be taken
into account so that control is maintained regarding which users can access what data.
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The remainder of this paper is organized as follows. Se@idescribes the problem
and surveys the related work. Our key management solutipresented in Section 3.
Section 4 is devoted to the problem of updates of accessri§kttion 5 discusses the
advantages of the proposed solution compared to the dtdte-art. Finally, Section 6
summarizes our contributions.

2 Related Work and Problem Description

A straightforward solution to enforce access control witfptography is to encrypt the
data with a data key, which is consequently encrypted witk#ys of users that should
be able to access this data. The drawback of such approduwtt esich data key is stored
in multiple copies encrypted with different user keys. Thenber of copies of a single
data key can reach the number of users (or roles or user grinupe system. For large
systems that allow fine granularity of access to data, thislrar can by far exceed the
size of the protected data itself. Another problem is updpgincrypted data keys when
the access control policies change. Thus, we search forlzoohéd assign the keys to
the data and the users in a more efficient manner, supporéixig/# updates.

There are a number of different definitions of the key managgrmroblem in the
literature. We propose here a generalized problem statef®the best of our knowl-
edge our definition covers all the approaches presentea ilitéhnature.

Generalized Key Management Problelret 2/ be the set of users of the system (users
can represent individuals, roles or groups of individyas)d letD be the set of data
records. Any set of users is an access configuration. Thd seecs allowed to access
data recordl € D is an access configuration associated witHenoted asiC(d). The
access configurations are partially ordered in a naturalwagubset inclusiort (see
Figure 1c).

The inclusion partial order is used to assign the keys topgatfi users. This partial
order satisfies more conditions than necessary and theref@stes opportunities. By
relaxing these, and defining a weaker order relation, wevgtlartial orders that in turn
allow for more efficient key management.

The necessary conditions for the partial orlBr <) on access configurations are
as follows. For each user access configuratiofu} belongs toP : V,e, {u} € P.
There may be however some additional access configuratidhsfor exampleAC (d)
for d € D. The order relatiorc on elements of satisfies (order conditions):

ACq DACQ,‘ACQ‘ =1= AC; < ACy (l)
ACT < ACQ = AC| D ACs
This definition ensures, that if € AC, then{u} > AC, and requires as few other
order relations as possible. Intuitively, we want to motiat the data accessible by the
whole groupAC is also accessible by any usee AC. Examples of orders that satisfy
our definition are presented in Figure 1.

The task of the key management scheme is to (i) design aneeffigiartial order

P satisfying order conditions (1) and (ii) assign to each asa®nfiguratiomAC in P

3 By efficient we mean with minimal number of configurations and relatinrikem, but avoid-
ing multiple copies of data keys.
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ACCESS RIGHTS:

{12345678} d1 a2 a3 a4 ds ds

{1234} {5678}

AC (d3)=AC (d4)= {1345678}= {1}U {34}U {5678} ACM3)=AC(@4)= (1345678}

Encrypted data: E (ky;,d3) E (k,,,d4) E“CIYP‘EE ia‘ﬁ“ E (3, d3) B “;:e'd‘“
Encrypted keys: E K, k) E K 54, K3) E K se70) Kas) Encrypte EYS-;?(GP; s ai)
E® 1y Kyg) B KizgyKag) B Kisers) Kag) (1345676} 70d4

(a) Ul u3 ud U5 U6 u7 uB u2
Fig. 1. Example of an access table and orders on access configurationthfsaable.

on or more secret keyk 4, such that based of{(,,, each usew can obtaink ac

for every AC < {u}. The data recordd € D are encrypted with the data key,
that in turn is encrypted with the keys of groups of usdis; in such a way, that
AC(d) = |, AC;. Thus, all the authorized users can access their data. Emepmes
are shown in Figure 1. In case of broadcast encryption offgigufe 1 a), the data
keysk,, andkg, are encrypted three times each with the keys of access ceatfions
that sum up taAC(ds) = AC(d,4). In the two other partial orders in Figure 1 b and
¢, AC(d) for each data record € D is included in the order, thus each data key is
encrypted only once.

