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Abstract. Many existing open source projects are written with the classic pro-
gramming language C. Due to the size and complexity of such projects this ap-
plications require C-oriented methods and tools to increase their realibility. For
instance, advanced reachability analysis techniquesrid@el checking, that tra-
ditionally have been applied to software models, are now being considered as very
promising methods to detect execution failures in final code. This paper focuses
on extending the well known toolbox CADP in order to make it easier to analyze
realistic concurrent C programs that make use of external functionality provided
via well definedapplication programming interfacggpis). Our approach con-
sists in constructing a tool to convert the C code into the usual formats expected
by the set of tools integrating CADP (Construction and Analysis of Distributed
Processes). The new module allows us to exploit all the functionalities of CADP
to assist software reliability: model checking, equivalence checking, testing, dis-
tributed verification or performance evaluation.

1 Introduction

Currently, it is widely accepted that the different phases during the development of huge
and complex software systems should be assisted by analysis tools, to ensure that the
final product satisfies certain critical properties for the system under construction.

Research in the context of formal methods has provided specification and modelling
languages, algorithms, tools and methodologies to automate diverse tasks that may help
in the construction of good quality software. Nevertheless, due to time or memory con-
straints, most of these proposals apply to models (simpler descriptions/abstractions) of
the real system to be executed. For instance, many enterprise information systems are
partially or completely modeled to check some desired properties before the final sys-
tem is implemented. An example of this are proposals [8] and [13], where authors
model an Airport Terminal and a Suspendible Business Process, respectively.

Analysis during the software design phase is highly desirable, but it could also be
very useful in the implementation phase since it could reveal new errors introduced in
the (manual) code generation. Nowadays many academic projects, and even commercial
ones, are working on adapting the model-oriented methods to most commonly used
implementation languages. However, the number of tools that are currently able to deal
with the reliability of final software is still very small, and the range of application
is limited to very few tasks, such as verification using model checking with tools like
SLAM [1] or JPF [12].
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The goal of this paper is to extend the well known toolset CABJP, adding new
capabilities to assist in the development of reliable safeynot only during the first
stages of the lifecycle software, but also in the last stagien encoding is being
completed. The paper describes the successful develoheumt previous proposal in
[4] towards using CADP as an environment for the analysis of C

Toolset CADP offers several functionalities to manage gigation languages (like
LOTOS), such as compilers to CADP internal languages, equivelehecking, model
checking, visualization of the execution graph, staticlysia or performance evalu-
ation. However, in order to extend all these functionaditend use them in a more
complete software engineering process, we still need neapiers for standard pro-
gramming languages.

CADP is an open platform which allows users to integrate ngeciication, ver-
ification or analysis techniques. It provides librariesttivay be used to extend the
toolbox at different levels. Thus, our tool C.Opgrermits reusing the different mod-
ules offered by CADP to analyze C programs. To do this, C.Qgeslates the C code
into an implicit labelled transition systemT(s), which is the CADP internal format.
Furthermore, C.Open is specially oriented to analyzing &ymms with calls to well
definedapris. As explained in [2], the analysis of software with calleigernal appli-
cation programming interfaces#1s) makes it necessary to construct models of all the
functions provided by thepri. In the paper, we provide a scheme to maosiels which
is compatible with CADP architecture.

Through several examples, the paper shows how we can useediffunctionalities
of the CADP environment (such as explicit graph generatiedction or simulation)
to analyze C programs. Although the proposal is applicablgenericapis, the ex-
amples make use of a specifiel that provides functions to correctly share memory
regions between C processes. During translation, callkisoaP! are substituted by
models of its behavior written in C. Our compiler generatesriecessary data struc-
tures to exploit all the features in CADP. Moreover this is lase to obtain C-oriented
tools like model checkers or tools for testing equivalence.

The paper is organized as follows. Section 2 gives an intiolu on
OPEN/CAESAR [5]. Section 3 illustrates the input languagéhe tool, and the kind
of code that C.Open can manage. Section 4 shows the use céQWdfh an example
consisting of two C concurrent programs that communicateskared memory. Finally,
Section 5 gives the conclusions and future work.

