
Checking Properties of Business Process Models with
Logic Programming

Volker Gruhn and Ralf Laue

Chair of Applied Telematics / e-Business⋆

Computer Science Faculty, University of Leipzig, Germany

Abstract. Logic programming has been successfully used for reasoning about
various kinds of models. However, in the area of business-process modeling it
has not yet gained the attention it deserves. In this article, we give some exam-
ples how logical programming can be exploited for verifying or finding proper-
ties of graphical models that are used by business process modelers, for example
event driven process chains (EPC)[1], UML activity diagrams[2], BPMN[3] or
YAWL[4].
We show how the approach works on different properties of business process
models, including semantic (structural) correctness and modeling style.

1 Introduction

Business process modelers can chose from various languages like event driven pro-
cess chains (EPC)[1], UML activity diagrams[2], BPMN[3] or YAWL[4] for drawing a
model of a business process (BPM).

Often, such BPMs need to be exchanged between different organizations as well as
between different editors, workflow engines or process simulators. For the most BPM
languages, exchange formats based on the markup language XML are defined. When an
XML file that contains a BPM is imported into a tool, input validation should be done in
order to make sure that the XML file really contains a syntactically correct BPM. Often,
the structural requirements are much more difficult to test than the syntactic restrictions
that can be verified using schema languages like the W3X XML Schema. Examples for
such more complex syntactic requirements will be shown in Sect. 2.

In this paper, we show how logic programming with languages like PROLOG can
be used for the validation of syntactic requirements that cannot be validated with XML
Schema.

Furthermore, we also show how PROLOG can be used for reasoning about more
complex properties of a BPM, for example for finding patterns in a model or for check-
ing cross-model consistency.

2 The BPM Language EPC and its Exchange Format EPML

In order to keep the examples simple, we will use the notation of EPCs in this paper.
EPCs consist of functions (activities which need to be executed, depicted as rounded
⋆ The Chair of Applied Telematics / e-Business is endowed by Deutsche Telekom AG

Gruhn V. and Laue R. (2007).
Checking Properties of Business Process Models with Logic Programming.
In Proceedings of the 5th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 84-93
DOI: 10.5220/0002413100840093
Copyright c© SciTePress



customer
order

arrived

check
availability

article is
available

article is
not available

send
article

reject
order

order
processed

Fig. 1. Simple Business Process modeled as EPC.

boxes), events (pre- and postconditions before / after a function is executed, depicted
as hexagons) and connectors (which can split or join the flow of control between the
elements). Arcs between these elements represent the control flow. The connectors are
used to model parallel and alternative executions. There are two kinds of connectors:
Splits have one incoming and at least two outgoing arcs, joins have at least two incom-
ing arcs and one outgoing arc.

AND-connectors (depicted as∧©) are used to model parallel execution. When an
AND-split is executed, the elements on all outgoing arcs have to be executed in parallel.
The corresponding AND-join connector waits until all parallel control flows that have
been started are finished.

XOR-connectors (depicted as×©) can be used to model alternative execution:
A XOR-split has multiple outgoing arcs, but only one of them will be processed. The
corresponding XOR-join waits for the completion of the control flow on the selected
arc.

Finally, OR-connectors (depicted as∨©) are used to model parallel execution
along one or more control flow arcs. An OR-split starts the processing of one or more
of its outgoing arcs. The corresponding OR-join waits untilall control flows that have
been started by the OR-split are finished.

The EPC elements described above are sufficient for modelingsimple business pro-
cesses like the following one: “When a request from a customerarrives, the availability
of the product has to be checked. If it is available, the item will be sent; otherwise the
customer will get a negative reply.” Fig. 1 shows this business process modeled as EPC
diagram.

Nüttgens and Mendling[5] defined the XML-based EPC Markup Language (EPML)
as a tool-neutral interchange format for EPC business process models. The basic ele-

85



ments of EPML are easy to understand: Events and functions are represented by the tags
event andfunction, connectors are represented by the tagsand, or andxor. Ev-
ery event, function and connector has a unique attribute calledid. The control flow is
represented by elements namedarc. Inside an arc-element, there is an element called
flow that names the source and target of the control flow arrow (represented by the
ids of the source and target element.)