Various solutions were proposed to address this proble@][Practical approaches
designed for cryptographically enforced access contehaostly based on broadcast
encryption [4]. In the basic approach, the users are repredeoy the leafs and the
access configurations are represented by the interior rid@elsinary tree. This binary
tree represents the partial order on access configuratisnshown in Figure 1a. The
user is required to store all the keys on the path from theesponding leaf to the
root of the tree. She can decrypt all the necessary data hatlke¢ys she stores. This
strategy only partially reduces the redundancy descrilvediqusly, as there are still
multiple copies of data keys. Furthermore, each user stheesumber of keys that is
of order of the logarithm of the number of subjects, instefjdst a single key as in the
straightforward solution.

A number of improvements of this basic method were propostedt of them [5,

6] consider users as stateless receivers, and are refartkd literature as revocation
schemes. The improvements are achieved by introducing grotas, more complex
orderings of these groups, and sophisticated key assigmmethods.

Another popular approach constitutes of the key generatibemes [1-3]. Essen-
tially, the partial order is given, and the task of the schéste assign the keys to the
elements (access configurations) of the given order. In¢hess control settings, that
means that given the key ofC; and some public information one can compute the
key of ACs if and only if ACy < AC;. Support for an arbitrary number of groups
allows the complete elimination of the multiple copies dfedkeeys while, thanks to key
generation mechanism, each user has only one secret kegvdnuhe price to be paid
is the public information that is stored on a public serveediby the users to derive
keys. Especially in the case of access control, it is veryoirigmt to minimize the public
space, as the size of the partial orders of access configusatan be exponential in the
number of users.
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We discuss the key generation schemes applied to accessldastdone in [7])
and compare them with our approach in Section 5.

3 Key Management Solution

In this section we propose an efficient solution for the keyaggement problem stated
above. In Section 3.1, we present an algorithm for constrgdhe partial order on
access configurations (AC) satisfying (1). We represestphrtial order by an acyclic
and transitively reduced directed graph, where nodes aesaconfigurations, and arcs
(directed edges) connect comparable elements, from gteamaller. In the literature,
such a graph is called a Hasse diagram of a partial order. Wetel¢he presence of an
arc fromz toy by x — y, and a directed path as— y. The constructed graph has
two additional properties referred to as V-conditions:

The number of arcs coming into a node is eithar 0
For any two nodes, at most one node has arcs into both of them.

)

A graph satisfying (2) is &-graph Examples of a non V-graph (a) and a V-graph
(c) are shown in Figure 2. We refer to a transitively reducegtlc digraph satisfying
(2) and representing an order satisfying (1)aasess control graphThe V-form of
the graph allows us to apply the Diffie-Hellman (DH) based geyeration scheme
presented in Section 3.2. The DH scheme assigns public aradegkeys to the nodes.
Each user receives a single private key and using this key ablé to derive the keys
needed to decrypt the data he has right to access.

3.1 Hierarchy Construction Algorithm

In this section we present the construction of a partial batleaccess configurations.
The CreateHierarchy(Access Table ACCE&&jorithm presented in this section takes
as an input an access table (as in Figure 1) and builds ansaometsol graph on access
configurations (shown in Figure 2 c). Appendices A and B pewvthe code and the
correctness proof respectively.

The input access tabldCCESS is a boolean matrix representing access rights
given to the users. The rows correspond to the users andltihar®to the data records.
The valueACCESS|u, d] = true(+) if and only if useru is allowed to access datia
Each column represents an access configuration of the porréing data object.

The algorithm consists of the initial phase and the threesttoation phases de-
scribed below. In the initial phase, tleeateHierarchyalgorithm obtains access config-
urations of alld € D from corresponding columns and stores them in the priotigug
Q, with the priority of AC set to its siz§ AC|. Smaller configurations are extracted
earlier. Additionally, all access configurations contagna single user are inserted to
initially empty graphG.

