
FLEXIBLE RECONCILIATION OF XML DOCUMENTS IN
ASYNCHRONOUS EDITING∗

Claudia-Lavinia Ignat and Ǵerald Oster
LORIA-INRIA Lorraine, Campus Scientifique, F-54506 Vandœuvre-lès-Nancy Cedex, France

Keywords: Collaborative editing, asynchronous communication, XML, conflict management, operational transformation.

Abstract: As XML documents are increasingly being used in a wide variety of applications and often people work in
teams distributed across space and time, it is very important that users are supported for editing collaboratively
XML documents. Existing tools do not offer appropriate support for the management of conflicting changes
performed in parallel on XML documents. In this paper we propose a merging mechanism that offers users
the possibility to define conflict nodes prevented from integration of concurrent changes. Changes referring to
non-conflict nodes are automatically merged, while users are assisted to manually merge changes referring to
conflict nodes. Changes are tracked by means of operations associated to the nodes they target and merging
relies on an operation-transformation mechanism adapted for hierarchical structures.

1 INTRODUCTION

Collaboration is a key requirement of teams of in-
dividuals working together towards some common
goal. Computer-supported collaboration is becoming
increasingly common, often compulsory in academia
and industry where people work in teams and are dis-
tributed across space and time. XML is a popular
format for marking up various kinds of data, such as
application data, metadata, specifications, configura-
tions, templates, web documents and even code. Of-
ten XML documents are created and edited by users
either in raw text format or through special tool sup-
port. In this paper we describe our approach for sup-
porting users in the process of collaboratively editing
XML documents.

A typical way of editing XML documents is the
asynchronous collaboration where users work in iso-
lation on their copies of the document and synchro-
nise their changes against a shared repository where
changes are published. In this paper we describe our
approach for this kind of asynchronous collaboration
over XML documents.

∗The work presented in this paper was done when both
authors were members of the GlobIS group at ETH Zurich,
Switzerland.

Some state-based approaches for merging XML
documents have been proposed in (Wang et al., 2003;
Cobena et al., 2002; Fontaine, 2001). State-based ap-
proaches use only the information about the states of
the documents and no information about the evolution
of one state into another. In this way they do not keep
information about the process of transformation from
one state to the other, such as the order of execution of
the operations. Moreover, there is usually more than
one function that can be used to transform an initial
state of document into a final one. On the other side,
operation-based merging approaches (Lippe and van
Oosterom, 1992) keep information about the evolu-
tion of one document state into another in a buffer
containing the operations performed between the two
states of the document. Merging is done by executing
the operations performed on one copy of a document
on the other copy of the same document. Conflicts
might exist between concurrent changes and therefore
an important issue is how to provide users support for
the definition and resolution of conflicts. State-based
merging approaches detect the units of the document
where conflicting changes were performed, but they
do not offer support on how to recover from a situa-
tion of conflict. Usually, users have to manually edit
the versions of the document in order to recover from

359

Ignat C. and Oster G. (2007).
FLEXIBLE RECONCILIATION OF XML DOCUMENTS IN ASYNCHRONOUS EDITING.
In Proceedings of the Ninth International Conference on Enterprise Information Systems, pages 359-366
Copyright c© SciTePress



conflict. Merging based on operations offers good
support for conflict resolution by having the possibil-
ity of tracking user operations. User operations can be
integrated or cancelled in order to recover from situa-
tions of conflict.

Some operation based approaches for merging
XML documents have been proposed in (Molli et al.,
2002) and (Davis et al., 2002). These approaches did
not deal with issues related to the definition and res-
olution of conflicts. They adopt an automatic resolu-
tion of conflicts by combining the effects of all con-
current operations, but do not allow users the possi-
bility to include some changes and restrict others.

For instance, consider the following part of XML
document:

<?xml version=“1.0”?>
<movieDB>

<movie title=“21 Grams”>
<actor>Sean Penn</actor>

</movie>
</movieDB>

Assume that two users start working from the
above version of the document. Suppose that the first
user inserts thedirector element<director>Alejandro
G. Inarritu</director> as the first child of themovie
element.

