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Abstract. The specification of enterprise information systems using formal 
specification languages enables the formal verification of these systems. 
Reasoning about the properties of a formal specification is a tedious task that 
can be facilitated much through the use of an automated reasoner. However, set 
theory is a corner stone of many formal specification languages and poses 
demanding challenges to automated reasoners. To this end a number of 
heuristics has been developed to aid the Otter theorem prover in finding short 
proofs for set theoretic problems. This paper investigates the applicability of 
these heuristics to a next generation theorem prover Vampire. 

1 Introduction 

Mathematical set theory is a building block of a number of formal specification 
languages, e.g. both Z [13] and B [1] are based on strongly-typed fragments of 
Zermelo-Fraenkel (ZF) [3] set theory. One of the advantages in using a formal 
notation for specifying an enterprise information system is that the specifier may 
formally reason about the properties of the system. In particular one may want to 
prove that the proposed system will behave in a certain way or that some unwanted 
behaviour will not occur. However, writing out such proofs is a tedious task as may 
be observed in [8]. Hence of particular interest to a specifier could be the feasibility of 
using an automated reasoning program [12, 17] to reason about such properties. 

When reasoning about the properties of a specification language based on set 
theory, one inevitably has to move to the level of sets and the various operations 
defined on them. These operations in turn are based on the underlying axioms of the 
particular set theory in question.  

1.1 Set-Theoretic Reasoning Heuristics 

Set theoretic reasoning brings about a number of problems, especially if one opts for a 
resolution-based reasoner like Otter [6]. Much of the complexity arises from the fact 
that sets may be elements of other sets. Constructs in set theory are often strongly 
hierarchical and may lead to deeply nested structures that greatly increase a problem’s 
search complexity [9]. In the following equality 

(A) = (B)  A = B 
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a reasoner has to transcend from the level of elements in set A to the level of elements 
in (A) in its search for a proof, but should be prevented from transcending to the 
level of ( (A)) which would greatly and unnecessarily enlarge the search space. It 
is generally accepted that heuristics are needed to guide reasoners, especially in the 
context of set-theoretic proofs [2]. One such set of heuristics for reasoning about set 
theory has been developed previously [15, 16], mainly through observing the 
behaviour of the resolution-based reasoner, Otter in its search for proofs. In total 14 
heuristics, based on recognisable patterns, were developed and the question arises 
whether these heuristics have a wider applicability to other resolution-based 
reasoners, e.g. Vampire [12] and Gandalf [14]. This paper investigates the utility of 
the said heuristics for Vampire. 

1.2 Layout of this Paper 

Section 2 gives a brief introduction and justification of the use of the Vampire prover 
in this work. Section 3 presents the main results of our work, namely, the extent to 
which Vampire also needs the heuristics previously arrived at through the use of 
Otter. A case study in section 4 illustrates the utility of some of the heuristics on a 
small Z specification. We conclude with an analysis and pointers for future work. 

2 The Vampire Theorem Prover 

We chose Vampire [10, 12], a resolution-based automated reasoner for first-order 
logic with equality for evaluating the wider applicability of the 14 heuristics 
mentioned above for two reasons: The first is because of its consistent success at the 
annual CADE ATP System Competitions (CASC) [7]. The second reason stems from 
the fact that Vampire has solved more set-theoretic problems than any of the other 
competing provers in the period from 2002 to 2005 across all CASC divisions 
involving these problems. If we can show that Vampire benefits from the heuristics 
developed before, then it is plausible that other reasoners may benefit from these 
heuristics as well. 

Vampire is a saturation-based reasoner and implements three different saturation 
algorithms that can be selected for its main loop for inferring and processing clauses. 
The three saturation algorithms are an Otter loop with or without the Limited 
Resource Strategy and the Discount loop. These algorithms belong to the class of 
given-clause algorithms. Vampire’s algorithm is a slight modification of the 
saturation algorithm used by Otter [6]. 

The Limited Resource Strategy [11] aims to improve the efficiency of the Otter 
algorithm when a time limit is imposed by identifying and discarding passive clauses 
that have little chance to be processed within the time limit. The Limited Resource 
Strategy is therefore not a complete proof procedure. 
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3 Evaluation of Set-Theoretic Reasoning Heuristics 

In this section we measure the utility of some previously developed heuristics [15, 16] 
for Vampire. Fourteen heuristics were originally developed, but for reasons of space 
we evaluate 5 heuristics. Our experiments follow a pattern: First we present our 
sample problem and the ZF axiom(s) on which the problem is based. Then we report 
the performance of Otter in an attempt to solve the problem. From a failed proof 
attempt we define a heuristic that allows Otter to successfully solve the problem. Next 
Vampire is used on the original problem to determine its need for the particular 
heuristic. In some cases we increase the complexity of the problem as an additional 
test.  

