A General Approach to Securely Querying XML

Ernesto Damiari Majirus Fansi, Alban Gabillor? and Stefania Marrata

L Universit degli Studi di Milano
Dipartimento di Tecnologie dell'Informazione
via Bramante 65 26013 Crema (CR), Italy

2 Universié de Pau et des Pays de I’Adour
IUT des Pays de I'’Adour
40 000 Mont-de-Marsan, France

Abstract. Access control models for XML data can be classified in two major
categories: node filtering and query rewriting systems. The first category includes
approaches that use access policies to compute secure user view on XML data
sets. User queries are then evaluated on those views. In the second category of
approaches, authorization rules are used to transform user queries to be evaluated
against the original XML dataset. The aim of this paper is to describe a general
query rewriting technique to securely querying XML. The model specification

is given using a Finite State Automata, ensuring generality and easiness of stan-
dardization w.r.t. specific implementation techniques

1 Introduction and Related Work

In the last few years, theXtensible Markup Languad&ML)[2] has become the format
of choice for data interchange. XML-based systems are now widely deployed in a num-
ber of application fields. This success has triggered a growing interest in XML security,
and several schemes for XML access control have been proposed. They can be clas-
sified in two major categoriestode filteringandquery rewritingtechniques. The first
category includes a number of approaches (e.g., [6,7,14,13,17,24,5,12]; for a com-
plete survey, see [14]) that use access policies to congaaiere viewsn XML data
sets. User queries are then evaluated on those views. Although views can be prepared
off-line, in general, view-based enforcement schemes suffer from high maintenance and
storage costs, especially for a large XML repository.

XML access control viguery rewriting([21, 19, 20, 10, 18, 9, 3]) has been proposed
as a way to remedy these shortcomings. According to this approach, access control
rules are not directly applied to the XML dataset to be protected; rather, they are used
to translate potentiallynsafeuser queries int@afeones, to be evaluated against the
original XML dataset. Most current proposals translate the policy’s access control rules
(ACR) to nondeterministic finite automata (NFSA) to rewrite user queries. However,
for policies that include many ACRs, NFSA backtrackings may cause unacceptable
overhead. More importantly, NFSA-based models are not entirely suitable for system

Damiani E., Fansi M., Gabillon A. and Marrara S. (2007).

A General Approach to Securely Querying XML.

In Proceedings of the 5th International Workshop on Security in Information Systems, pages 115-122
DOI: 10.5220/0002417301150122

Copyright © SciTePress

116

specification and standardization. Another serious canisethat few of these models
provide users with a safe schema representing the infasméiat they are allowed to
access. Disclosing the original schema may cause unwarftadhiation leaks.

In this paper, we describe our Deterministic Finite AutcomaiDFA) based query
rewriting approach (Section 2) that overcomes the drawdatkhe NFA-based Sys-
tems. The main contributions of this work include:

— A security model based on authorization attributes for XMe¢tion 2.1) in which
the security designer inserts the attributes in the XML &thef the document
collection via a GUI. We then obtain a policy-dependent vigwhe schema (or
annotated schema).

— A formalization based on deterministic automata with a Higrel of generality
(an automaton can be implemented in different ways) andlsigifor standardiza-
tion of the enforcement technique. From this formalizatiom straightforwardly
derive algorithms for computing the user view of the scheSection 2.2) and the
rewriting DFA (Section 2.3) from the annotated schema.

— A way to exploit the standard operatd&XCEPT andUNI ON of XPath [4] to pro-
duce a sound and complete rewriting procedure (Sectioro2 e user query.

— The complexity analysis (Section 2.5) shows that the eptioeedure is efficient
as it is linear with the size (i.e the number of element defing) and the depth of
the repository schema.

A proof that our approach is sound and complete by means afnaalqroof of cor-
rectness has been presented in [8]. Finally, section 3 adaslthis paper and discusses
future work.

2 DFA-based Query Rewriting

In this section we present a novel approach for rewritingptiglly unsafe user queries
into safe ones. Our technique is basedD®terministic Finite Automat§DFA). We
exploit the tree nature of the XML Schema to derive the DFAjoltis the core of
the rewriting procedure. We show that our technique is cbtvg devising its proof of
correctness.

2.1 Writing the Security Policy

The security administrator (SA) uses a Graphical User fiater (GUI) to specify for
each user class (role), the part of information that thesusier granted or denied access
to. Indeed, in order to obtain a policy-dependent view ofdtigema, the SA annotates
the schema usingecurity attributesThis technique was first used in SMOQE [11].