2 CADP Overview

CADP can be considered as a traditional toolbox for the amalyf communication
protocols. Through a modular architecture, CADP includmspilers to translate sev-
eral input formalisms into a generic format (ars) which is used by applications as an
internal representation of the input language. Figure vshbe different formalisms
accepted by CADP inside boxes, and dashed lines represeqiftarent compilers.

1 CADP web site: “http://www.inrialpes.frivasy/cadp.html”
2 C.Open web page: “http://www.lcc.uma.es/gisum/tools/smc”
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As shown in the figure, C.Open adds language C to the CADPtacthie as alterna-
tive input. The modular structure of CADP makes it possiblesuse the whole set of
applications present in the environment.
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Fig. 1. Schema of the extended CADP architecture including C.Open.

2.1 Labeled Transition Systems: The Internal Format

As commented above, the different tools in CADP accept nsoofedystems described
asLTss. AnLtsis atuple(S, L, T, qo) whereS is the set of system states, apde S is
the initial state. SEf’ C S x L x S defines the transition relatiof,being a set of labels

used to identify transitions. As usual, transiti@nl, ¢’') € T is written asq LN q',and
it represents system evolution from stat® ¢’ by executing sentende

Labels may represent instructions dealing with global d&tactures used to com-
municate or synchronize processes or, on the contraryntlagyrefer to internal actions
in a given process. We use the special labi generically denote all these local ac-
tions. Thus, in C.Open, labelsrepresent transitions involving only C statements that
do not contain any external call.

The CADP input language may be transformed intonaplicit or anexplicitLTS.
The implicit representation of arrs consists of C representations of the states and
labels along with the necessary primitives to handle theaisb provides primitives to
compute the initial state and the successors of any givés. Sthe explicit representa-
tion records theTs graph, storing the whole set of transitiofisIn anLTs of several
hundreds of thousand of states, this representation mayolad.
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Since real software written in C may produce very largss, we have used the
implicit representation when extending CADP with C oriehteols. The implicitL.Ts
is given by two primitives to handle the corresponding titimis relation: a function to
obtain the initial state of the system, and a function to gatieeall the successor states
of any given state. In addition, the implidits provides primitives to print, compare
and hash generation of states and labels.

2.2 CADP Modules

CADP includes a wide set of tools providing different fuctalities. For example,
it contains a module to analyze whether twiss are bisimilar. It also provides sev-
eral model checkers for various temporal logics anduf@alculus. It implements sev-
eral verification algorithms including exhaustive verifioa, on-the-fly verification,
symbolic verification using Binary Decision Diagrams, amenpositional verification
based on refinement. CADP has been recently extended wigh ptbgramming lan-
guage oriented tools like ANNOTATOR [3].

Some of the tools in CADP are particularity interesting foe software engineer-
ing community. For instance, EVALUATOR (model checker far-calculus formu-
las), TGV ( generator of conformance test suites), BISIMTDOR (checker of equiva-
lence relations), REDUCTORs on-the-fly reduction with respect to a relation), EX-
HIBITOR (search patterns of execution sequences), OCISEILATOR (graphical
and command-line simulators, respectively).

2.3 Extending CADP

CADP is not only a set of tools, but also a tool developmentmé&aork.
OPEN/CASAR is an interface for the creation of new modulékénCADP toolkit.
OPEN/CASAR separates the functionalities of each appitan three different
modules: the graph, the storage and the exploration madukes exploration mod-
ule performs the basic functionality of the application dahd operations needed to
handle the storage and graph modules. The storage moduesstated by a set of li-
braries, included in OPEN/CASAR, representing sevenatisires to store the labels
and states of thets. Finally, the graph module provides the exploration moduiki
the necessary operations to handle the implitg, that is, to handle states, labels and
to generate the successor states.