We used Vampire version 8.0 that was also used at the CADE ATP System 
Competition [7] in 2005 (CASC-20). A time limit of 30 minutes and a memory limit 
of 128MB were imposed which causes Vampire to use its limited resource strategy. 
No changes were made to Vampire’s other default settings. 

3.1 Equality versus Extensionality 

Our first sample problem based on equality and the power set axiom is given by: 

{{1}} = {∅, {{1}}} (1) 

Currently neither Otter nor Vampire accept formulae in the highly evolved notation 
of ZF set theory, hence the user has to rewrite set-theoretic formulae like (1) above in 
a weaker first-order language. Therefore, proof obligation in (1) is rewritten as: 

A = {1} ∧ B = {A} ∧ C = (B) ∧ D = {∅, B} → C = D (2) 

Further decomposition is required for (B) as follows: 

∀x(x ∈ C ↔ ∀y(y ∈ x → y ∈ B)) (3) 

Otter finds no proof for (2) in 20 minutes. Next, using the extensionality axiom we 
replace the consequent (C=D) by 

∀x(x ∈ C ↔ x ∈ D) (4) 

and this allows Otter to find a proof in 0.03 seconds. These findings lead to the 
following heuristic (for the sake of this paper we call it Heuristic #1): 

 
Heuristic #1:  Use the principle of extensionality to replace set equality with the 
condition under which two sets are equal, i.e., when their elements are the same. 
 
When the same problem (2) is given to Vampire, it has no difficulty in finding a 

proof in 1.3 seconds. The application of the above extensionality heuristic leads to an 
equally fast proof in 0.1 seconds. These times are too short to determine the utility of 
the heuristic for Vampire. However, consider the following, more complex example 
involving a subset axiom of arbitrary intersection: 
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∩ {{1,2,3}, {2,3,4}} = {2,3} (5) 

As before formula (5) is rewritten to make the relevant constructions explicit: 

A = {1,2,3} ∧ B = {2,3,4} ∧ C = {A,B} ∧ D = {2,3}→ ∩C = D (6) 

This time Vampire finds no proof within 30 minutes. When we however apply the 
principle of extensionality to the consequent of formula (6) as in 

∀x(x ∈ ∩C ↔ x ∈ D) (7) 

then Vampire finds a short proof in 0.4 seconds. Therefore Heuristic #1 appears to 
be useful for Vampire as well, depending on the complexity of the problem. 

3.2 Nested Functors 

An effective heuristic is to give preference to deductions containing smaller clauses 
[5], i.e. clauses containing fewer literals or clauses of smaller term depth. The use of 
nested function symbols (called functors) leads to larger term depth and complicates 
unification. The nesting of function symbols occurs often, e.g.: 

(A + B) + C = A + (B + C) (8) 

Formula (8) states that set-theoretic symmetric difference (denoted by ‘+’) is 
associative. The symmetric difference of sets A and B is defined as A + B = (A – B) 
∪ (B – A) = {x | ((x ∈ A) ∧ (x ∉ B)) ∨ ((x ∉ A) ∧ (x ∈ B))}. Therefore formula (8) 
employs equality as well as a ZF subset axiom as instantiated by set-theoretic 
difference. A first-order definition of the symmetric difference functor is: 

∀A∀B∀x(x ∈ symmdiff(A,B) ↔ ((x ∈ A ∧ x ∉ B) ∨ (x ∉ A ∧ x ∈ B))) (9) 

The conclusion of the proof is then stated as: 

∀x(x ∈ symmdiff(symmdiff(A,B), C) ↔  
x ∈ symmdiff(A, symmdiff(B,C))) 

(10) 

With this formulation it takes Otter 4 minutes 3 seconds to find a proof of (10). 
Unfolding, and thereby effectively removing, the nested functors as 

D = A + B ∧ E = D + C ∧ F = B + C ∧ G = A + F →  
∀x(x ∈ E ↔ x ∈ G) 

(11) 

allows Otter to find a proof in only 0.17 seconds, suggesting: 
 
Heuristic #2:  Avoid, if possible, the use of nested functor symbols in definitions. 
 