Further, suppose that the second user, concur-
rently with the first user, inserts a secondactor ele-
ment<actor>Naomi Watts</actor> as child of the
movie element.

One of the possibilities for merging is to take into
account the changes performed by both users and to
obtain:

<?xml version=“1.0”?>
<movieDB>

<movie title=“21 Grams”>
<director>Alejandro G. Inarritu</director>
<actor>Sean Penn</actor>
<actor>Naomi Watts</actor>

</movie>
</movieDB>

Another possibility is to consider that concurrent
changes done at the level of themovieDB element
should be integrated, but concurrent changes done at
the level of themovie element should not be permit-
ted and users should be asked which changes to keep.
For instance, it could have been the case that two users
concurrently insert adirector element and their works
cannot be merged as amovie element has at most one
director.

In order to allow such behaviour, it should be pos-
sible to define conflict nodes in the hierarchical struc-
ture associated with an XML document. Changes per-
formed on the nodes belonging to the path from the
root node to the conflict node will be merged, while

changes belonging to the conflict nodes will be con-
sidered conflicting and users have to manually solve
these conflicts.

For keeping track of the changes performed on
nodes of the documents, we use a model of the doc-
ument where we associate operations with the nodes
they refer to. In this way, conflicting operations that
refer to the same subtree of the document are eas-
ily detected by the analysis of the histories associated
with the nodes belonging to the subtree.

In this paper we present our merging approach for
XML documents and present an asynchronous col-
laborative editor that supports users in the process of
managing conflicts. In section 2 we start by describ-
ing some requirements for editing XML documents.
We then go on by presenting in section 3 the structure
of the document and the set of operations modelling
the editing process. Section 4 presents our merging
approach for XML documents. We show how our
merging approach recursively applies an existing op-
erational transformation algorithm over the document
hierarchical structures. Moreover, we describe the ex-
tension of the operational transformation mechanism
for our set of operations. In section 5 we show how
users can use our XML editor and set various policies
for reconciliation. We then compare in section 6 our
approach with other related works. We end our paper
by some concluding remarks.

2 EDITING XML DOCUMENTS

In this section we describe some features present in
existing single-user XML editors and that should be
offered also by collaborative XML editors. For ex-
ample, single-user XML editors, such as XML Spy
(XMLSpy, 2007), offer features of auto-completion to
speed up and make more convenient editing of well-
formed XML documents. In collaborative editing a
necessary condition for obtaining a well-formed rec-
onciled document is that the two XML documents
to be merged are well-formed. Therefore, our goal
was to build a collaborative editor that uses auto-
completion during editing in order to maintain well-
formed documents.

Consider that a user edits an XML document, e.g.
by adding the line ‘<test>hello world</test>’ char-
acter by character. In this way, the XML document
will not be well-formed until the closing tag is com-
pleted. Our editor provides support to insert complete
elements, so that the operations can be tracked un-
ambiguously at any time in the editing process. For
instance, every time the user inserts a ‘<’ character,
the insertion of ‘<></>’ is performed. Of course,

ICEIS 2007 - International Conference on Enterprise Information Systems

360



Level 1

Hist

RootNode

Hist

‘\n’xml movieDB

Hist

‘ ’

Hist

version=”1.0" ‘\n’ ‘\t’ movie

Hist

‘\n’

c0 c1 c2

a0 a1 c0 c1 c2 c3

‘ ’

a0

title=”21 Grams"

a1
Hist

‘\n’ ‘\t’

c0 c1

‘\t’

c2

actor

c3

‘\n’ ‘\t’

c4 c5
Hist

Sean

c0

Penn

c2

‘ ’

Hist Hist
c1

Level 0

Level 2

Level 3

Level 4

Figure 1: Structure of an XML document.

an empty tag such as ‘<></>’ is not a valid XML
element, but at least it constitutes a good support for
the creation of a new valid element.