CADP only provides compilation for some specification laages, such aso-
TOs or binary code graphs (BCG), through the toolsESAR.OPENandBCG_OPEN
however, as commented above, it does not support progragniamguages. C.Open,
based on [4], extends CADP, making it possible to use theavlivironment with C
programs.

3 C.Open Input Language

Most proposals to formally analyze C code only consideredo€ programs, that is,
programs where the implementation of all functions is @a@é to be executed by the
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analysis tool. In this context, tool C.Open provides a nencfionality, since it can
manage C programs that make calls to an extexralFurthermore, the programs can
actually use the externab1 to form a concurrent system. Given this concurrent system,
C.Open may construct its state spaces on-the-fly.

In order to deal with externalPis, we need to construntodelof the external calls.
These models are, in fact, abstractions of the real behaf¥itive external functions.
They only provide the minimum functionality required to gaput the analysis. For
instance, if an external function deals with intermediatenmunication buffers, we
probably do not need to implement buffers with their reaksiz might be sufficient
to use some type of reduced buffers. In fact, due to the spateesproblem, reducing
the complexity of real data structures is essential to al##iective analysis tools, like
model checkers. The models of external calls are C functidrish are executed by
the graph module when it is generating the successors ofea gitate if any of them
correspond to one external function.

The decision about how to model external functions strodgiyends on the prop-
erties to be analyzed on the system. In any case, the ti@msitf the resultingTs may
be labelled with. representing an atomic sequence of internal C sentenagsding
no external call) or, on the contrary, they may be labelletth wicall to the model of an
external function. In summary, we can deal with any kind ofdde provided models
of all external calls to the correspondiag! are given. The next section explains how
to obtain models of external functions.

3.1 TheExternal API

Table 1. Shared Memory API functions.

func. return arg 1 arg 2 arg 3

screate reg.id(int) reg name(char 1¥izeof reg.(int) value(void *)
sread|value(void *)  reg.id(int)
swrite| code(int) reg.id(int) | value(void *) |sizeof value(int
sclosg code(int) reg.id(int)

For external calls to the language, C.Open needs a moded®é flunctions written
in C and a translation rules file for translating the exteARl functions into the corre-
sponding modelled function. Table 1 shows, as an exam@efhShar ed Menory,
also used in Section 4, that provides four basic functiome#d with a shared resource,
thatis,creat e,read,wit e andcl ose. The shared memory is composed of sev-
eral regions, each one with a unique name and size. VBerat e is called with
a given name, size and initial value, a new region is cregiemjided that no region
has been previously created with the same name, size aral ir@itue. Otherwise, if
there was a region with the same name, the function callnsttire region identifier
previously assigned. The other operatiopsgad, swrite andscl ose, are used
to read from, write to, or close the region specified by theesponding argument. In
particular, thescl ose operation decreases the number of references to that region
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deallocating the reserved memory if there are no referdefieg\ny attempt to access
a non-existent region returns an error code.

C.Open makes use of the so-callednslation rulesto properly transform each
external function. These rules are given inanL file where, for each function call, the
arguments that must be preserved or that must be added inatielled function are
specified. For example, Figure 2 shows the translation falethe functionsr ead. It
indicates thasr ead is translated into functionead_shar ed_nenor y, which has
two arguments: the first one refers to the first argumergradad, and the other is
the value returned by the function. It is possible that am@rent may have a different
representation in the label of thes, being represented by the name of the variable
instead of the real variable value, like the first argumenhefr ead.

typeArg="1" argref="0" type="int" |abel type="char"

var nane="yes" | abel si ze="20" | abel nanme="desc"/>
<arg typeArg="0" type="void *" |abeltype="int" returned="true"/>
</ function>

Fig. 2. sread translation rules.

4 Example

In order to highlight the benefits of the translation from CLt®, we show how the
different CADP tools can be used to analyze C programs with tthan externahpi.

In particular, thear1 example in section 3.1 will be used together with a model isf th
API. We will show how C.Open works implementing the Petersongual exclusion
algorithm [11] and using several CADP tools as generatotukitor or evaluator to
prove the correctness of the programs. This algorithm camskd, for example, as a
mechanism to ensure data consistency in multi-user daayatems, which are present
in many enterprise information systems.