Vampire quickly finds a proof of (10) in less than 0.1 seconds, both with or 

without the use of the nested functor heuristic. We therefore increase the complexity 
of the problem to further investigate the utility of Heuristic #2 for Vampire. Note that 
in both problem formulations the extensionality heuristic was already applied to 
problem conclusions. Rewriting (10) without using extensionality as 
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symmdiff(symmdiff(A,B), C) = symmdiff(A, symmdiff(B,C)) (12) 

results in Vampire finding no proof after 30 minutes. Next we apply the nested 
functor heuristic by rewriting our problem using Skolem constants: 

D = A + B ∧ E = D + C ∧ F = B + C ∧ G = A + F →  E = G (13) 

Vampire now finds a proof after only 0.5 seconds.  

3.3 Divide-and-Conquer 

The heuristic examined in this section is applicable to proofs where the consequence 
of the proof contains a set equality or an if-and-only-if formula. A set equality in the 
conclusion of a proof implies ‘if and only if’ via the axiom of extensionality. Owing 
to the if-and-only-if formula, a specifier can perform two separate proofs, one for the 
only-if part and another proof for the if part. Consider the following sample problem 
based on equality and the power set axiom: 

{0,1} = {∅, {0}, {1}, {0,1}} (14) 

The formula is rewritten to make the relevant constructions explicit: 

A = {0} ∧ B = {1} ∧ C = {0,1} ∧ D = (C) ∧ E = {∅, A, B, C} →  
D = E 

(15) 

Otter terminates without finding a refutation after 30 minutes. We resort to our 
extensionality heuristic by changing the conclusion to: 

∀x(x ∈ D ↔ x ∈ E) (16) 

Otter now finds a proof in 3 minutes 23 seconds. An alternative approach is to 
perform two separate proofs, one for each half of (16) and in the two proofs specify 
the conclusions as in (17) and (18) below. 

∀x(x ∈ D → x ∈ E) (17) 

∀x(x ∈ E → x ∈ D) (18) 

Otter proves (17) and (18) in 0.43 and 0.03 seconds respectively, leading to: 
 
Heuristic #3:  Perform two separate subset proofs whenever the problem at hand 
requires one to prove the equality of two sets. 
 
Vampire is also unable to find a proof for (15) after 30 minutes. However for (16), 

(17) and (18) Vampire finds quick proofs in 0.8, 0.3 and 0.1 seconds respectively. 
These times are too short to affirm the utility of the divide-and-conquer heuristic for 
Vampire. As before we increase the complexity of the problem through the equality: 

{0,1,2} = {∅, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}} (19) 

Formula (19) is again rewritten to make the relevant constructions explicit: 
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A = {0} ∧ B = {1} ∧ C = {2} ∧ D = {0,1} ∧ E = {0,2} ∧ F = {1,2} ∧ 
G = {0,1,2} ∧ H = (G) ∧ I={∅, A, B, C, D, E, F, G} → H=I 

(20) 

Vampire terminates without finding a refutation after 8 minutes 53 seconds with 
the message ‘no passive clauses left’. Note that this does not mean that a refutation 
does not exist. Since Vampire was run with both a time and memory limit, it uses the 
limited resource strategy [11], which is not a complete search strategy. Applying our 
extensionality heuristic by rewriting (H = I) above as 

∀x(x ∈ H ↔ x ∈ I) (21) 

allows Vampire to find a proof after 8 minutes 40 seconds which is still too long. 
By applying divide-and-conquer to (21) in the usual way allows Vampire to find short 
proofs in 28 secs and 2 secs respectively, illustrating the utility of the heuristic. 

3.4 Exemplification 

When writing the contents of sets in list notation one naturally tends to define these 
sets using one or more levels of indirection by moving from the various elements to a 
symbol representing the collection of those elements. The sample problem used for 
the divide-and-conquer heuristic will be used here as well, viz: 

{0,1} = {∅, {0}, {1}, {0,1}} (22) 

Recall that Otter failed to find a proof in 30 minutes for the initial unfolding in 
(15). Suppose we remove one level of indirection by eliminating symbol E, i.e.  