Additional rules for the deletion of characters
have to be provided. A user should be prevented
from deleting parts of the structure of an element,
such as the beginning or closing tag, unless the
whole element is deleted. For instance, the user can-
not delete ‘</test>’ from an element ‘<test>hello
world</test>’.

Another issue regarding editing of elements are
the two different forms that an element can take: the
form containing both the opening and closing tags
such as ‘<test></test>’, or the form of an empty
element such as ‘<test/>’ containing only the clos-
ing tag meaning that no further child elements are de-
fined. The user is prevented from directly deleting the
closing tag (‘</test>’). Instead the user can insert a
‘ /’ character at the end of the beginning tag (‘<test>’
⇒ ‘<test/>’) in order to inform the system that the el-
ement should be transformed into an element contain-
ing only a closing tag. The operation is not performed
if the element contains other child nodes. On the other
hand, the deletion of the ‘/’ character in an empty ele-
ment leads to the creation of an element containing a
beginning and a closing tag.

The editor that we built supports users editing
XML documents by automatically validating the con-
tent of the documents. The user can format the doc-
ument, i.e. insert white spaces to make the content
more readable, which is not possible using a graphi-
cal interface where the user has only a structured view
of the content.

3 DOCUMENT MODEL AND
OPERATIONS SET

We now present our model for XML documents and
the operations used in the editing process of XML

documents.
XML documents are based on a tree model. We

classified the nodes of the document intoroot, pro-
cessing, element, attribute, word andseparatorin or-
der that various conflict rules can be defined. Theroot
nodeis a special node representing the virtual root of
the document that contains the nodes of the document.
Processing nodesdefine processing instructions in the
XML document. Elementandattribute nodesdefine
elements and attributes of the XML document.Word
nodescompose the textual content of an XML ele-
ment.Separator nodesare used to preserve XML for-
matting and they representwhite spacesandquotation
marks. A conflict could then be defined, for example,
for the case that two users perform operations on the
same word node or for the case that users concurrently
modify the same attribute node.

The set of operations containsinsert and
delete operations targeting one of the previ-
ously mentioned types of nodes, i.e. IN-
SERTPROCESSING, INSERTELEMENT, INSERTAT-
TRIBUTE, INSERTWORD, INSERTSEPARATOR and
respectively DELETEPROCESSING, DELETEELE-
MENT, DELETEATTRIBUTE, DELETEWORD and
DELETESEPARATOR. Additionally we defined oper-
ations for the insertion and deletion ofcharactersto
updateprocessingor elementnames,attributesand
words, i.e. INSERTCHAR and DELETECHAR. We
also defined operations for the insertion and deletion
of closing tagsof elements, i.e. INSERTCLOSING-
TAG and DELETECLOSINGTAG.

The two operations INSERTCLOSINGTAG and
DELETECLOSINGTAG were considered as a user may
want to keep different forms for the representation of
empty elements in a certain document and does not
want to have an implicitly established form for the
representation of empty elements. Our solution to
considering both forms for the representation of an
element is more general than the solution of having a
single form for the visualisation of empty elements.

Elements of an XML document are ordered and,

FLEXIBLE RECONCILIATION OF XML DOCUMENTS IN ASYNCHRONOUS EDITING

361



therefore, each node in the document is identified by
a vector of positions representing the path from the
root node to the current element. A node contains
as children the child element nodes and the attributes
associated with that element. For achieving a unifor-
mity between the representation of elements and at-
tributes, we considered that the attributes of an ele-
ment are ordered. However, to distinguish between
child elements and attributes, an element in the posi-
tion vector has associated a prefix‘c’ or ‘a’ showing
whether it refers to a child or an attribute element.
Consider the following XML document:
<?xml version=“1.0”?>
<movieDB>

<movie title=“21 Grams”>
<actor>Sean Penn</actor>

</movie>
</movieDB>

The structure of this document is illustrated in
Figure 1. We associated different levels with the
nodes of the document corresponding to their heights
in the tree. Each node in the document, except
separator nodes, has an associated history buffer
containing the list of operations associated with its
child nodes. For instance, the operation of in-
sertion of a secondactor element<actor>Naomi
Watts</actor> as child of the movie element
has the form INSERTELEMENT(‘<actor>Naomi
Watts</actor>’,c2.c2.c4)and is kept in the history
buffer associated with themovie element.

