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Abstract. Major aspects of cognitive science are based on natural language pro-
cessing utilizing automatic speech recognition (ASR) systems in scenarios of
human-computer interaction. In order to improve the accuracy of related HMM-
based ASR systems efficient approaches for un-supervised adaptation represent
the methodology of choice.

The recognition accuracy of speaker-specific recognition systems derived by on-
line acoustic adaptation directly depends on the quality of the adaptation data
actually used. It drops significantly if sample data out-of-scope (lexicon, acous-
tic conditions) of the original recognizer generating the necessary annotation is
exploited without further analysis.

In this paper we present an approach for fast and robust MLLR adaptation based
on a rejection model which rapidly evaluates an alternative to existing confi-
dence measures, so-called log-odd scores. These measures are computed as ratio
of scores obtained from acoustic model evaluation to those produced by some
reasonable background model. By means of log-odd scores threshold based de-
tection and rejection of improper adaptation samples, i.e. out-of-domain data, is
realized.

By means of experimental evaluations on two challenging tasks we demonstrate
the effectiveness of the proposed approach.

1 Introduction

Automatic speech recognition (ASR) represents one important pre-requisite for ad-
vanced natural language processing methods. In order to get more detailed insights into
human cognition processes the application of sophisticated automatic speech recogni-
tion in real-world interaction scenarios has become a standard approach. Consequently,
intelligent and most natural human-computer interaction substantially relies on robust
ASR systems.
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Humans are able to understand spoken language almost imdiagisy on the partic-
ular acoustic environment where it has been uttered. Thed<ghis remarkable ability
lies in adaptation to either different speakers, unfamiii@lects or additional noise.
Trying to imitate this behavior, in the last decade robustpation techniques of ASR
systems based on stochastic models — most notably HiddekoMatodels (HMMs)
[1] — have been developed. These techniques allow for theesstul application of
ASR systems to environments where the acoustic conditionslifferent from those
met during training of the recognizer.

Since the acoustic environment of applications within tlomtext of human-
computer interaction, usually, changes almost continyprepid and automatic adap-
tation of ASR systems is of major interest. In these premisethe last few years es-
pecially speaker adaptation based on Maximum Likelihoowar Regression (MLLR)
[2] has been applied successfully. Basically, this procedffers two advantages:

1. Large amounts of general, i.e. speaker-independentispisa can be used for
robustly estimating a base system.

2. Speaker-dependent training data can be exploited astieffly as possible for
deriving high-quality speaker-specific recognizers frohe toriginal speaker-
independent system.

For most interactive applications utilizing natural laage processing un-
supervised adaptation procedures represent the methyydofochoice since labeled
sample data uttered by specific speakers is, usually, ramggssible. In these cases
the annotation of adaptation data is obtained on-line frealuating the base system
appropriately. However, if the speaker-independent sygievides poor recognition
results the quality of the speaker-specific recognizeredeses, too.

Especially within “dynamic” speech-recognition domaililsg e.g. in car environ-
ments or in the context of human-robot interaction, ASR &atag is, according to our
experiences, likely to fail for various reasons. Most pnoenitly speaker-independent
base systems are trained with respect to certain lexicanbturally, naive ASR users
often do not restrict themselves to such limited invenwrigither they do not know
the particular lexicon or certain alternative conversatmg. to an instructor or another
speaker, takes place which is (erroneously) used as adepsaimples. The resulting
(false) hypotheses generated for this out-of-domain dattnd base-system are then
used for adaptation which is counterproductive for ASR iovpment.

In order to circumvent this kind of mis-adaptation the hyygstes provided by the
speaker-independent base-system need to be judged in sayneitli respect to their
usefulness for adaptation. Basically, this judgment canlieined by evaluating con-
fidence measures. Those hypotheses which, according tonfidence measure used,
are classified as not suitable for proper adaptation shauidjbcted for speaker depen-
dent specialization.

Within the domain of human-computer interaction compotai facilities avail-
able for ASR are limited. Prominent examples are recogsirarembedded systems
as e.g. in car environments or mobile robots. In additiorhts the particular recog-
nition system might need to fulfill certain more or less stdonstraints with respect
to processing-time. For multi-modal architectures whleegpeech recognizer is only
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one part of the overall system the problem further increalas implies that complex
models can hardly be used for monitoring the actual speadtaptation process.

Surprisingly, there is only little literature on hypothegedgment available focusing
on rapid un-supervised adaptation approaches in dynamiioaements including com-
putational constraints as outlined above. In [3] confidemeasures in terms of poste-
rior word probabilities are exploited in order to “supes/iASR adaptation. However,
related systems, usually, consist of rather complex teghes which seems problematic
for restricted computation facilities.