A = {0} ∧ B = {1} ∧ C = {0,1} ∧ D = (C) → D = {∅, A, B, C} (23) 

where D = {∅, A, B, C} is unfolded (repeatedly using the ZF pairing axiom) as 

∀x(x ∈ D ↔ (x = ∅ ∨ x = A ∨ x = B ∨ x = C)) (24) 

in the proof conclusion. With this formulation Otter finds a proof in 4 minutes 5 
seconds. These results lead us to the following heuristic: 

 
Heuristic #4:  Avoid unnecessary levels of elementhood in formulae by using the 
elements of sets directly. 
 
The divide-and-conquer heuristic can be applied to this last proof attempt to yield 

proofs in 0.34 and 0.03 seconds for the ‘only-if’ and ‘if’ directions respectively. 
Vampire was also unable to find a proof for (15) within 30 minutes. However, for 
(23) Vampire finds a proof in 0.8 seconds. In this example, therefore, it was not 
necessary to increase the complexity of the problem to illustrate the utility of the 
heuristic for Vampire. If we do increase the complexity of the problem by again using 
formula (19) as an example, but instead of unfolding it as in (20) we unfold it as 

A = {0} ∧ B = {1} ∧ C = {2} ∧ D = {0, 1} ∧ E = {0, 2} ∧ 
F = {1, 2} ∧ G = {0, 1 ,2} ∧ H = (G) → H = {∅, A, B, C, D, E, F, G} 

(25) 
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then Vampire finds a proof in 5 minutes and 50 seconds. The divide-and-conquer 
heuristic can be applied to this last proof attempt to yield proofs in 31.5 and 1.6 
seconds for the ‘only-if’ and ‘if’ directions respectively. 

3.5 Multivariate Functors 

Functors containing variables as arguments lead to more unifications, which in turn 
lead to a larger search space. Functors are often introduced by Skolemisation [4], 
which occurs when first order formulae are clausified to serve as input to the 
resolution mechanism. If an existential quantifier occurs within the scope of any 
universal quantifiers, the existential quantifier is replaced by a Skolem functor taking 
each of the universally quantified variables as an argument. 

The example problem (15) will be used again with the extensionality heuristic 
applied to the conclusion as in (16). First we define the term D = (C) indirectly as 

∀x(x ∈ D ↔ x ⊆ C) (26) 

where the subset functor ⊆ is defined as 

∀A∀B(A ⊆ B ↔ ∀y(y ∈ A → y ∈ B)) (27) 

With this formulation Otter finds no proof in 30 minutes. The clausification of (27) 
results in variable y being replaced by a Skolem function of the two variables A and B. 
The effect of Skolemisation may be reduced by eliminating one of the universally 
quantified variables in (27), e.g. replace variable B by the constant C in (26): 

∀A(A ⊆ C ↔ ∀y(y ∈ A → y ∈ C)) (28) 

Now Otter finds a proof after 4 minutes 5 seconds. Variable y in the clausal form 
of (28) is now replaced by a Skolem functor of only one variable as opposed to a 
functor of two variables in (27). The possibility of irrelevant unifications with this 
Skolem functor has therefore been reduced. It should also be noted that the subset 
functor ⊆ in both cases has an arity of two, but in (27) it contains two variables as 
opposed to one constant and one variable in (28). These results lead to: 

 
Heuristic #5: Simplify terms in sets by either not involving functors, or else 
functors with the minimum number of argument positions taken up by variables. 
 
Vampire finds quick proofs with or without the heuristic applied. With the subset 

functor formulated as in (27) it finds a proof in 21 seconds and for (28) in 0.1 
seconds. The relative improvement in search time is significant. However, the search 
time for (27) may still be too low to seriously justify the use of the heuristic. We 
therefore increase the complexity of the problem to further test our heuristic. The 
example problem (20) that was also used in the divide-and-conquer heuristic has 
sufficient complexity and will be used again with the extensionality heuristic applied 
to the conclusion as in (21). As before, the term H = (G) is unfolded as 

∀x(x ∈ H ↔ x ⊆ G) (29) 
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where the subset functor ⊆ is again defined as in (27). With this formulation 
Vampire finds no proof in 30 minutes. We next apply the multivariate functor 
heuristic by defining the subset functor with variable B replaced by the constant G: 

∀A(A ⊆ G ↔ ∀y(y ∈ A → y ∈ G)) (30) 

Now Vampire finds a proof after 1 minute and 32 seconds. This result can further 
be improved through divide-and-conquer. The times for the two sub-proofs are 5.2 
and 0.3 seconds respectively.  