An operation has as argument the position of the
node it targets. When an operation is applied, it has
to be transformed against other concurrent operations
that might change the position of the target node. The
idea of storing operations distributed throughout the
structure of the tree was to restrict the searching range
of operations that might affect an operation. In the
model we used in (Ignat and Norrie, 2003) an oper-
ation has to be transformed against all other opera-
tions in the histories of the nodes on the path from the
root to the target node. The model was applied for
text documents, where the operations were insertions
and deletions of elements. For XML documents more
types of operations have to be defined, and, therefore,
a decision has to be done where to store these opera-
tions.

Operations targeting child elements or attributes
such as INSERTELEMENT, DELETEELEMENT,
INSERTWORD and DELETEWORD, INSERTAT-
TRIBUTE and DELETEATTRIBUTE change the
structure of the element, while operations targeting
the tags of an element such as INSERTCLOSING-
TAG, DELETECLOSINGTAG, INSERTCHAR and
DELETECHAR change the content of the element.
Operations that change the structure of an element

have to be kept in the history associated with that
element. In the same way, operations INSERTCHAR

and DELETECHAR targeting a character of a word
are kept in the history buffer associated with that
word. The main decision that we faced was where
to keep operations that change the name of a tag.
We decided to keep these types of operations in the
history associated with the node they refer due to
the following reason. Consider the case of an empty
element containing the beginning and closing tags.
Further consider that a user is deleting the closing tag
of the element. Consider that a second user inserts
a child element to the empty element. Operations
of deletion of a closing tag and of insertion of
elements as direct children of the element whose
closing tag has to be deleted cannot be both applied.
As seen in section 2, the execution of one of these
operations will make impossible the execution of
the other operation. We have chosen to cancel the
DELETECLOSINGTAG operation and to keep the
inserted elements, due to the fact that a DELETE-
CLOSINGTAG operation means simply to rewrite
the form of an empty element. As targeting closing
tags have to be transformed against operations
targeting child elements and vice-versa, we had to
keep these operations in the same history buffer.
Moreover, the DELETECLOSINGTAG operation is
issued by inserting an ‘/’ at the end of the name of the
empty element in the beginning tag of the element.
The INSERTCLOSINGTAG operation is issued by
deleting the ‘/’ at the end of the name of the empty
element. Therefore, the DELETECLOSINGTAG and
INSERTCLOSINGTAG are implemented as operations
of insertion of characters in the name of the empty
element. Consequently, operations targeting closing
tags and characters in the name of the element
are kept in the history buffer associated with that
element.

4 MERGING PROCESS

The basic methods supplied by an asynchronous col-
laborative editing tool arecheckout, commitandup-
date. A checkoutoperation creates a local working
copy of the document from the repository. Acom-
mit operation creates in the repository a new version
of the document based on the local copy, assuming
that the repository does not contain a more recent ver-
sion of the document than the local copy. Anupdate
operation performs the merging of the local copy of
the document with the last version of that document
stored in the repository.

In the commit phase, the operations executed lo-

ICEIS 2007 - International Conference on Enterprise Information Systems

362



cally and stored in the local log distributed through-
out the tree have to be saved in the repository. The
hierarchical representation of the history of the doc-
ument is linearised using a breadth-first traversal of
the tree, first the operations of level 0, then operations
of level 1 and so on. In the checkout phase, the op-
erations from the repository are executed in the local
workspace.