Contrary, in our work we concentrated on the development rgfection scheme
which can be used very efficiently for increasing the robessrof MLLR-based speaker
adaptation of ASR-systems. Due to the limited resourceiada in a typical human-
computer interaction scenario our approach proposes fleation of a rather simple
but effective technique principally known from detectigaphcations utilizing discrete
HMMs. The emission probabilities of semi-continuous HMMs aormalized prior to
the model evaluation step. Given the transformed paramé#ierstandard single-pass
model evaluation results in so-called log-odd scores wbarhbe compared directly to
absolute thresholds. Consequently, poorly scoring hygssth are rejected for adapta-
tion which increases the overall quality of the speakeredélent recognizer derived. In
an experimental evaluation on two challenging recognitasks simulating the typical
dynamic environment as addressed by this paper we demn#imeffectiveness of
our new approach.

2 Related Work

In typical applications where only little sample data isiklale speaker-related special-
ization of ASR systems is, usually, limited to the adaptatibthe acoustic model, i.e.
the mixture parameters of the Hidden Markov Models usedtlispurpose, certainly,
one of the most promising approaches is the Maximum Likekhbinear Regression
(MLLR) technique.

Based on one or more regression classes the maximum likelibptimization for
small amounts of adaptation data covering only parts of toeistic model is general-
ized to the complete set of parameters. For each regredsiesm an affine transforma-
tion representing rotations and translations is appliethéoappropriate means of the
mixture densities. Using MLLR significant improvements e€ognition accuracy are
achievable with only small amounts of adaptation data.e&the computational effort
required is not substantial MLLR has also been used suaedlys&ir online applica-
tions (cf. e.g. [4, 5]).

In order to judge hypotheses obtained from ASR systems and&l measures,
usually computed using some additional general-purpodaghrer level recognizer,
are widely applied. Such judgments can be used for out-oéholary rejection, word
spotting etc. [1].

For the first general kind of confidence measures Bayes’ sutkréctly exploited
for the calculation of posterior probabilitigd(w|x) for word hypothesesv given the
acoustic input, the acoustic model and the language model probabififx(w) and
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P(w), respectively):

Pw)P(x|w) _  P(w)P(x|w)
P(x) 2w P(W) P(x|w)

P(wlx) = 6y
Based on this principle e.g. in [6] posterior probabilita® used as confidence mea-
sures for large vocabulary speech recognition. The gesperglose recognizer actually
used for computing®(x) is often referred to as filler model and posterior probabsit
(cf. equation 1) give reasonable hints for hypotheses’ denfies.

Alternatively recognition hypotheses can be judged by demfite measures which
are computed separately by (more or less heuristicallypdoimg the results of various
so-called predictor models. As an example in [7] severalemnigal values, obtained e.g.
from parallel N-best evaluation or alternative, less complex recognifers “phone-
only” decoding), have been exploited.

The majority of applications utilizing confidence measusafirected to the general
improvement of the recognition accuracy of ASR systemsrajnait €.g. more robust
dialogue control. As one example in [8] confidence scoresappdied in order to im-
prove hands-free speech based navigation in continuotegtidit systems. However,
there is hardly any literature addressing the confidencesunesbased improvement
of un-supervised speaker-adaptation. In [3] a two-pasptatian strategy based on
word posterior probabilities used as confidence measurdsssribed. Given confi-
dence scores for the hypotheses obtained from the first nétmgpass a word graph is
generated which is the base for calculating word posteriabpabilities. All frames for
a word with low confidence are rejected for adaptation.

The authors report improvements for the recognition aayunéspeaker-dependent
ASR systems derived by adaptation automatically supehligeevaluating confidence
measures. However, the rather complex computation of ceméies seems problematic
for applications as addressed by this paper which aims atlesi rejection model.

3 Log-odd Scores based Rejection

When addressing automatic speech recognition in intemafplications where com-
putational facilities are rather limited certain consitaineed to be respected. This in-
cludes the best possible avoidance of multi-pass recognitiocedures as well as the
restriction to approaches which are computationally sénfgit still provide reasonable
recognition results. The situation gets even more prolifiemehen ASR represents
only a single component of a multi-modal processing frantkwo

Nevertheless, especially for dynamic application domaiite changing speakers
and additional conversation out of the recognizer’s scopdgexicon and acoustic con-
ditions, additional robust un-supervised ASR adaptatioa very important but chal-
lenging task.