We define the following security attributesccess, conditionanddirty.
Attribute access specifies the rights of the user on the node. The value of this a
tribute is eitheral | ow or deny. Attribute condi ti on contains a list of predicates
that have to evaluate to true for access to be granted. afieriti r t y indicates that
some descendants of the current node could be unauthokitted. precisely, a node
has a dirty attribute if it has at least one descendant notteeitheraccess=deny

117

<schema xmins="http:/www.w3.0rg//2001/XMLSchema"> <schema xmins="http://www.w3.0rg//2001/XMLSchema">
<element name="showroom"> <element name="showroom" access="al | ow' dirty="true">
<element name="vehicles" maxOccurs="unbounded" minOccurs="1" > <element name="vehicles" maxOccurs="unbounded" minOccurs="1"

access="al low" dirty="true" >
<element name="available" maxOccurs="unbounded"
access="al | ow" dirty="true" condition="C">
<element name="model" type="string" access="al | ow' />

<element name="available" maxOccurs="unbounded" >
<element name="model" type="string"/>
<element name="color" type="string"/>
<element name="price" type="string"/>

<element name="accessory" maxOccurs="unbounded"> <element name="color" type="string" access="al | ow'/ >
<element name="description" type="string"/> <element name="price" type="string" access="al | ow'/ >
<element name="price" type="string"/> <element name="accessory" maxOccurs="unbounded"
<lelement> access="al | ow' condition="C1">
<[element> <element name="description" type="string" access="al | ow' />

<element name="price" type="string" access="al | ow' />
<[element>
<[element>
<element name="sold" maxOccurs="unbounded" access="deny">

<element name="sold" maxOccurs="unbounded" >
<element name="model" type="string"/>

</element>
<attribute name="city" type="string" use="required"/> <element name="model" type="string"/>
</element>
</schema> </element>
@ <attribute name="city" type="string" use="required"/>
<lelement>
</schema> ()

Fig. 1. The Showroom Schema (a) and the corresponding annotated Sdijema (

or a non emptycondi ti on attribute attached to it. Annotating the original schema
means appending these attributes to element definitiorfeisdchema. The annotated
schema is no longer valid regarding W3C XML Schema recomnt@rddt is only an
internal representation of the security policy that is m&lisclosed to the user.

Throughout the rest of this paper, we will consider a repogiof XML documents
valid w.r.t. the schema depicted in Fig.1(a) as a workingr@la. In this example, we
also consider user Alice and a policy that allows her accesdementshow oom
conditionally grants her access to elemextsii | abl e andaccessory and denies
access tsol d. Alice is granted access to all other elements (except theahelants
of sol d of course). The annotated schema is depicted in Fig.1 (b&reveecurity
attributes are written in bold.

The remainder of the rewriting procedure, presented inéhgaining subsections,
consists of three steps:

Step 1 The annotated XML schema is transformed according to thieypthat
applies to each role. According to her role, the user is plediwith the view of the
schema (in shorfv) she is entitled to see. Then, she can write her query usfog-in
mation available o$'v. Henceforth, unless stated otherwise, the term view widim®o
the view of the schema and not to the view of a source document.

Step 2 The annotated schema is translated into an automaton \pcbsents the
structure ofSwv. Each state withirb'v contains some security attributes that will further
serve us while rewriting the user request.

Step 3 The user query is rewritten using the finite state automaton

118

s4
access="denied"
sold
S1
s2 S3
howroom,Jaccess="allow" .
S0 - vehicles)\ ccess="allow" access="allow"
. dirty - available dirty
<?xml version="1.0"?> dirty
<schema xmlIns="http://www.w3.0rg//2001/XMLSchema"> condition="C"
<element name="showroom">
<complexType> s5
<sequence> modal
<element name="vehicles" maxOccurs="unbounded" minOccurs="1"> access="allow" X
<complexType>
<sequence>
<element name="available" maxOccurs="unbounded" minOccurs="0"> S6 color
<complexType> ¢
<sequence> access="allow"
<element name="model" type="string"/>
<element name="color" type="string"/> 57
<element name="price" type="string"/> price
<element name="accessory" maxOccurs="unbounded" minOccurs="0"> | 5ccess="allow"
<complexType>
<sequence>
<element name="description" type="string" delete=""/> S8
<element name="price" type="string" /> accessory
</sequence> access="allow"
</sequence> condition="C1"

<attribute name="city" type="string" use="required"/>
</complexType>
</element> @) (b)
</schema>

Fig. 2. The User Schema View (a) and the Rewriting FSA (b).