The BPM shown in Fig. 1 is represented by the following EPML file:

<epml:epml xmlns:epml="http://www.epml.de"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="epml_1_draft.xsd">
<epc EpcId="1" Name="EPC">
<event id="1">
<name>customer order arrived</name>
</event>
<function id="2">

<name>check availability</name>
</function>
<xor id="4">

<name/>
</xor>
<event id="5">

<name>article is available</name>
</event>
<event id="6">

<name>article is not available</name>
</event>
<function id="7">

<name>send article</name>
</function>
<function id="8">

<name>reject order</name>
</function>
<xor id="9">

<name/>
</xor>
<event id="10">

<name>order processed</name>
</event>
<arc id="11">

<flow source="1" target="2"/>
</arc> ... more arc-elements omitted...

</epc>
</epml:epml>

3 Related Work

Mendling and N̈uttgens[6] have shown that W3C XML Schema[7, 8] as well as Relax
NG[9] can be used for validating rather simple syntactic requirements only. They pro-

86



pose to use the language Schematron[10] which enabled them to validate the most (but
not all) syntactic requirements. However, a drawback of this approach is that it requires
that the modeler adds redundant information to the model before. For example, for an
event without incoming arcs, one has to write

<event id="1" type="StartEvent">

which adds undesirable redundancy to the XML file.
An approach that is powerful enough to check even the most advanced syntactic

requirements in XML files is the Constraint Language in XML (CLiXML)[11]. Even
though the authors of CLiXML admitted in [11] that expressing a graph in the way it is
done in EPML makes “things unnecessarily complicated” for CLiXML, it is possible
to check all necessary syntactic requirements. The main advantages of our PROLOG
based approach over special-purpose solutions like Schematron or CLiXML are that
the PROLOG source files used to reason about a model are extremely short and that
existing PROLOG systems that offer a lot of interfaces to other programming languages
can be integrated into other tools very easily.

Another approach that makes use of a special-purpose-builttool has been published
by Mammar[12]. Mammar uses the Object Constraint Language (OCL) for specifying
required structural properties of UML diagrams an translates the diagrams into the in-
ternal representation of the USE tool[13]. Afterwards, this tool can be used for checking
the required properties. This work has a lot of similaritieswith our logic programming-
based approach.

The related work discussed so far, lies the focus on validating rather “simple” se-
mantic properties. However, logic programming can be used as well for discovering
more advanced model properties. For example, it has be used for finding errors related
to the consistency between several models[14], locating patterns in a model[15], apply-
ing metrics to models[16, 15] and for deciding which diagramversion among several al-
ternative possibilities is the best one according to recommended design guidelines[17].
The preceding list of references (which is by far not exhaustive) contains papers that
deal with various kinds of models, including UML class diagrams, structure charts and
flow diagrams. As far as we know, there is less work on applyingthe ideas on business
process models in languages like EPC or BPMN.

4 Models as Logical Facts

Logic Programming deals with logical facts and logical rules. At first, let’s have one
more look at the example model in Fig. 1. The EPML representation of the model
contains these lines:

<event id="10">
<name>order processed</name>

</event>
<arc id="11">

<flow source="1" target="2"/>
</arc>

From a logical point of view, this part of the model contains three facts:

87



1. The model contains an event whose id is 10.
2. The event whose id is 10 has the name “order processed”
3. The model contains an arc from the element whose id is 1 to anelement whose id

is 2.