In these promises we apply MLLR-based adaptation to spéallependent recog-
nizers within an online adaptation framework (cf. [4] fortaés). Recognition results
obtained by evaluating the base system are used for acadstitation towards speaker
specific models. Comparable to the procedure presented aufptation is monitored
by confidence measures, i.e. based on threshold compaiiseoanfident hypotheses
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are rejected for MLLR adaptation. In our approach, howes@nfidence measures are
computed using a normalization technique applied to theesaabtained from evaluat-
ing the acoustic model. Since this normalization can beiegh advance (see below)
its computational effort is almost neglectable.

Basically, raw score®(x, s|\y ) obtained from Viterbi alignments of speech data
x to a particular acoustic modgl, along the most probable state patbould already
be used as confidence measures. However, these scores emdelgon the lengths of
the particular utterances which prevents direct explioitat

Inspired by their successful use in alternative applicegjce.g. within the bioin-
formatics domain (cf. e.g. [9]), aiming at the detection eftain patterns modeled by
HMMs we use so-called log-odd scores as confidence measigially developed
for discrete HMMs the basic idea is to normalize the paréiceimission probabilities
b;(oy) of an HMM statej for generated symbols;, to some reasonable background
distribution P(oy):
b (ox)
P(ox)

b;(ok) = (2)
When using semi-continuous (SC)HMMs [10] mixtut®gx|uy, C) are shared be-
tween all HMM stateg and individually weighted by resulting in modified emis-
sion probabilities; (x):

K
bj(x) =Y cjxN (x|, Cr) 3)

=1

Technically, SCHMMs can be interpreted as discrete HMMdaioing an integrated
“soft” vector quantizer where;;, represent the emission probabilities of the discrete
model weighted by means of the density valésin order to obtain confidence mea-
sures these coefficientsy, and thus implicitly the actual emission probabilittg$x),

are now (cf. equation 2) normalized with respect to certaiokiground distribution.
Furthermore, the scores are converted into the negativddatain resulting in log-odd
scores for SCHMMs:

K

b(x) = — Zln szk) + In NV (x|px, C) 4)
k=1 J

Normalizing the emission probabilities implies a lengthrmalization of the acoustic
scoresP(x, s|\w). Thus, the resulting scores can be compared directly to solate
threshold. Those hypotheses scoring worse than this thiceahe rejected for adapta-
tion.

Basically, the background distributiaR(c;;) used for computing log-odd scores
corresponds to some sort of “random” model. We evaluatediifferent random mod-
els with respect to their usefulness for computing confideneasures. First, all emis-
sion probabilities are normalized with respect to a unifatate-specific background
distribution of the mixture weights;; — referred to aglat background model. The
second type of background model consists of the prior piitihab of the mixtures the
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semi-continuous HMMs are based on. This corresponds tomehty biasing the ran-
dom model to the actual statistics of the underlying mixtacelel and is referred to as
Prior model.

Technically the computation of confidence measures basédgeodd scores can
be performed very efficiently. The usual calculations ast jo be enhanced by the
additional but non-complex normalization step. Furthemmnthis normalization can be
performed implicitly prior to any actual calculations,.iwithout increasing the com-
putational complexity for model evaluation. Therefores thixture weights:;;, of all
states of the acoustic models are converted using the niaatiah term of equation 4
and standard HMM evaluation is performed using the condesteights.

4 Experimental Evaluation

In order to demonstrate the effectiveness of our new logsmtdes based rejection
model aiming at improved MLLR adaptation of speaker-ingefgant ASR systems
within dynamic environments we performed various expentseFor better repro-
ducibility and generalization we report here the resultsysftematic evaluations us-
ing combinations of known datasets to realistically cover tlynamic environments
as addressed by this paper. This includes sets of speakendiapt adaptation sam-
ples mixed with additional utterances out of the originalognizers’ scope (language,
lexicon etc.).

In fact this corresponds to a typical scenario for humanater interaction with
naive users in the loop. Often certain utterances conigimig. out of vocabulary words
are mixed with utterances which can actually be used for gt@madaptation. The first
kind of utterances might originate from conversation withiastructor or from the
“learning” phase of the human user not being aware of theahtguicon of the ASR
system. According to our practical experiences with therattion of humans and a
mobile robot [11] the quality of speaker adaptation drofxstantially without detection
and proper treatment of utterances actually not suitabladaptation.