2.2 Deriving the User View of the Schema (Step 1)

Deriving the user view from the annotated schema is stringhérd. We start at the root
of the annotated schema tree, and at each element definitoproceed as follows:

— If the attribute access &l | owwithout any condition then we keep the node as is
in the user view.

— If access isal | owand there is an attributondi t i on set then we redefine the
node as optional by adding the attribatenOccur s=0. In this way if a query gets
to fail because theondi t i on is not satisfied, then the querist would not infer the
hiding of data.

— If access igddeny then we discard the sub-tree rooted at the actual node frem th
user view.

The view for user Alice is depicted in Fig.2(a).

2.3 Constructing the Automaton (Step 2)

Constructing the rewriting automaton from the annotatdtesw is also straightfor-
ward. The automatoll derived from the annotated schema consists of an alpliabet
a set of states§, a transition functior?” : S x X — S, a start statey € .S, and a set of
accepting stated C S. The automaton is constructed as follows:

The alphabef’ consists of the values of the attributeane of each element defi-
nition on the annotated schema.

119

Creating the states We start at the root of the annotated schema. The state cor-
responding to the root (elemesithenm) is so. We create one state for each element
definition which has ai rt y parent. Indeed, all other nodes (those dbt t y) and
their subtrees are kept unchanged in the secured view. Heegelo not require to be
processed by the automaton. When we encounter a denied nedeeate a state for
that element and skip the entire sub-tree rooted at that itatsh state € S (s # sg)
has attributes which represent the security attributésdt the corresponding element
definition. We give to the state attributes the name and theevaf their corresponding
security attributes. Each statec S (s # sg) is a final state (i.ed = S\ {so}).

Defining transitions: There exists a transition from a staigto a states; if the
element definition corresponding tg is the parent of the element definition corre-
sponding tos;. The transition is labeled by the attributane of the element definition
corresponding tg;.

The automaton derived from the annotated schema of Figig(Bpresented in
Fig.2(b).

2.4 Rewriting the Request (Step 3)

We assume that the user writes her request using the sxiBaeh- - 2 of XPath ex-
pressions informally defined as follows:
XPat h- - := ¢ll| * |p1/p2| IIp1|p[q] wherep,; andp, areXPat h- - expressionss, [,
denote the empty path, a label and a wildcard, respectiyelgd// stand for child-axis
and descendant-or-self-axis; and finadlys called a qualifier. We rewrite the request in
the subset:={e|l|p1/p2|plq]} of XPat h- - using the functionsinionandexcept(is
XPat h- - without descendant-or-self axig/) and wildcards). Hereby, we alleviate
the rewriting process overhead since there is no need taraakkn the automaton. We
therefore rewrite the query in two phases. First, we refieesttbmitted expression and
second, we rewrite the refined expression through the attoma

Phase 1: refining the expressiofhis step consists in refining the request on the
basis of the view the user is permitted to see. We first tramstbe user query (over
the repository) to an equivalent one (over the view). Secamdexecute the latter on
the user view §v) and from the target node we go back up to the root node, adding
the encountered nodes on the path to formréfimed expressiorhe goal of this pro-
cedure is to eliminate every/ and* within the expression. As an example, if Alice
requestig / vehi cl es/ avai | abl e then the equivalent expression over the view is
[l el ement [@anme="vehi cl es"]/ conpl exType/ sequence/
el enent [@ane="avai | abl e"] and the refined expression is
/ showr oont vehi cl es/ avai | abl e.

Phase 2: Rewriting the request via the automatomhe automaton represents the
view the user is permitted to see. Rewriting the user requasists of,

% In [15] Gottlob, Koch and Pichler show that the loss of expressive pofva fragment like
XPat h- - w.r.t. XPath is minimal.

120

— processing the first tokémf the refined expression

— moving to the next state of the automaton until either thé tialeen is received,
or a clean state (i.e., a state that has no attribute dirtyjeisor a denied state is
encountered.

When processing a token, we consider the two following cases:

— Queries without predicates. After reading the currentiiokiee automaton uses the

attributes of the current state and behaves as follows:

— Access isdeny. It rejects the request.