In the rest of this section we describe the up-
date stage involving the merging process of XML
documents. In the update phase we recursively ap-
plied over the different document levels an opera-
tional transformation (Ellis and Gibbs, 1989) algo-
rithm for merging lists of operations. Therefore,
in what follows we present the basic principles of
operational transformation mechanism and then the
FORCE (Shen and Sun, 2002) operational transfor-
mation algorithm for merging linear structured docu-
ments. We then present how we adapted FORCE for
merging hierarchical structured documents. We also
show that FORCE does not work for the case of de-
pendent operations. We present our solution to adapt
the algorithm for our set of dependent operations.

4.1 Operational Transformation

For merging we used the operational transformation
approach (Ellis and Gibbs, 1989). We first illustrate
the basic mechanism of the operational transforma-
tion, called inclusion transformation, by means of an
example. TheInclusion Transformation- IT (Oa,Ob)
transforms operationOa against operationOb such
that the effect ofOb is included inOa. Suppose
the repository contains the document whose struc-
ture is represented in Figure 1 and two users check-
out this version of the document and perform some
operations in their workspaces. Further, suppose
User1 performs the operationO1=INSERTELEMENT(
‘<actor>Naomi Watts</actor>’,c2.c2.c4)to add the
‘<actor>Naomi Watts</actor>’ element on the
path /c2/c2 as the 4th child of themovie ele-
ment. Afterwards, User1 commits the changes
to the repository and the repository stores the
list of operations performed byUser1 consist-
ing of O1. Concurrently, User2 executes opera-
tion O2=INSERTELEMENT(‘<director>Alejandro G.
Inarritu</director>’,c2.c2.c3) of inserting the ele-
ment director on the path/c2/c2, as the 3rd child
of the movie element before the existingactor ele-
ment in the document. Before performing a commit,
User2 needs to update the local copy of the docu-
ment. O1 stored in the repository needs to be trans-
formed in order to include the effect ofO2. O2 and
O1 have the same path from the root element to the

parent node and they are operations of the same level.
As O2 inserts an element before the insertion posi-
tion of O1, O1 needs to increase its position of inser-
tion by 1. In this way, the transformed operation of
O1 becomesO′

1=INSERTELEMENT(‘<actor>Naomi
Watts</actor>’,c2.c2.c5)and it can be executed on
the local copy ofUser2.

4.2 Force Merging Algorithm

In this subsection we describe the FORCE algorithm.
Suppose that a user started to work in their local
workspace on a copy of versionVn in the reposi-
tory and executed the listLL of operations in their
workspace. Suppose that at a later time, the user
wants to commit their changes to the repository. Con-
sider that concurrently the version in the repository
was updated to versionVn+1, and therefore the user
has to update their local copy of the document. The
merging has to be done between the listLL of oper-
ations executed by the user in their local workspace
and the listDL of operations representing the delta
between versionsVn+1 andVn. Two basic steps have
to be performed. The first step consists of applying
the operations fromDL on the local copy of the user
in order to update the local document to versionVn+1.
The operations from the repository, however, cannot
be executed in their original form, as they have to be
transformed in order to include the effect of all the lo-
cal operations before they can be executed in the user
workspace. The second step consists of transforming
the operations inLL in order to include the effects of
the operations inDL. The resulting list of transformed
local operations represents the new delta to be stored
in the repository.

From the list of operations in the listDL not all of
them can be executed in the local workspace as some
of these operations may be in conflict with some of
the operations fromLL. If an operationOdi from DL
is in conflict with at least one operation fromLL, it
cannot be executed in the local workspace. Moreover,
all operations following it in the listDL need to ex-
clude the effect ofOdi from their context, i.e. they
have to be transformed to a form that does not include
the effect ofOdi. In order to exclude the effect of op-
erationOdi from the context of all the operations fol-
lowing it in the listDL, operationOdi has to be trans-
posed towards the end of the listDL. The transposi-
tion transpose(Oa,Ob) between operationsOa andOb
changes the execution order ofOa andOb and trans-
forms them such that the same effect is obtained as if
the operations were executed in their initial order and
initial form. When the new delta is saved to the repos-
itory it has to include the inverse of the transposedOdi

FLEXIBLE RECONCILIATION OF XML DOCUMENTS IN ASYNCHRONOUS EDITING

363



in order to reflect the fact that operationOdi was can-
celled.