In PROLOG, all the information that is included in the model in Fig. 1 is written as
predicates (that should be self-explanatory) as follows:

event(i_1).
elementname(i_1,’customer order arrived’).
event(i_5).
elementname(i_5,’article is available’).
event(i_6).
elementname(i_6,’article is not available’).
event(i_10).
elementname(i_10,’order processed’).
function(i_2).
elementname(i_2,’check availability’).
function(i_7).
elementname(i_7,’send article’).
function(i_8).
elementname(i_8,’reject order’).
arc(i_1,i_2).
arc(i_2,i_4).
arc(i_4,i_5).
arc(i_4,i_6).
arc(i_5,i_7).
arc(i_6,i_8).
arc(i_7,i_9).
arc(i_8,i_9).
arc(i_9,i_10).
xor(i_4).
xor(i_9).

Due to the fact that the interchange format EPML is based on XML, it is very easy
to “translate” the EPML file into the PROLOG facts using a short XSLT stylesheet.

5 Terminology and Model Properties as Logical Rules

In the last section we have shown how the logical facts that are contained in a business
process model can be extracted from the model. In order to reason about the model,
we have to “teach” the PROLOG system something about the terminology used in the
domain of process modeling. This means that we have to write some logical rules that
specify this terminology. Here are some examples for such rules:

connector(I) :- clause(and(I),true) ; clause(or(I),true);
clause(xor(I),true).

means that we refer to and-connectors, or-connectors and xor-connectors as connectors.

88



no_outgoing_arcs(X) :- not(arc(X,_)).

means that for some model element the logical predicate “hasno outgoing arcs” holds
if there is no arc that originates from this element.

endevent(X) :- event(X),no_outgoing_arcs(X).

means that we call an event without outgoing arcs an end event.
Once we have defined such basic logical predicates, we can askqueries about the

model to the PROLOG system. For example, the query

endevent(X).

would ask for all end events in the model. For our example model, the PROLOG system
will answer with

X = ’order processed’

6 Applications of the Method

In this section, we show some examples for queries to the PROLOG system that are
useful for finding interesting properties of the model.

6.1 Syntactical Correctness

The need for validating the syntactic requirements has beendiscussed in Sect. 1. For
Event-Driven Process Chains, such syntactic requirementshave been formalized in the
literature [18, 6]. These syntactic requirements specify for example that there must be
at least one end event in the model and that the graph formed bythe model is antisym-
metric (i.e. if there is an arc from node X to node Y than there is not an arc from node
Y to node X). The latter property can be checked with the following simple query (the
comma means “and” in the PROLOG language):

prop4(X,Y) :- arc(X,Y),arc(Y,X).

This query prompts the PROLOG system to search for a counterexample: a pair of
nodes X and Y for which there is an arc from X to Y as well as an arcfrom Y to X.
If the PROLOG system does not find a counterexample, it answers with “no” which
means that the model fulfills the given property.

In [19] we have shown that all syntactic requirements that can be found in the lit-
erature can be easily verified using only a few lines of PROLOGcode. This includes
syntactic requirements that could not be validated with theSchematron approach de-
scribed in [6], for example the requirement that the graph formed by the model must be
a coherent graph.

89



6.2 Separability

When model checking is used for reasoning about a model, it canbe useful to separate
the model into independent submodels in order to avoid state-space explosion. The
question arises, how to decompose a given model into submodels that can be model-
checked separately. It is easy to see that “cutting” a model into two separate submodels
is possible at some arcs whose deletion would separate the modeled graph into two
separate graphs. Such arcs are known as cut-vertices in graph theory, and the parts of
the model that forms the separate submodels are called single-entry-single-exit region in
compiler theory. Once again, such arcs can be found with a simple PROLOG query. The
following example assumes that we have already defined a predicate prop2 that checks
the syntactical requirement that the graph must be coherent. The complete source code
for such a predicate can be found in [19].

cut_here(X,Y) :- arc(X,Y),
(retract(arc(X,Y)),prop2,assertz(arc(X,Y));
(assertz(arc(X,Y),fail))).