Let In(x) for x € G denote the set of directed edges (arcs) pointing.tm the
next phases, the algorithm adds access configurations ged ealthe graph. Some of
these adds may cause previously added edges to be remoesainT bf these transfor-
mations is to obtain a graph satisfying the conditions frahl@& 1.
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Table 1. Conditions specifying access control graph and their informal de&orip

|Description |Condition
a. |Access configurations of all single users belong:tqu} € G for eachu € U
a’.|Access configurations of all data records belong'ia.C(d) € G for eachd € D
b. |A user is connected via directed paths with all theu € AC = {u} - AC
configurations she belongs to (first order condition)

b’.|Second order condition AC; — AC; = AC; C AC,

c. |First V-condition |In(AC)| = 0 or |[In(AC)| = 2
foranyAC € G

d. [Second V-condition In(AC1) NIn(ACy)| <1

foranyAC,,AC, € G

In the first phase, the algorithm constructs grapbatisfying conditionga — b').
QueueQ stores the configurations that still need to be adde@.tds before smaller
configurations are extracted earlier. For each extractefigroationAC the algorithm:
1. insertsAC to graphG
2. finds inG the minimal set cover ofAC, that is a minimal set of configuratioaBC;

already inG, such thatAC = | AC;

3. inserts an edgdC; — AC for eachAC; from the found cover

until Q is empty (see Appendix A proceduresertCoveredMin(AQ) Trivially, (a —b')
are satisfied after completing this phase. For the examglesadable from Figure 1,
the graph obtained after this phase is shown in Figure 2a.

‘ AC(d1)=AC(d2)=(12345678)‘ (123456} AC(d1)= AC(d2)={ 12345678]] ©
C
© % 7 § % ®

AC(d3)= AC(d4) AC(d5)= AC(d6)
AC(d3)= AC(d4) AC(d5)= AC(d6) P o
={1345678} ={2345678}

={1345678} ={2345678}
(b)

Fig. 2. (a) graph obtained after the first phase applied to table in Figure 1; ¢igftranation
CreateTree applied in the third phase; (c) the final result of the algorigpuired to the table in
Figure 1.

In the second phase, the algorithm transforms the graphesepre conditions
(a — V'), and reduce the number of incoming edges to at most two pez.r@deue
@ stores configurations that need to be processed by the thlgorthat is those with
more than two incoming edges. The algorithm extracts thégamtions with a greater
number of incoming edges first. For each extracted configuradC', the algorithm
looks at configurationglC” in 9, and considers their intersectigfC' N AC’ with AC.
For eachAC’, AC N AC’ is a potential new configuration to be added to gréph
Note, that if X ¢ AC N AC’ C AC, then adding configuratiodAC' N AC’ and edges
X —- ACNAC', ACNAC’" — AC, makes edg&X — AC unnecessary by transitiv-
ity. The algorithm choosedC’ in a way, that adding configuratiohC N AC” allows
to reduce the maximal number of edges coming iA(. It repeats this step, until no
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more edges ifn(AC) can be reduced in this manner. During these transformations
the numbers of incoming edges of configuratiofis’ are reduced as well. The con-
figurations, whose incoming edges were reduced to at mosate/oemoved frond).
After completing the loop described above, the graph foronning example is shown
in Figure 1c. Conditior{d) is satisfied trivially after the termination of the seconépé
(see Appendix B).

In the third phase, if after the second phase thereléfén G such thatin(AC)| >
2, then the algorithm reducd$n(AC)| by substituting/n(AC) with a binary tree
rooted inAC (see Appendix A procedut@reateTree(AQ) as shown in Figure 2b. The
leafs are the nodes connected46’ with arcsIn(AC). After this step|In(AC)| = 2
and AC can be removed frony). The algorithm continues the third phase u}ilis
empty.

Note, that In(AC)| = 1 cannot hold for anydC'. At the end of the third phase, all
(a — d) are satisfied (see Appendix B), and the algorithm terminaies final result of
the algorithm for the running example is shown in Figure 2c.

3.2 Diffie-Hellman based Key Generation Scheme

In this section, we describe a key generation scheme for eesaacontrol graph re-
turned by algorithnCreateHierarchy(Access Table ACCES8hich was presented in
Section 3.1. The security of the scheme follows directlyrfrihe security of the DH
key exchange protocol.