4.3 Merging XML Documents

The updateprocedure updates the local version of
the hierarchical document with the changes that have
been committed by other users to the repository. It
aims to compute a new delta to be saved in the repos-
itory, i.e. the transformation of the local operations
associated with each node against the non-conflicting
operations from the remote log in the repository.
Moreover, a modified version of the remote log has
to be executed on the local version of the document in
order to update it to the version on the repository. The
updateprocedure is repeatedly applied to each level
of the document starting from the document level. A
detailed description of the update procedure applied
for text documents represented as a hierarchical struc-
ture is presented in (Ignat and Norrie, 2005). For
merging XML documents we applied the same princi-
ples. In what follows we want to report on the special
issues for the adaptation of FORCE linear merging al-
gorithm for XML documents.

As we saw in section 4.2, if an operationO has to
be cancelled and it has to be removed from the log,
the operation has to be transposed at the end of the
log. The FORCE approach considers that a trans-
position between two operationsO1 and O2 can al-
ways be performed. For operations applied on strings
this fact holds true if the two operations do not have
overlapping ranges. In FORCE operations in the log
are transformed into non-overlapping operations by a
compression procedure.

However, generally, ordering constraints between
operations exist which do not allow operations to be
executed in reverse order. This general case cannot
be resolved by a compression procedure. In what fol-
lows we present the cases that we encountered in the
editing of XML documents that restrict the change of
order between operations and the solutions that we
adopted.

Between the set of defined operations relations of
dependencyor beforeconstraints exist. These con-
straints restrict the possibility of changing the or-
der between the operations. Consider the case of an
empty element of the form ‘<elem/>’. In order that a
child element of this element is inserted, an operation
INSERTCLOSINGTAG has to be issued. The opera-
tion INSERTELEMENT of insertion of a child element,
such as ‘<subelem></subelem>’, in order to ob-
tain ‘<elem><subelem></subelem></elem>’, is
said to dependon operation INSERTCLOSINGTAG.
This means that operations INSERTELEMENT could

not have been issued if INSERTCLOSINGTAG would
not have been executed before.

Further, consider that the element
‘<subelem></subelem>’ is deleted by issuing
the operation DELETEELEMENT and the operation
DELETECLOSINGTAG is issued for the element
‘<elem></elem>’ in order to obtain ‘<elem/>’.
Between the operations DELETEELEMENT and
DELETECLOSINGTAG there is abefore constraint,
meaning that the order between the operations
should be maintained, i.e. the DELETEELEMENT

operation and any other operation referring to a child
element of a certain node should be ordered before
the DELETECLOSINGTAG operation applied on that
node.

Therefore, the operations of INSERTELEMENT,
DELETEELEMENT, INSERTWORD, DELETEWORD,
INSERTPROCESSING, DELETEPROCESSING exe-
cuted between INSERTCLOSINGTAG and DELETE-
CLOSINGTAG operations and targeting child nodes
of the element targeted by INSERTCLOSINGTAG and
DELETECLOSINGTAG cannot be transposed to a po-
sition outside the range defined by INSERTCLOSING-
TAG and DELETECLOSINGTAG.

The solution that we adopted was to detect the
cases when the removal of an operation would result
into making the transposition of that operation violate
existing ordering constraints between operations. If
an operation is cancelled, all its dependent and before
operations have to be cancelled, too.

5 USER INTERFACE SUPPORT
FOR MERGING

Our asynchronous editor for XML documents lets
users edit the document from a textual interface, with
an overview over the tree structure of the document
visualised alongside where the user can define the
policies for merging. Two policies were adopted for
merging, namely automatic and manual. Automatic
policies merge the operations performed locally with
the operations from the repository without the inter-
vention of the user. Manual policies for merging in-
volve the intervention of user for conflict resolution.