— Access is allow. There are two possibilities:

—— (1) Ifthere is no attributdi r t y then the user has the right to consult the entire
sub-tree rooted at that node. The token is kept as such, the wéthe attribute
condi t i on (if any) is attached to the token and the remainder of thecgoguery

is appended to the rewritten query. Note that the attridutet y is for optimizing
the rewriting procedure. Indeed, if the access is allow &rldere is no attribute
di rty then we do not need to analyze the remaining tokens one byVémean
directly append the remainder of the source query to theittewrquery.

—— (2) If there is the attributdi r t y then the token is kept as such and if there
is an attributecondi t i on, its content is attached to the token. Then, the analyzer
asks for the next token (if any).

If the last token has been fed into the automaton then we esepbratoexcept

to eliminate each unauthorized node under the target ntfidedenotes the rewrit-
ten expression after the last token has been fed into thematitm then the final
rewritten expression ig’ = g except (e; Ues U ... U e,), Where eacl; with

1 < j < niscomputed as follows:

The automaton consults one after another the states congisyg to the children
of the node represented by the current state. At each stateresponding to the
tokenl, we have the following:

If the attributeaccess = deny then! is appended tq. The resulty/I becomes
one of thee;.

If the attributeaccess=al | ow and there is an attributeondi ti on then the
negation of the conterdt' of the attributecondi t i on is appended té. The result
I[[not(C)] is appended tq. ¢/l[not(C)] becomes one of the;. If there is also an
attributedi r t y then the procedure goes deeper into the automaton (i.e.iggam
the children of the current tokel) and starts computing anothey with ¢ now
being equal tey/I[C].

— Queries with predicates. The idea here is to stop procefisingutomaton when a
token with predicate(s) is received. We save the currete astad check whether the
user has the right to consult the nodes that occur within tbdipate(s). If she has
the right to, we return to the saved state and continue witméxt token. Otherwise
the request is rejected.

Examples which illustrate the rewriting procedure are fted in [8]. Due to space
limitation, we cannot include them in this paper.

4 We call token a step in the path expression, for exanslewr oomis the first token in
/ showr oont vehi cl es/ avai | abl e, while vehi cl es is the second/ stands for a
| ookahead.

121

2.5 Complexity Analysis

The complexity of our approach is determined by that of stge@sand 3 of the rewriting
procedure. Let us assume that the repository schema centai@finitions of element
nodes. Deriving the user view of the schema (Section 2.Bstait mosO(n) time.
Constructing the automaton (Section 2.3) also requiresoat@(n) time as well. Ifm

is the depth of the schema, then refining the expressioni@@ez#) takesD(m) time.
Since we rewrite the refined expressions by simply travgr$ia deterministic automa-
ton, this phase take3(n) time. Hence, the overall time complexity of this proposal is
O(n +m).

3 Conclusion

In this paper, we describe a Deterministic Finite Autom&&A) based approach to
rewrite unsafe queries into safe ones, thus avoiding theyrhanktrackings inherent
to NFAs. We highlighted how our approach improves w.r.tvimes works in the area
(see [8]). Also, we show that our technique is linear with shee and the depth of the
repository schema. Although our rewriting procedure isthécally efficient and sug-
gests good performances, experiments remain work to be Muoreover, our proposal
leaves space for further work. Other inspiring approach8k [1] enforce client-based
access control to XML. Indeed, in [16] and [1], the documerdricrypted at the server
side and decrypted at the client side. The input of theiresyss then XML data and
the output is also XML data, while in our approach both theutngnd output is an
XML query. We are investigating the possibility to diminidie workload at the server
side by transferring the rewriting procedure to the cligdesFinally, Current stan-
dards for access control languages that can be used forcpngteXML information
([23, 22, 25]) lack a standard technique for enforcing peficvia secure query rewrit-
ing. We are investigating interfacing our technique witmstard policy languages like
XACML[23]. Our DFA-based approach is general enough to gpdle enforcement
of most XACML policies when applied to protect XML data. Weplto develop this
topic in a future paper.

Acknowledgements

This work was supported in part by the Italian Basic Resektoid (FIRB) within the
KIWI and MAPS projects, by the European Union within the PRINEbject in the
FP6/IST Programme under contract IST-2002-507591 andiwdirfig from the French
ministry for research under "ACI&uri€ Informatique 2003 - 2006. projet CASC".
Majirus Fansi holds a Ph.D scholarship granted by the "Cbf&&réral des Landes”.
The authors wish to thank Sabrina De Capitani di Vimercaérahgela Samarati and
Stefano Paraboschi for common work and valuable suggestion

References

1. Bouganim L., Ngoc F. D., Pucheral P.: Client-Based Access GloMimnagement for XML
documents. In Proc. of the 30th VLDB Conference, 2004.