Key AssignmentLet LeftParent(AC)and RightParent(AC)e the nodes ofn(AC).
We assign private and public keys to the nodesg/pficcording to the Diffie Hellman
key exchange protocol. lfn(AC) is empty then the secret key dfC' is a randomly
chosen number. Otherwise the secret keyl6f is a shared key obtained by applying
Diffie-Hellman protocol on the private and public keyd eftParent(AChandRightPar-
ent(AC) treating them as the key exchanging parties. The publiokeyC is obtained
from its private key according to the Diffie-Hellman protbcbhus, eactAC s labeled
with its private keyS 4¢ and its public keyP4 ¢ as follows:

Sac = gSLeftParent(AC)'SRtgh,tPa,'rent(AC) mod p 3
Pic = ¢%4¢ mod p @)
Key Derivation. To derive the key of a descendant node, a node needs its onet sec
key, as well as the public keys of the “other” parents in théhpga the target node.
It recursively derives child keys along the path to the tarigg calculatingS ;4 =

Spare.nt

(Pother parent)

4 Updates

This section shows how to efficiently deal with the updatethefaccess control poli-
cies. The updates to the policies can be categorized aogptidé amount of change
they cause in the database. Each category requires diffeteps to be taken to reen-
crypt the necessary data. The table in Figure 3 presentscitegories covering all
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possible scenarios of access control policy update. Adegri the nature of the in-
troduced update, we apply a combination of three basic stepsesented in the table.
Below we describe these basic steps and their effects orathbake.

\g.:ﬁ.;" New Existing
aion
Data Steps: Inserting Access | Steps: Not needed
Object Conﬁgu.rahfm AC e > Access configliration
New A new data object is A new data object is
asegned anem axcess | segned o an exising Joins the hierarchy
Steps: Adding Data
Object DO Steps: I:;:r]t)ﬁf}, Steps: Add DO. ABCDEF] (1) ABCDEF] (2)
Existing ‘A new access ‘An existing object [acoer | [Beper | [acoer] [Beper]
configuration is assigned | changes the assigned
to an existing data object | access configuration into
R another existing one
Steps® Reke; Data
°P Obi mylggo Steps: Insert AC, Steps: Rekey DO.
Rekey DO.

Fig. 3. Update scenarios and example.

TheInsert Access Configuration (Insert A8ep is needed when new access con-
trol policies imply a new access configuratidi,,..,, which is not an element of the
current hierarchy (represented by an access control grapig is the only step, in
which the hierarchy must be updated. We proceed as follolws.rlew node is cre-
ated in the hierarchy foaAC,..,. It is not assigned any children. If it were, then the set
{X € G:3zc¢AChew, — Z and X — X} must be assigned new keys. This could
require the re-encryption of the whole hierarchy. ThusnseitAC,,..,, we apply the
operationsG.InsertCover Min(ACye,) and G.CreateTree( AC,.) (See Section
3.1). After these two steps conditions [a-d] from Sectiobl&al remain satisfied and
we can generate new keys for new nodes using the DH schemekBigimg is required
whatsoever. Frequent updates of the hierarchy influenc@dhermance and public
space. Therefore after a certain number of updates the viinedarchy is rebuilt and
rekeyed. If the access configuration in the hierarchy doé¢samwespond to any data
object, it is not removed until the hierarchy is rebuilt, aedhains as a virtual node.
Applying updates to an example hierarchy is shown in Figure 3

The Add Data Object (Add DO8tep is required when a new data object is assigned
an existing access configuration. In this case, a new seeydbk the new data object
is created, the object is encrypted with the new key, and ¢lnekey is encrypted with
the key of the (existing) access configuration assignedeoktiect.

The Rekey Data Object (Rekey D&ep is performed, when an access configura-
tion AC,;4 assigned before to a data objectc D is changed into another existing
access configuratioAC,,..,. AssumekK (d) is the data encryption key assigneddo
K(AC,) and K(AC,,4) are the key encryption keys corresponding to these access
configurations. There are two possible cases:

1. AC,q C AC,ew: in this case the users gain access rightsEifd) is re-encrypted

with K(ACe)
2. otherwise: in this case the users loose rightsféfd) must be changed intl§,,.., (d),

d is re-encrypted with,, ., (d), Kpew (d) is encrypted withK (AC,.,,) and stored.
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5 Discussion

In this section, we compare our scheme to the schemes deddnilSection 2. Com-
pared to broadcast encryption methods, the solution weggpliminates the need for
multiple copies of data keys and reduces to a single key trage required per user.
Therefore, we focus in this section on the comparison of chemse with the key gen-
eration schemes. For the sake of a clear comparison we divighe into two groups:
PKC (Public Key Cryptography) based schemes and SKC (Syrimiéty Cryptogra-
phy) based schemes.