In what follows we are going to illustrate the
merging policies by means of some examples. As-
sume the two users start working from the same ver-
sion of the document illustrated in Figure 1. Suppose
that the first user inserts adirector element as child of
themovie element, as shown in the left client window
in Figure 2 and afterwards commits the changes to the
repository. Suppose that the second user concurrently
inserts a secondactor element as child of themovie

ICEIS 2007 - International Conference on Enterprise Information Systems

364



Figure 2: Conflict Resolution for Merging.

element, as shown in the right client window in Fig-
ure 2. In order to commit their changes, the second
user has to update the local version of the document
with the changes from the repository.

Assume first that the second user chooses the de-
fault merging policy, i.e. the automatic policy for res-
olution where no rules for the definition or resolution
of conflicts are set. The merged version of the doc-
ument combines the changes performed locally with
the remote ones, as explained also in the example pre-
sented in section 1.

Alternatively, assume the second user does not
want to automatically merge changes, but prefers to
set the detection of concurrent modifications targeting
themovie element. Concerning the resolution of con-
flict, suppose that the user wants to manually choose
between the conflicting versions of themovie element
and, therefore, the user can specify the semantic de-
tection for the nodemovie on the hierarchical docu-
ment view. In the case of an update, due to the fact
that the node was concurrently modified, the user is
then presented with the two versions of themovie
element, as shown in Figure 2. The user can then
choose to keep either the local or remote version of
the document or to perform an automatic merging of
the changes.

Another feature provided by our editor is locking
of elements. In the case that users want to keep their
local modifications referring to parts of document by
ignoring concurrent changes on those parts, they can
lock the corresponding elements. For instance, in the
above example, before performing an update, the sec-
ond user can choose to lock nodemovie and therefore
keep the local changes performed on the element.

6 RELATED WORK

Some approaches for detection of changes in XML
documents have been proposed in (Wang et al., 2003;
Cobena et al., 2002; Fontaine, 2001). However, no
mechanisms for the reconciliation of detected concur-
rent changes have been proposed. Moreover, these ap-
proaches are state-based and the changes are detected
by computing a difference between versions of XML
documents. Computing the difference between two
versions of hierarchical structures each time a rec-
onciliation has to be performed is very complex and
it does not reflect the exact user changes. Our ap-
proach is operation-based and changes done by users
are easily tracked. We proposed also flexible ways for
the reconciliation of documents where users can spec-
ify if XML elements should be merged automatically,
semi-automatically or manually.

Other operation-based merging approaches have
been proposed, but these mechanisms were mainly
designed for linear structures, such as (Shen and
Sun, 2002). Operation-based approaches for merging
XML documents have been proposed in (Molli et al.,
2002) and (Davis et al., 2002). As opposed to our ap-
proach, these approaches perform an automatic merg-
ing of changes and do not let users to flexibly define
rules for the reconciliation. Moreover, the set of oper-
ations considered in our approach is larger and offers
support for the definition of various rules for conflict
handling.

A flexible object framework that allows the def-
inition of a merge policy based on a particular ap-
plication was adopted by the Suite collaboration sys-
tem (Shen and Dewan, 1992). Merging can be auto-

FLEXIBLE RECONCILIATION OF XML DOCUMENTS IN ASYNCHRONOUS EDITING

365



matic, semi-automatic or interactive. The objects sub-
ject to collaboration are structured and therefore se-
mantic fine-grained policies for merging can be spec-
ified. Our approach was driven by the same motiva-
tion as Suite of obtaining a flexibility for merging and
it was applied for text documents as shown in (Ignat
and Norrie, 2006) and for XML documents as shown
in this paper. The framework proposed in (Shen and
Dewan, 1992) is a general framework where a merge
matrix defines merge functions for the possible set of
operations. For two concurrent operations it is spec-
ified if one of these operations should be executed,
if the intervention of users is needed to decide which
operation to execute or if both operations should be
executed. In the case that both operations should be
executed, it is not specified how the two operations
should be executed, such as a certain order of execu-
tion. In our approach we have an exact mechanism
of executing two operations such that their intentions
are preserved. In fact, our approach could be seen as a
combination of the general merging approach used in
Suite and the operational transformation mechanism.