4.1 The Sample Program

The system to be analyzed is composed of two programpgpérson.c (figure 3) and
pl peterson.c, that use the Peterson mutual exclusion digofibr access to a com-
mon critical section. Both programs are symmetrical, thely dliffer in the pid, and
in the control flag variables that guard the critical sectibhe program begins with
the creation of the shared variables that control the afisection. Before going into
the critical section, both processes make an active waihfcritical section. Before
closing the shared variables, each process updates thadegis/ariable to ensure that
the other process can not exit from the active wait.

4.2 Generating the Explicit Graph using Generator

C.Open generates an executable application (e.g., genexa) by performing the re-
quired sequence of tool invocations: translation by C2Xh@ @rograms intaeixL [9]
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int main (int argc, char **argv) {
unsigned int flag0_des, flagl_des, turn_des;
int flagO_value, flagl_value, turn_value;
int flag0_res, flagl_ res, turn_res;
int pid, initial_value;

I+ Local process identification */
initial _value = 0;
pid = initial_val ue;
/+ Initialization of shared variables =/
flag0_des = screate ("flag0", /* descriptor name for flag0 */
sizeof (flag0O_value), I+ value size of flag0 */
& nitial _value /* initial value for flag0 */ );
flagl_des = screate ("flagl", /* descriptor nane for flagl */
sizeof (flagl_value), I+ val ue size of flagl */
& nnitial _value /+ initial value for flagl */ );
turn_des = screate ("turn", I+ descriptor nanme for turn =/
sizeof (turn_value), /% value size of turn */
& nitial _value /* initial value for turn =/ );
I+ Behavior of process 0 */
flag0_value = 1;
flag0_res = swite (flagO_des, I+ descriptor for flag0 =/
&f 1 ag0_val ue, /+ pointer to flag0 value */
sizeof (flagO_value) /= value size of flag0 */);
turn_value = 1;
turn_res = swite (turn_des, /* descriptor for turn =/
& urn_val ue, /* pointer to turn value */
si zeof (turn_val ue) I+ value size of turn */);
I+ Busy waiting for remote process */
pid = (pid+ 1) %2;
while ((*(int *) sread (flagl_des /* descriptor for flagl «/ ) == 1) &&
(*(int *) sread (turn_des /* descriptor for turn %/ ) == 1))
printf ("Waiting for process %\ n", pid);
}
/= Critical section */
pid = (pid + 1) %2;
printf ("Process %l is in critical section\n", pid);
/+ End of critical section «/
flag0_val ue = 0;
flag0_res = swite (flagO_des, I+ descriptor for flag0 */
&f | ag0_val ue, /+ pointer to flag0 value */
si zeof (flagO_value) /* value size of flag0 */);
/+ Close shared nemory */
flag0_res = sclose (flag0_des /* descriptor for flag0 */ );
flagl_res = sclose (flagl_des /* descriptor for flagl */ );
turn_res = sclose (turn_des /+ descriptor for turn «/ );

Fig. 3. Peterson’s mutual exclusion algorithm using shared memory.

compliantxmL models; slicing of the models with respect to the systemand con-
struction of the OPEN/CASAR graph module describing thdigip.ts by C2Lts;
and finally, call to the C compiler.

In figure 4 C.Open generates and invokes the executable fargr. The com-
mand line C.Open takes as arguments the input for C.Operharekploration module,
GENERATOR in this example, with the corresponding paransefiee. the file where
GENERATOR will save the bcg generated).