Let n be the size of a partial order to which a PKC scheme is applied. PKC
based solutions are essentially extensions of two basi®appes. The first approach
requires storing large public keys proportional to the picaf firstn primes:p; -- - --py,
[1,8,9]. The upper bound for the productefprimes is(nlogn)™, so the size in bits
required to store it i$og(n logn)™ = nlog(nlogn). Each key derivation step requires
a single operation, but computation on numbers of that sipdiés the time needed for
the key derivation proportional ta. In the second approach, the number of modular
exponentiations needed for computing the private keysdpgitional tor. [2, 10, 11].
This is applicable for reasonably small partial orders,if@tance hierarchies inside
a company or an institute. However in our settings, assutatyV is the number of
users, the number of possible access configurations can refthTherefore the direct
application of these schemes for partial order on accedggcmations results in a key
derivation time that is exponential iN.

In the scheme we propose, all the private and public keysauraded from above
by a large prime number. To ensure that the keys are uniquenust be of orden® for
some constant. Therefore the size of a public key is bounded from above hyg n. It
is in the worst case proportional f8. The key derivation time in the proposed scheme
is proportional to the height of the partial order. Since lleght of a partial order on
access configurations cannot excéégdthe derivation time is bounded from above by
N. An additional advantage of our scheme is the support foitflexipdates, which are
poorly supported in the PKC based schemes.

The SKC based schemes [2, 12, 13, 3] are more efficient, hovgewee successful
attacks against them have been proposed [14]. Furthermerergue below that in
terms of storage space our scheme is more efficient than ahgedé schemes applied
directly to an inclusion partial order on access configoregi

Essentially, the SKC based schemes assign the private &dys hodes and public
keys to the edges of the given partial order. When the nodescaess configurations,
this order is naturally given by set inclusion. Itis repreee by a directed graph with
nodes (access configurations) aneblges. An SKC based scheme assig(s) private
and O(e) public keys. As emphasized in the problem statement giveBeiction 2,
inclusion order gives many redundant edges, which in ture giany redundant public
parameters. Intuitively, our partial order constructiongat minimizing the number of
edges.

A perceptive reader spots immediately that our scheme rasigth private and
public keys to the nodes of the partial order we constructvél@r, for each noddC
except forN singletons{u} we have|In(AC)| = 2 (V -condition). Therefore, the
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number of nodes is equal ﬂédg—“‘ + N, and this is the number of public keys issued
by our schemé.

This does not complete the analysis, because the numbepge$ &d the order we
construct is different than in the inclusion order. kkeinde be the number of nodes
and edges in the inclusion order given on access confignsgtiad <y, and AC(d) gep-
Let n; ande; be the number of nodes and edges in our construction aftertthghase
of the algorithm. After the first phase, the following comaliis are satisfiedt] < e
andnj = n. This is due to the weaker order conditions defined in Se@iowhen
constructing the order, we insert only necessary edgesctmtect users with access
configurations they belong to, thus for many inclusiait$, C AC, there is no relation
(edge) in the constructed order. An example is shown in Eidur

(i- 2).(;’
redundant
edges

i th level

G " gea()

\’
redundant edges redundant edges

Fig. 4. Full access control hierarchy.

After the second phase, the number of edges decreases everefng ¢}. Each
inserted dummy access configuratibrdecreaseg n(AC;)| by a > 2 configurations.
The precise number of edges after inserihnghanges frona) to e} —(a—1)-|In(D)|+
« as shown in Figure 5a.

Fig. 5. Insertion of a dummy access configuration D and tree transformation.

After the third phases}, < 2¢/, — 1, so the number of edges at most doubles. This is
due to the transformations made by funct@neateTree( AC), which transformsAC'

*|X| denotes the number of elements of Xet
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with In(AC) into a binary tree withAC' as a root andn(AC) as leaves (see Figure 5
b). Each call ofCreateTree(AC) adds|In(AC)| — 1 edges.