7 CONCLUSIONS

In this paper we proposed a mechanism for the recon-
ciliation of XML documents where users can specify
various ways of merging changes referring to an el-
ement - automatically, semi-automatically and man-
ually. Our merging approach is based on opera-
tions that track user changes performed on different
units of the document. We extended the operational
transformation mechanism for merging hierarchical
structures. An asynchronous collaborative editor over
XML documents was build based on the approach de-
scribed in this paper.

Our approach is currently based on a central
repository. We plan to extend collaboration over
XML documents for decentralised environments.

REFERENCES

Cobena, G., Abiteboul, S., and Marian, A. (2002). Detect-
ing changes in XML documents. InProceedings of the
18th International Conference on Data Engineering
(ICDE’02), pages 41–52, San Jose, California, USA.

Davis, A. H., Sun, C., and Lu, J. (2002). Generaliz-
ing operational transformation to the standard general
markup language. InProceedings of the 2002 ACM
conference on Computer supported cooperative work
(CSCW ’02), pages 58–67, New Orleans, Louisiana,
USA.

Ellis, C. A. and Gibbs, S. J. (1989). Concurrency control
in groupware systems.SIGMOD Record, 18(2):399–
407.

Fontaine, R. L. (2001). A delta format for XML: Identifying
changes in XML files and representing the changes in
XML. In Proceedings of XML Europe, Berlin, Ger-
many.

Ignat, C.-L. and Norrie, M. C. (2003). Customizable
collaborative editor relying on treeOPT algorithm.
In Proceedings of the 8th European Conference on
Computer-supported Cooperative Work (ECSCW’03),
pages 315–334, Helsinki, Finland.

Ignat, C.-L. and Norrie, M. C. (2005). Flexible merging of
hierarchical documents.Seventh International Work-
shop on Collaborative Editing, GROUP’05, IEEE
Distributed Systems online.

Ignat, C.-L. and Norrie, M. C. (2006). Flexible definition
and resolution of conflicts through multi-level editing.
In Proceedings of the 2nd International Conference on
Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom’06), Georgia, At-
lanta, USA.

Lippe, E. and van Oosterom, N. (1992). Operation-based
merging. InProceedings of the fifth ACM SIGSOFT
symposium on Software development environments,
pages 78–87, Tyson’s Corner, Virginia, USA.

Molli, P., Skaf-Molli, H., Oster, G., and Jourdain,
S. (2002). SAMS: Synchronous, asynchronous,
multi-synchronous environments. InProceedings of
the Conference on Computer-supported Cooperative
Work in Design (CSCWD’02), pages 80–85, Rio de
Janeiro, Brazil.

Shen, H. and Dewan, P. (1992). Access control for collabo-
rative environments. InProceedings of the 1992 ACM
conference on Computer-supported Cooperative Work
(CSCW’92), pages 51–58, Toronto, Ontario, Canada.

Shen, H. and Sun, C. (2002). Flexible merging for asyn-
chronous collaborative systems. InProceeding of
the Conference on Cooperative Information Systems
(CoopIS’02), pages 304–321, Irvine, California, USA.

Wang, Y., DeWitt, D. J., and Cai, J. (2003). X-diff: An
effective change detection algorithm for XML doc-
uments. InProceedings of the International Con-
ference on Data Engineering (ICDE’03), pages 519–
530, Bangalore, India.

XMLSpy (2007). Altova XMLSpy. Available online.
http://www.altova.com/productside.html.

ICEIS 2007 - International Conference on Enterprise Information Systems

366