Figure 5 shows the caption of the info for the bcg created bNERATOR. It has
719 states, but CADP includes several tools to reduce thghghaough bisimulation,
being easier to manage and represent that way. Among thebeadions, REDUCTOR
performs an exhaustive analysis and generatestheorresponding to an input bcg.
The resulting.Ts is reduced on-the-fly respect to several relations (strguog/elence,
tau-divergence, tau-compresion, tau-confluence, taguavalence, safety equivalence,
trace equivalence, or weak trace equivalence). So, if wgy&pDUCTOR to the bcg
obtained after applying GENERATOR with a total reductiomr, get a smaller equiva-
lentLTs, figure 6, with only 157 different states and 288 transitions
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david@david-desktop:~/ejemplos/petersonmods c.open -filelist 2 p@_peterson.c 1 p
1_peterson.c 1 generator peterson.bcg

-filelist p@_peterson.c 1 pl_peterson.c 1

C2xml version 0.8
Procesados todos los ficheros

-filelist pO_peterson.c 1 pl peterson.c 1

-Ddebug=false
graph
c.open: using " /usr/share/cadp//src/open_caesar/generator.c’
c.open: using link mode
fusr/share/cadp//src/com/cadp_cc -I. -I/usr/share/cadp//incl -Ifusr/share/cadp/
/src/open_caesar -c graph.c -o graph.o
fusr/share/cadp//src/com/cadp_cc -I. -Ifusr/share/cadp//incl -I/usr/share/cadp/
/src/open_caesar -c /fusr/share/cadp//src/open_caesar/generator.c -o generator.o
fusr/share/cadp//src/com/cadp_cc generator.o graph.o -o generator -L/usr/share/
cadp//bin.iX86 -lcaesar -L/usr/share/cadp//bin.iX86 -1BCG_IO -1BCG -1m
c.open: running "~ generator peterson.bcg'' for "Tgraph.c''

Fig. 4. Call to C.Open to generate an explicits with generator.

david@david-desktop:~/ejemplos/petersonmods bcg info peterson.bcg
./peterson.bcg:
created by generator
719 states
1312 transitions
27 labels
initial state: @
1list of deadlock state(s): 714 715 716 717 718
branching factor: average = 1.82, minimal = @, maximal = 2
332 transition(s) with a hidden label ("1")
non-deterministic behavior for:
label "i" at state(s): 0 10 14 21727 36 40 ... (43 states in total)

Fig. 5. Information of the explicit LTS generated by generator.

4.3 Simulating with Simulator and Executor

It is possible to use SIMULATOR and EXECUTOR for simulatingo@grams. With
SIMULATOR, we can perform a guided execution of the analypeagrams. From
one state, it is possible to execute one transition, reptiegean external call or a set
of C sentences without any of the modeled calls, backtrack peevious state, view
the actual system state or the execution trace. Figure 7 sshogimulation example
with XSIMULATOR. EXECUTOR, on the other hand, performs aadam execution,
showing as a result the final execution path.

5 Conclusionsand Future Work

C.Open permits the use of the environment provided by CADRh®automatic anal-
ysis of C code. Our approach to extend CADP directly allowsoyserform different
kinds of analysis of the C code, like model checking, simaigtbisimulation or static
analysis. New C-oriented functionalities can now be immatad for CADP. Other
proposals for analyzing C code focus only on one functidpdike model checking
(CMC [10] or SLAM [1]) or debugging (gdb [7]).
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david@david-desktop:~/ejemplos/petersonmod$ bcg info peterson_reductor.bcg
./peterson_reductor.bcg:
created by reductor
157 states
288 transitions
27 labels
initial state: @
1ist of deadlock state(s): 156
branching factor: average = 1.83, minimal = @, maximal = 2
no transition with a hidden label ("i")
deterministic behavior for all Labeli

Fig. 6. Information of the explicit LTS after being reducted with reductor.
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successor #1: 1) ({(P17)p)->flagl_valus) = 1:)
successor #2; furm_des=screate_POgtum.4.0)

Fig. 7. Simulating the application with xsimulator.

As future work, new lines for code analysis can be added Xamgple, optimization
techniques like partial order reduction to reduce the nundbestates generated, or
the research to deal with dynamic memory. Another point tdrest is the automatic
generation olPI models.

More information and upcoming extensions of our tool will beailable at
“http://www.lcc.uma.es/gisum/tools/smc”.
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