122

10.
11.
12.
13.
14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24,

25.

. Bray T., Paoli J., Sperberg-McQueen C. M.: eXtensible Markapguage (XML) 1.0 (2nd

Ed). W3C Recommendation, 2000

. Byun C. W,, Park S.: An Efficient Yet Secure XML Access Contaforcement by Safe

and Correct Query Madification. In Proc. of the 17th Internationalf€mmce on Database
and Expert Systems Applications (DEXA), 2006.

. Clark J., DeRose S.: XML Path Language (XPath). W3C Recomati&mj 1999.

http://www.w3.org/TR/xpath.

. Cuppens F., Cuppens-Boulahia N., Sans T.: Protection of relaimg xml documents

with the xml-bb model. In Proc. of ICISS2005.

. Damiani E., De Capitani di Vimercati S., Paraboschi S. Samarafidéuring XML Doc-

uments. In Proc. of the 2000 International Conference on Extendaighiase Technology
(EDBT2000).

. Damiani E., De Capitani di Vimercati S., Paraboschi S., Sami@raéi fine-grained access

control system for XML documents. In ACM Trans. Inf. Syst. Secvnl. 5(2). ACM Press,
New York (2002) 169—202.

. Damiani E., Fansi M., Gabillon A., Marrara S.: A General Appio& Securely Query-

ing XML. In Note del Polo - Ricerca - Universitdegli Studi di Milano, Dipartimento di
Tecnologie dell'lnformazione Polo Didattico e di Ricerca di Crema, Ni&, 2007.

. De Capitani di Vimercati S. and Marrara S. and Samarati P.: Aessacontrol for querying

xml data. In Proc. of SWS05 workshop.

Fan W. and Chan C. and Garofalakis M.: Secure XML Querying \eithisty views. In Proc.
of SIGMOD 2004 Conference.

Fan W., Geerts F., Jia X. Kementsietsidis A.: SMOQE: A System foviing Secure Ac-
cess to XML. In Proc. of the 32nd VLDB Conference, 2006.

Finance B., Medjdoub S., Pucheral P.: The Case for accas®kon xml relationships. In
Proc. of CIKM 2005.

Gabillon A., Bruno E.: Regulating Access to XML documents. In Pobthe 15th Annual
IFIP WG 11.3 Working Conference on Database Security, 2001.

Gabillon A.: A formal access control model for XMI databasa$?toc. of the 2005 VLDB
Workshop on Secure Data Management (SDM).

Gottlob G., Koch C., Pichler R.: The Complexity of XPath Query Ev#na In Proc. of
the 22nd ACM SIGACT SIGMOD SIGART Symposium on Principles of Dath8ystems
(PODS-02). ACM Press, San Diego (2003)179-190.

Kodali N., Wijesekera D.: Regulating access to SMIL formatted geryview movies. In
Proc. of the 2002 ACM workshop on XML security.

Kudo M., Hada S.: XML document security based on provision#iaization. In Proc. of
ACM CCS 2000.

Kuper G., Massaci F., Rassadko N.: Generalized xml secugtysv In Proc. of the 10th
SACMAT, 2005.

Luo B., Lee D., Lee W., Liu P.: QFilter: Fine-Grained run-time XMlcagss Control via
NFA-based Query Rewriting. In Proc. of CIKM 2004.

Mohan S., Sengupta A., Wu Y., Klinginsmith J.: Access ControKidL - a dynamic query
rewriting approach. In Pro c. of VLDB 2005 Conference.

Murata M., Tozawa A., Kudo M.: XML Access Control using Staticalysis. In Proc. of
CCS 2003.

NIST, The Extensible Configuration Checklist Description FormatCQRF),
http://nvd.nist.gov/scap/xccdf/xccdf.cfm

OASIS, eXtensible Access Control Markup Language (XACML)tp:Awww.oasis-
open.org/committees/xacml/

Stoica A., Farkas C.: Secure XML Views. In Proc. of the 16th Nt811.3 Working Con-
ference on Database and Application Security, 2002.

W3C, Web Services Policy 1.2 - Framework (WS-Policy),
http://www.w3.0rg/Submission/WS-Policy/