In order to find out that the arc from X to Y is a cut-vertex, at first we have to require that
there is actually an arc from X to Y. Afterwards, we use the PROLOG-clauseretract
that deletes the fact that such an arc exists from the PROLOG knowledge base. Now,
we use the predicate prop2 in order to check whether the new model (that no longer
contains the arcX → Y ) is still coherent. If it is not, prop2 should become “true”,
and we have found an arc at which we can separate the model intotwo submodels. The
final assertz predicate makes sure that the temporarily deleted fact thatthere is an
arcX → Y will be added to the knowledge base of the PROLOG system again.

6.3 Modeling Style and Modeling Errors

abc

Fig. 2. Bad Modeling Style.

In the field of software development, coding style rules[20](also known as code
conventions) are widely used. They help developers to read and understand source code
more quickly, and as a consequence they help to avoid errors.For graphical models,
modeling style rules [21] have been established for the samepurposes: Such style rules

90



can improve the comprehensibility of a model. This is important, particularly for busi-
ness process models, whose main purpose is to serve as a communication tool.

In [22], we have discussed some common style problems found in real-world mod-
els. Fig. 2 shows two example style problems that are relatedto the usage of the OR-
connector. In the left example, the entry into the loop should be a XOR-join rather than
an OR-join, in the right example, the optional execution of an activity should also be
modeled with XOR. Even if both examples in Fig. 2 are not formally wrong, there exist
a better way (namely using a XOR-join instead of the OR-join)for modeling the desired
behavior, and the latter can help to avoid misinterpretation of the model.

It is easy for the PROLOG system to find such style problems. Wejust have to define
the PROLOG predicatepath(X,Y,Path) that becomes true if model element Y can
be reached from model element Y along a list of elements that is stored in the variable
Path. Also we define the predicatejoin(X) to become true if X is a connector without
outgoing arcs (see [19] for the code for both predicates).

Using these predicates, we can define a loop entry as a model element X that is part
of a loop (i.e. there is a path from X to X) but also has an incoming arc from some
element outside the loop:

loop_entry(X) :- join(X),path(X,X,Path),arc(Y,X),
not(member(Y,Path)).

Now we can look for loop entry nodes that are modeled as OR-join, complain about
the style rule and suggest replacing the OR-join by the XOR join.

In the same way, we can not only find style problems but also reducable model parts
(like a sequence of activities that can be reduced to a singleactivity in order to reduce
the state space in model checking) and “hard” errors in the model. An example for such
a “hard” error would be a loop entry point modeled as an AND-join which will cause a
deadlock. The “causal footprint” approach published in [23] guides the way for finding
such errors in a model. The advantage of our approach over other formal methods like
model-checking is that with logic programming we can find problems for models that
are still incomplete or even without an agreement about the formal semantics of the
model[23].

6.4 Consistency between Models

Often, a business process is not modeled by a single diagram.Instead, different dia-
grams are used for depicting different aspects of the business process or the business
process model is de-composed into several submodels. Consistency between those dif-
ferent models is obviously an important requirement. Logicprogramming has success-
fully be used for such cross-diagram consistency checks[14]. The ideas from [14] and
similar papers can easily be adapted for business process models.

7 Conclusions

The work presented in this paper deals with the analysis of several properties of busi-
ness process models using logic programming. As shown in Sect. 3, the use of logic

91



programming for finding properties of several kinds of models is a well-established re-
search area. For this reason, we do not claim that the generalapproach presented in this
paper is a new one. However, we gave several examples for exploiting the existing ideas
for the domain of business process modeling, an area where logic programming has not
widely been used in the past.

Because the use of logic programming can help to describe statements about models
quickly and in a very condensed form (mainly because of the intrinsic backtracking
mechanism in languages like PROLOG), we believe that these ideas are helpful for the
research on validation of business process models.