4.1 Datasets

The first set of experiments is directed to speaker adaptatithin car environments.
Therefore, thé&SLACC (Spoken LAnguage Car Control) corpus [12] has been exploited.
It consists of read speech containing instructions (cau@dior training and about 100
minutes for test) for the control of non safety-relevantdiions in car environments,
e.g. mobile phone or air-condition. They were recorded ffedint cars and environ-
ments (highway or city traffic) by several speakers (lexisae: 856 words). MLLR
adaptation is performed separately for three speakersentherparticular adaptation
sets consist of SLACC utterances as well as of speech daimating from a com-
pletely different corpus, namely from thiall-Sreet-Journal (WSJO) task [13]. Non-
SLACC utterances have been selected randomly, and theafaéSJO- to SLACC-
adaptation data is approximately 1:3 per speaker. Adaptaafnizers are evaluated on
speaker-specific test data from SLACC (about 300 uttergmeespeaker).
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Additionally, we tested our new approach directly on the W&dfpus. The 5k
closed vocabulary speaker independent recognition hesters used was trained on
about 15 hours of speech and (in summary) tested on 330tz avith approximately
40 minutes of speech. For each of the 8 speakers includedftbialcadaptation sets
have been mixed with utterances randomly chosen from theC&l-8orpus (see above)
as well as from the VERBMOBIL corpus [14]. Again, the ratioaft-of-domain and
in-domain sample data is approximately 1:3.

4.2 Results

For all experiments performed the particular training datased in order to set up
a speaker-independent recognition system consistingrof-sentinuous HMMs and
mixture densities with diagonal covariances. Furthermfmethe WSJ0-system a Bi-
gram model is incorporated. The annotation necessary farRtdaptation is obtained
automatically using the particular base system. Given thdidence measures com-
puted as log-odd scores based on the acoustic model eaaluatid the comparison
to an absolute threshold the resulting hypotheses arer eéthpected for adaptation or
explicitly rejected. Note that, actually, hypotheses ajeated which not necessarily
corresponds to the rejection of complete utterances. Alegments have been per-
formed using our own HMM toolkit ESMERALDA [15].

In tables 1 and 2, respectively, the results for the experiaieevaluation of the
speaker-dependent systems obtained using MLLR adaptatidnour new rejection
model based on log-odd scores are summarizede figures reported have been av-
eraged over speaker-wise evaluations.

Table 1. Results for SLACC-based evaluation (WER for “clean” adaptation setoutittejec-
tion: 20.9%).

Threshold for RejectiofWER| A WER|Rejection
[— In(P(OMN)] T [%] | [%] (%]
No Rejection 277 - -

(Base)

Flat Background Model
-100 22.6| -184 87.0
-50 24.7| -10.8 | 63.3
0 27.7 0.0 7.00

Prior Background Model
-100 22.6| -184 87.7
-50 25.1| -94 62.7
0 27.8| +0.4 5.6

1 Note that baseline experiments without any adaptation showed no sighififfenences be-
tween results obtained when using log-odds scores or their un-nortchabzaterparts.
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Table 2. Results for WSJ0-based evaluation using the rejection threshold detdrimi8eACC-
based experiments.

Background Model
— threshold: -100 —

None *

WER| A WER|Rejection
(%] | [%] (%]

15.1 - -
(Base without Rejectio E
Flat -15.9 70.4
Prior ‘ -16.6 714

The application of our rejection model based on the simpleddd scores based
confidence measures substantially improves the recogndaxruracy of speaker-
dependent recognizers derived on poor adaptation sets. Yefeating all hypotheses
for adaptation with log-odd scores larger thah00 the word-error rate (WER) can be
reduced by more then 18% relative for the SLACC-task (coegbtw standard adapta-
tion without rejection). When using this absolute threstotdhe WSJO0-task the WER
decreases by more than 16% relative.

The differences between the particular background modelslaost negligible.
For both Prior- and Flat-background model the abovemeeti@ubstantial reductions
in WER can be reached.

Comparing the results obtained when processing poor ditaptsets using our
rejection model to those related to model specializatioplaiting “clean” adapta-
tion samples, the effectiveness of our newly developedcgmbr becomes manifest.
As demonstrated for SLACC-experiments when applying oject®sn model on poor
adaptation data the results for optimal conditions, i.engiéclean” adaptation data,
can almost be reached. Thus, even in dynamic environmeatidasssed by this paper,
speaker-dependent recognition systems can be obtaingdistly and efficiently by
applying MLLR adaptation and the new rejection model basetbg-odd scores to a
speaker-independent base system.

5 Summary

The existence of robust automatic speech recognition mgsige of major importance
for probably all kinds of natural language processing negeaithin cognitive science.
As greatideal human listeners are able to understand spegenlin noisy environments
or from unknown speakers.