4 Case Study: Football Fan Register 

The following case study serves as a very small example of the specification of an 
enterprise information system using Z and the subsequent reasoning about one of its 
properties using the heuristics of the previous section. 
A Football Identity Scheme allocates each fan a single unique identity code. It also 
keeps a list of troublemakers who have been banned from attending matches. 
PERSON and ID are two given sets and represent the set of people and the set of all 
possible identity codes. The system state is recorded by FIS [8]:  

 
FIS  
 members: ID  PERSON;  banned:  ID 

 
 banned  dom members 

 
The partial injective function members maps identity codes to fans. The set banned 

is a set of banned identity codes and is a subset of the domain of members. 
Schema AddMember adds members to the system. It takes a person as input and 

returns a newly allocated identity code. 
 

 AddMember 
 

FIS 
person?: PERSON;  id!: ID 

 
person?  ran members  id!  dom members 
members   = members  {id!  person?}  banned   = banned 

 

A Proof Obligation 
Next we show how some of the above heuristics may be used to successfully 
discharge a proof obligation arising from the specification. We want to show that 
members   is still an injective function. The following are given as input to Vampire: 

 
members  rel(id,person)  isSiv(members)  isInjective(members) (31) 
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banned  (id)  banned  dom(members)  person?  person  id! 
 id 

(32) 

person?  ran(members) (33) 
id!  dom(members)  ![M]: (M  newMembers  M=ord(id!,person?)) (34) 

members’ = members  newMembers  banned’ = banned (35) 
 
These facts represent the state FIS and operation AddMember Formula (31) states 

that members is a relation that is single valued and injective, i.e. a partial injective 
function [13]. The axioms for rel, isSiv, isInjective, dom, ran, subset, union etc. are 
not shown here but are part of the input to Vampire. 

The proof obligation is stated as: 

members’  rel(id,person)  isSiv(members’)  isInjective(members’) (36) 

Vampire finds no proof for (36) in 30 minutes. The divide-and-conquer heuristic 
can be applied to (36), resulting in three separate sub-proofs with consequents: 

members’  rel(id,person) 
isSiv(members’) 

isInjective(members’) 

(37) 
(38) 
(39) 

Vampire finds proofs for (38) and (39) in 14 minutes 48 seconds and 14 minutes 
24 seconds respectively, but fails to find a proof for (37) after 30 minutes. Next we 
apply the multivariate functor heuristic by removing axioms for union, domain, 
injectivity, single valued ness, power set, range, relation and subset and replace them 
by instances of the same axioms where some variables are replaced by constants. For 
example, (33) requires the following definition for the range of a relation: 

R Y[Y  ran(R)  (X)(ord(X,Y)  R)] (40) 

A replacement instance of (40) is therefore added to the proof attempt where 
variable R is replaced with constant members: 

Y[Y  ran(members)  (X)(ord(X,Y)  members)] (41) 

Vampire now finds quick proofs for (38) and (39) in 4 and 7 seconds respectively. 
Vampire still cannot find a proof for (37) in 30 minutes. We finally apply the nested 
functor heuristic to all the introduced axiom instances like (41). For example, (41) 
contains the nested functors el(Y,ran(members)) and is replaced by: 

ranMems = ran(members)  
Y[Y  ranMems  (X)(ord(X,Y)  members)] 

(42) 

Vampire finds a solution for sub-proof (37) in 9 minutes and 18 seconds. Solutions 
for (38) and (39) are also found slightly faster in 2 and 4 seconds respectively. 

5 Conclusions and Future Work 

In this paper we investigated to what extent a previously developed set of heuristics to 
facilitate proofs in set theory for a resolution-based automated reasoner are applicable 
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to another reasoner with similar characteristics. The Vampire theorem prover was 
chosen for this task owing to its steadfast performance at recent CASC competitions. 
We evaluated 5 heuristics and found that all these heuristics are indeed needed, even 
though the original problem often had to be enlarged to illustrate the utility of the 
given heuristic using the new reasoner. Our heuristics appear to have an even larger 
support base since we also tested these on another reasoner, namely, Gandalf [14] and 
comparable results as reported on in this paper were witnessed. 

Future work in this area may include an investigation into the applicability of the 
rest of our heuristics. Preliminary results indicate that at least 11 of the original 14 
heuristics are useful, some addressing the challenge of tuples and functors with arity 6 
or more [15].  
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