References

1. van der Aalst, W.M.: Formalization and verification of event-driven process chains. Infor-
mation & Software Technology41 (1999) 639–650

2. Object Management Group: UML 2.0 Superstructure Final AdoptedSpecification. Technical
report (2003)

3. Business Process Management Initiative: Business Process Modeling Notation. Technical
report, BPMI.org (2004)

4. van der Aalst, W.M., Hofstede, A.: YAWL: Yet another workflow language. Technical Report
FIT-TR-2002-06, Queensland University of Technology, Brisbane(2002)

5. Mendling, J., N̈uttgens, M.: Exchanging EPC Business Process Models with EPML. In
Nüttgens, M., Mendling, J., eds.: XML4BPM 2004, Proceedings of the 1st GI Workshop
XML4BPM – XML Interchange Formats for Business Process Management at 7th GI Con-
ference Modellierung 2004, Marburg Germany, March 2004. (2004) 61–80

6. Mendling, J., N̈uttgens, M.: EPC syntax validation with XML schema languages. In: EPK.
(2003) 19–30

7. World Wide Web Consortium: XML Schema Part 1: Structures. (2001)
8. World Wide Web Consortium: XML Schema Part 2: Datatypes. (2001)
9. Clark, J., Makoto, M.: RELAX NG Specification. OASIS. 1 edn. (2001)

10. Jelliffe, R.: The Schematron Assertion Language 1.5. Academia Sinica Computing Centre.
(2002)

11. Jungo, D., Buchmann, D., Nitsche, U.U.: Testing of semantic properties in xml documents.
In: Proceedings of the 4th International Workshop on Modelling, Simulation, Verification
and Validation of Enterprise Information Systems, Paphos, Cyprus. (2006)

12. Mammar, A.: A formal approach and its tool support for the specification and the verification
of structural properties on UML activity diagrams. In: Software Engineering Research and
Practice. (2006) 988–994

13. Richters, M., Gogolla, M.: Validating UML models and OCL constraints.In Evans, A., Kent,
S., Selic, B., eds.: Proc. 3rd International Conference on the Unified Modeling Language
(UML). Volume 1939., Springer-Verlag (2000) 265–277

14. Kielland, T., Borretzen, J.A.: UML consistency checking. Technical Report SIF8094, Insti-
tutt for datateknikk og informasjonsvitenskap, Oslo, Norway (2001)

15. Gustafsson, J., Paakki, J., Nenonen, L., Verkamo, A.I.: Architecture-centric software evo-
lution by software metrics and design patterns. In: CSMR ’02: Proceedings of the Sixth
European Conference on Software Maintenance and Reengineering,Washington, DC, USA,
IEEE Computer Society (2002) 108

16. Sẗorrle, H.: A lightweight platform for experimenting with model driven development. Tech-
nical Report TR0503, University of Munich (2005)

92



17. Tse, T.H., Chen, T.Y., Chan, F.T., Chen, H.Y., Xie, H.L.: The application of Prolog to struc-
tured design. Software: Practice and Experience24 (1994) 659–676

18. Nüttgens, M., Rump, F.J.: Syntax und Semantik Ereignisgesteuerter Prozessketten (EPK).
In: Promise 2002 - Prozessorientierte Methoden und Werkzeuge für die Entwicklung von
Informationssystemen. (2002) 64–77

19. Gruhn, V., Laue, R.: Validierung syntaktischer und anderer EPK-Eigenschaften
mit PROLOG. In N̈uttgens, M., Rump, F.J., Mendling, J., eds.: EPK 2006,
Gescḧaftsprozessmanagement mit Ereignisgesteuerten Prozessketten, 5.Workshop der
Gesellschaft f̈ur Informatik e.V. (GI). (2006) 69–84

20. Kernighan, B.W., Plauger, P.J.: The Elements of Programming Style. McGraw-Hill, Inc.,
New York, NY, USA (1982)

21. Ambler, S.W.: The Elements of UML Style. Cambridge University Press (2003)
22. Gruhn, V., Laue, R.: How style checking can improve business proces models. In: Proceed-

ings of the 4th International Workshop on Modelling, Simulation, Verificationand Validation
of Enterprise Information Systems, Paphos, Cyprus. (2006)

23. van Dongen, B., Mendling, J., van der Aalst, W.: Structural patterns for soundness of business
process models. EDOC (2006) 116–128

93