€

Thus, in the end we have > €] > e > % andnj = % + N is the number of
public parameters in our scheme. This in practice meandriththe worst case, when
all the reductions of edges do not bring any result, we useast (a + N) public
parameters, whereas SKC based schemes use atléésivever, when dealing with
a few or many intersecting access configurations we expeiahgrovement, as shown
in the figures. The number of private parameters remainsaitme $or both SKC based
schemes and our scheme and is equal te n}, since we do not have to store the
private keys for dummy access configurations. Concludirgabmparison, it is worth
mentioning that the security of our scheme is guaranteetidgecurity of well-known
DH key-exchange protocol.

6 Conclusions

In this paper, we proposed an efficient method to design #apartier on access con-
figurations. We provided a scheme to assign and derive skeystfor the proposed
partial order.

Compared to broadcast encryption methods, our solutionirgites the need for
multiple copies of data keys and reduces to a single key trage required per user.
This improvement is achieved by applying the proposed keggdion scheme. Com-
pared to key generation schemes adapted for access comtpalses, our solution re-
duces the required size of public information. This is aebiethanks to the special
properties of the hierarchy we propose, designed espeémlthe access control pur-
pose. To the best of our knowledge, and as reported in [1Bjpay has yet proposed
a key generation solution that takes advantage of constguttte hierarchy especially
for the access control settings.

Finally, since access control systems are very dynamicisthee of changing ac-
cess rights cannot be neglected. Our solution supportblenpdates of access rights
granted to the users.

References

1. AKl, S.G., Taylor, P.D.: Cryptographic solution to a problem of asa®ntrol in a hierarchy.
ACM Trans. Comput. Syst (1983) 239-248

2. Harn, L., Lin, H.Y.: A cryptographic key generation scheme faititevel data security.
Comput. Secu® (1990) 539-546

3. Lin, C.H.: Dynamic key management schemes for access camtadhierarchy. Computer
Communication®0 (15 December 1997) 1381-1385(5)

4. Fiat, A., Naor, M.: Broadcast encryption. In: CRYPTO '93: Rredings of the 13th an-
nual international cryptology conference on Advances in cryptolbgyy York, NY, USA,
Springer-Verlag New York, Inc. (1994) 480-491

5. Naor, D., Naor, M., Lotspiech, J.B.: Revocation and tracing isesefor stateless receivers.
In: CRYPTO '01: Proceedings of the 21st Annual International @iggy Conference on
Advances in Cryptology, London, UK, Springer-Verlag (2001) 416



19

6. Asano, T.: A revocation scheme with minimal storage at receiMersASIACRYPT '02:
Proceedings of the 8th International Conference on the Theory apticAfion of Cryptol-
ogy and Information Security, London, UK, Springer-Verlag (20823—450

7. Bertino, E., Carminati, B., Ferrari, E.: A temporal key managdrseimeme for secure broad-
casting of xml documents. In: CCS '02: Proceedings of the 9th ACMarence on Com-
puter and communications security, New York, NY, USA, ACM Pres9231-40

8. TS Chen, Y.C.: Hierarchical access control based on chines@nder theorem and sym-
metric algorithm. Computers & SecuriBi (2002) 565-570

9. Kuo, F.H., Shen, V.R.L., Chen, T.S,, Lai, F.: Cryptographéy lassignment scheme for
dynamic access control in a user hierarchy. Volume 146., Dept. ofrEEEng., Nat. Taiwan
Univ., Taipei, IEE (September 1999) 235 — 240

10. Hwang, M.S., Yang, W.P.: Controlling access in large partially mdidierarchies using
cryptographic keys. J. Syst. Softé7 (2003) 99-107

11. Lin, I.C., Hwang, M.S., Chang, C.C.: A new key assignmeheste for enforcing compli-
cated access control policies in hierarchy. Future Gener. Compuit.18y2003) 457-462

12. Chien, H-Y; Jan, J.K.: New hierarchical assignment withoutipldey cryptography. Com-
puters & Security22 (2003) 523-526