MLLR adaptation has been established as state-of-theath& improvement of
the recognition accuracy of automatic speech recognitjstesns based on HMMs.
However, according to our experiences within the domainuofifin-computer interac-
tion, especially in dynamic application domains with napeakers in the loop adapta-
tion may fail due to improper adaptation data. This datarnofteginates from conver-
sation out of the particular recognizer’s scope, i.e. dairtg words beyond the lexicon
of the original recognition system or utterances of poouatio quality. Unfortunately,
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when ASR represents only one part of a complex (e.g. multiafjdnteraction system
computational facilities for adaptation are rather lirdite

Addressing such interactive applications with computatlaestrictions we pre-
sented a rejection model based on the evaluation of confidssares applying log-odd
scores for semi-continuous Hidden Markov Models. For timgpge normalization tech-
nique, which can be applied in advance thus maximally limgithe additional compu-
tational effort, the ratio of actual acoustic scores asiobthby HMM evaluation to a
reasonable background model is computed. Based on thasesuaypotheses’ scores
can directly be compared to an absolute threshold and egjéot adaptation if neces-
sary. Two variants of the background model based either amfarm distribution of
mixture coefficients involved or their prior probabilitibave been investigated.

The effectiveness of our approach has been demonstrateddrysof experimental
evaluations on two challenging tasks. Therefore, MLLR &alégn has been applied
to speaker-independent base systems processing datastsing both in-domain
and out-of domain utterances. This corresponds to a verymmmscenario in e.g.
human-robot interaction where often adaptation data 6thescope of the recognizer
(lexicon etc.) need to be processed. When applying the rejectodel the adaptation
process for interactive speech recognition applicati@mshe improved substantially.

References

1. Huang, X., Acero, A., Hon, H.: Spoken Language ProcessiAgGuide to Theory, Algo-
rithm, and System Development. Prentice Hall PTR (2001)

2. Leggetter, C.J., Woodland, P.C.: Maximum likelihood linear regmes®r speaker adapta-
tion of continuous density Hidden Markov Models. Computer Speech &uage (1995)
171-185

3. Pitz, M., et al.: Improved MLLR speaker adaptation using confideneasures for conver-
sational speech recognition. In: Int. Conf. Spoken Lang. Pro@QR0

4. Plotz, T., Fink, G.A.: Robust time-synchronous environmentaptation for continuous
speech recognition systems. In: Int. Conf. Spoken Lang. ProcméR1 (2002) 1409-1412

5. Zhang, Z., Furui, S., Ohtsuki, K.: On-line incremental speakaptdion with automatic
speaker change detection. In: Proc. Int. Conf. on Acoustics, 8pard Signal Processing.
(2000)

6. Wessel, F., Schliiter, R., Macherey, K., Ney, H.: Confidencasmmes for large vocabulary
continuous speech recognition. IEEE Trans. on Speech and Audiesaiaog®1 (2001)

7. Chase, L.: Word and acoustic confidence annotation for largdutang speech recognition.
In: Proc. European Conf. on Speech Communication and Techndlt2§7)

8. Feng, J., Sears, A.: Using confidence scores to improve Heeglspeech-based navigation
in continuous dictation systems. ACM Transactions on Computer-Huntarabition11
(2004) 329-356

9. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological seqoemnalysis: Probabilistic
models of proteins and nucleic acids. Cambridge University Pres8)199

10. Huang, X.D., Jack, M.A.: Semi-continuous Hidden Markov Medler speech signals. Com-
puter Speech & Langua@(1989) 239-251

11. Haasch, A., et al.: BIRON — The Bielefeld Robot Companion. tocPInt. Workshop on
Advances in Service Robotics, Fraunhofer IRB Verlag (2004) 27-32

12. Schillo, C.: Der SLACC Korpus. Technical report, Faculty of Tealbgy, Bielefeld Univer-
sity (2001)



118

13. Paul, D.B., Baker, J.M.: The design for the Wall Street Jouvagakd CSR corpus. In:
Speech and Natural Language Workshop. (1992)

14. Kohler, K., et al.: Handbuch zur Datenaufnahme und Trandiiver&n TP 14 von VERB-
MOBIL — 3.0. Technical Report 11, Institut fir Phonetik und digitaleggpwerarbeitung,
Universitat Kiel (1994)

15. Fink, G.A.: Developing HMM-based recognizers with ESMERALDA: Text, Speech
and Dialogue. Volume 1692 of Lecture Notes in Artificial Intelligence. Syem Berlin

Heidelberg (1999) 229-234