13. Lin, C.H.: Hierarchical key assignment without public-key crgpéphy. Computers &
Security20(2001) 612—-619

14. Lee, N.Y., Hwang, T.. Comments on dynamic key manageméeinses for access control
in a hierarchy’. Computer CommunicatioB2 (1999) 87-89

15. Crampton, J., Martin, K., Wild, P.: On key assignment for hidriaal access control. In:
CSFW ’'06: Proceedings of the 19th IEEE Workshop on Computer §gdtoundations,
Washington, DC, USA, IEEE Computer Society (2006) 98-111

A Appendix: The Algorithm

The output of theCreateHierarchy(Access Table ACCES®)orithm is the directed
graphG = (V, E(V)) in a V-form, where the node s& 2> {AC(d)|d € D}. The
algorithm uses an abstract data structDigraph G to represent the order on access
configurations it constructs. The standard available djpermare: New(), Cover(Node
A), InsertNode(Node A), InsertEdge(Node A, Node B), RexumefNode AandRe-
moveEdge(Node A, Node.BYe assume that the graph does not allow duplicate nodes
(if the node to be inserted already exists, than the insepfocedure terminates). Sim-
ilarly, no multiple arcs are allowed between two nodes. Tlgeri¢thm CreateHierar-
chy(Access Table ACCESSes the priority queue Q. A priority queue is an abstract
data type to efficiently support finding the item with the reghpriority across a series
of operations. The basic operations akEw(), Insert(Item, Priority), ExtractMax(),
ExtractMin(), FindMax(), FindMin(andRemove(ltem)The items of) are the access
configurations. The algorithm calls two additional proaedulnsertCoverMin(Node
AC) andCreateTree(Node ACyvhich are presented in Section A.1. The number of el-
ements in data structut¥ is denoted agt X . For data structure¥ andY we denote
their set difference (the elementsihbut not inY) asX — Y, and their intersection as
X«xY.

A.1 Subprocedures Codes
al gorithm I nsert Cover edM n(Node AC)
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begin
(1) G InsertNode(AC);
(2) Node X: =AC,
(3) while (#X > 0) do
begin
(4) Node Y :=maximal Zin G s.t. X contains Z
(5) G lInsertEdge(Y, X);
(6) X=X -Y,;
end
end.

al gorithm Creat eTree( Node AQ)
begin
(1) pos: =0;
(2) for each (Xin Gs.t. X ->> AC) do
begi n
Q Insert (X pos++);
(3) while (#Q > 2) do
begin
(4) AC1:=QExtractMn(); AC_2:=Q ExtractMn();
(5) Node Y:=AC 1 + AC 2; (6) G InsertNode(Y);
(7) GlnsertEdge(AC 1,Y); G InsertEdge(AC 2,Y);
(8) G RenpveEdge(AC 1, AC); G RenpveEdge(AC 2, AC);
(9) GlnsertEdge(Y,AQ; (10) Q lnsert(Y,position++);
end
end
end.

A.2 The Main Code

al gorithm CreateHi erarchy(Access Tabl e ACCESS)
begi n
(1) Digraph G:= New(); PriorityQueue Q := New();
(2) for each (uin U do G lnsertNode({u});
(3) for each (d in D do Q lInsert(AC(d),#AC(d));
(4) while (Qsize() > 0) do
begi n
(5) AC. =Q ExtractMn();
(6) G lnsertCoveredM n(AQC);
end
(7) for each (ACin Gs.t. #In(AC) > 2) do Qlnsert(AC # n(AQ));
(8) repeat
(9) Node AC:=Q FindMax(); MAX_CUT := enpty set;
(10) for each (ACk in Q do
begi n
(11) CUT:=AC * AC k;
(12) if ( #{Xin Gs.t. X ->> AC, CUT contains X}
> #{ Xin Gs.t. X ->> AC, MAX_CUT contains X}
AND
there are X,Yin G
s.t. X!=Y, XY ->> AC, CUT contains XxY
AND
there are X, Yin G
s.t. X!I=Y, XY ->> ACk, CUT contains X+Y
(13) then MAX CUT := CUT;
end // for each
(14) if (MAX_CUT not enpty) (15) then // if MAX_CUT found
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begi n
(16) G InsertCoveredM n( MAX_CUT);
(17) for each (X in Q do
begi n
(18) if (X contains strictly MAX CUT
AND
there are Y, Zin Gs.t. Y != 2
Y,Z ->> X, MAX_CUT contains X+Z)
(19) then
begi n
(20) G InsertEdge( MAX_CUT, X);
(21) for each (Yin Gs.t. Y ->> X, MAX_CUT contains Y) do
G RenoveEdge(Y, X);
(22) if (#1n(X) <= 2) then Q Renove(X) ,
end // if
end //for each
(23) if (# n(MAX_CUT) > 2)
(24) then Q Insert (MAX_CUT, #I n( MAX_CUT));
end // if
(25) else G CreateTree(AC); Q Renove(AQ);
(26) until Qis enpty; // repeat
end.

B Appendix: Correctness Proof

Lemma 1 After the termination of the algorithr@reateHierarchythe output graph
G = (V, E(V)) satisfies the following five conditions:

(a) VUEU{U} eV

(@) Vde'DAC(d) eV

(b) ue AC = {u} - AC

(b)) AC, - ACy = AC; C AC,

(©) Yacev|/In(AC)|=0or |In(AC)| =2

(d) Yac,ac,ev|{AC €V : AC — AC;, AC — ACL} <1

Proof. In the first phase (1-6), the algorithm constructs the hidmgrwhich satisfies
(a), (@), (b) and (b’). Since the arcs are added only betvgerh two configurations,
that one contains the other, (b’) remains trivially satfimtil the termination. After
addition of singletons (2J- satisfies (a), and after addition of existing access configu-
rations (3-6) (G satisfies (a’) as well. Both (a) and (a’) are not affected leyatyorithm
anymore and remain satisfied until termination. After li@¢ @ satisfies (b) trivially
becausé’ is the set of singletons. (b) remains satisfied after eaghoftihe main algo-
rithm until line (21), because the proceduhesertCoveredMimndCreateTregreserve
(b), and only in line (21) the edges are removed so (b) hasrcetta be affected.

In the second phase, from line (7), additional access camfligumns are inserted to
reduce the number of edges and satisfy the condition (cnBeg at line (7) until the
termination,( stores the nodedC € V for which |In(AC)| > 2 and thus they still
need to be processed. The priorities of the itemg)attetermine the order of process-
ing the nodes of7. The priority of an itemAC' is |In(AC)|. The nodes with larger
In(AC) are processed first. The main loop REPEAT (8-26) is termihateen() is
empty, so all the nodes have at most two incoming edges. Ind@¢ AC, with the
maximal number of incoming edges, is extracted frQmo reduce|In(AC)|. After
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current iteration of the main loop, the siZg(AC)| is reduced, and therefore each it-
eration reduces the number of incoming edges of a node, hdtimaximal number of
incoming edges iiiz. Thus, at some point the maximal number of incoming edgés in
must reaclt2. This guarantees that the loop terminates. In lines (10{h&)algorithm
searches for the dummy access configurafiéd X _CUT, which insertion reduces
|In(AC)| maximally, under the assumption that it also reduldeg AC},)| for some
other access configuratiohC, still stored on@. If (14) M AX _CUT was found, then
(15) it is inserted intaG (16), and for each nod& on @ (17) the algorithm checks
(18) whether|In(X)| can be reduced usingf AX _CUT. If the condition from line
(18) is satisfied, thed/ AX _CUT — X is added toIn(X)| (20), but then based
on (18) at least two edges im(X) are removed in (21), and therefoe:(X)| de-
creases at least by ond(' satisfies (18), thus one of the iterations of loop for each
(17-24) reducegn(AC) for a nodeAC with the maximal number of incoming edges
in G. In(MAX _CUT) does not increase back the maximal number of incoming edges
in G, becauséIn(MAX_CUT)| < |In(AC)|. Based on (18), (b) is preserved after
each execution of line (21). In (23) the algorithm enquelled X _CUT if it needs to
be processed. If 25/ AX _CUT was not found, thef/n(AC)| is reduced t® by
inserting toG a binary tree rooted idC with configurationsX : X — AC as leaves.
The result of the algorithm is thé-graphsatisfying (a-d).



