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Abstract: Fuzzy Interval Numbers (FINs) could be seen as a set of techniques applied in Fuzzy System applications. 
In this paper, we propose a series of techniques to solve multi-Lingual and Cross Language Information 
Retrieval (CLIR) problems, based on Fuzzy Interval Numbers (FINs). Some experiments showing the 
importance of these techniques in the CLIR-systems are briefly described and discussed. Our method is 
evaluated using monolingual and bilingual public bibliographic data extracted from the National Archive of 
the Greek National Documentation Centre. All the experiments were conducted with and without the use of 
stemming, stop-words and other language dependent (pre-) processing techniques. It seems that a main 
advantage of our approach is that the method is language independent and there is also no need for any text 
pre-processing or higher level processing, avoiding thus the use of taggers, parsers, feature selection 
strategies, or the use of other language dependent NLP tools. 

1 INTRODUCTION 

Fuzzy (set) techniques were proposed for 
Information Retrieval (IR) applications many years 
ago (Radecki, 1979), (Kraft, 1993), mainly for 
modelling. Fuzzy Interval Numbers (FINs) and the 
related theoretical (mathematical) background, 
which is based on the metric space of the 
generalized intervals, were introduced by 
Kaburlasos (Kaburlasos, 2004), (Petridis et al, 2003) 
in fuzzy system applications. A FIN (see Figure 1) 
may be interpreted as a conventional fuzzy set; 
additional interpretations for a FIN are possible 
including a statistical interpretation. 

Fuzzy Interval Numbers (FINs) and lattice 
algorithms have been employed in various real-
world applications including numeric and non-
numeric data. Kaburlasos and Petridis (Kaburlasos et 
al, 2000), Petridis and Kaburlasos (Petridis et al, 
1998, 2000, 2001) presented FLN (Fuzzy Lattice 
Neurocomputing mainly for competitive clustering. 
The most popular among the FLN models for 
clustering is σ-FLN. For example, (Petridis and 

Kaburlazos, 2000) describe the automated – 
electromechanical surgical mechatronics tool which 
is used to control penetration through soft tissues in 
the epidural punctury. In this framework a series of 
learning experiments for soft tissues recognition was 
carried out and the σ-FLN model and the Voting σ-
FLNMAP algorithm were applied. 

FLN algorithms were also used in stapedotomy 
surgery (Kaburlasos et al, 1997), and prediction of 
ozone concentration by classification, based on 
meteorological and air quality data (Athanasiadis 
and Mitkas, 2004). 

(Petridis et al, 2001), (Kaburlasos et al, 2002), 
(Petridis and Kaburlasos, 2003) reported a best sugar 
prediction accuracy using Fuzzy Interval Numbers 
and the FINkNN classifier and a population 
(measurements) of production and meteorological 
data. (Kaburlasos et al, 2005) used FINs for 
representing geometric and other fertilizer granule 
features. This type of modelling was used to cover 
needs of the Greek Fertilizer Industry.  

(Marinagi et al, 2006) proposed the use of FINs 
classifier to handle problems of Cross Language 
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Information Retrieval.  The basic features of this 
method are the following: 

1) Documents are represented as FINs (see 
Figure 1). 

2) The FIN representation of documents is based 
on the use of the collection term frequency as the 
term identifier. 

3) The use of FIN distance instead of a similarity 
measure. 
For the distance calculations a bell-shaped mass 
function was used: 

mh(t) = 2
2

2
)max(
⎟
⎠
⎞

⎜
⎝
⎛ −+

+

ctftA

hβα
 

The positive real numbers A, α, β, are 
parameters; max(ctf) is the maximum value of all 
the collection term frequencies. 

The structure of the remainder of this paper is as 
follows:  

In section 2 a brief introduction to the 
mathematical background of the generalized 
intervals and other relevant concepts is given. The 
notation used (Kaburlasos, 2004) is an evolution 
(simplification) of the one described by (Marinagi et 
al, 2006). In section 3 the “conceptual” transition 
from document vectors to document FINs is 
presented. Section 4 presents how to calculate the 
similarity of documents using Fuzzy Interval 
Numbers. In section 5 we present our experiments 
and evaluate and discuss our method. Conclusions 
and current work on the topic are presented in 
section 6. 

2 THEORETICAL 
BACKGROUND  

2.1 Generalised Intervals 

A positive generalized interval of height h ∈ (0,1] is 
a map 

1 2[ , ]
: {0, }hx x
R hμ ⎯⎯→ , given by: 

 

where x1  ≤   x2 
A negative generalized interval of height h(∈ 

(0,1] is a map 
1 2[ , ]

: {0, }hx x
R hμ ⎯⎯→ − , given by: 

 

where x1  >  x2 
We shall use below the more compact notation 

[x1, x2]h instead of the μ notation. 
The interpretation of a generalized interval 

depends on an application; for instance if a feature is 
present it could be indicated by a positive 
generalized interval. Generalized intervals will be 
used for introducing a metric into the lattice of the 
Fuzzy Interval Numbers (FINs) below. 
The set of all positive generalized intervals of height 
h is denoted by h

+M , the set of all negative 

generalized intervals by h
−M , and the set of all 

generalized intervals by Mh. 

2.1.1 The Basic Idea 

FIN is constructed (see CALFIN algorithm below) 
such that any horizontal line εh, h∈ [0, 1], intersects 
a FIN at exactly two points (only for h=1 there exists 
a single intersection point). Hence, a horizontal line 
εh results in a “rectangular shaped pulse” of height h 
which is called generalized interval of height h. If a 
metric distance could be defined between every two 
generalized intervals of height h then a metric 
distance is implied by two FINs simple by 
computing the corresponding definite integral from 
h=0 to 1.  

In figure 1 we can see two intersecting 
generalized intervals [a’, c’], [b’, d’] at the height of 
h. The intervals could be mapped to the conventional 
intervals [a, c], [b, d]. The area “under” a 
generalized interval is a real number which could be 
calculated. We can define a metric distance and an 
inclusion measure function in the set (lattice) of the 
generalized intervals Mh based on these notes.  

2.1.2 The Lattice of All the Generalised 
Intervals  

Two functions are defined in the set of all the 
generalized intervals Mh:  
1. Function support maps a generalized interval 

to the corresponding conventional interval; support  
([x1, x2]

h) = [x1, x2] for positive, support([x1, x2]
h) = 

[x2, x1] for negative and support([x1, x2]
h) = {x1} for 

trivial generalized intervals.  

2. Function sign: Mh → { –1, 0, +1 } maps a 
positive generalized interval to +1, a negative 
generalized interval to –1 and a trivial generalized 
interval to 0.  

A partial ordering relation ≤ can be defined in 
the set Mh, h∈ (0,1]: 
 1)   [a, b]h  ≤  [c, d]h ⇔ support([a, b]h) ⊆  support 
([c, d]h), for [a, b]h , [c, d]h ∈ h

+M   
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  2)  [a, b]h  ≤  [c, d]h ⇔ support([c, d]h) ⊆ 
support([a, b]h), for [a, b]h , [c, d]h ∈ h

−M   

  3)  [a, b]h  ≤  [c, d]h ⇔ support([c, d]h) ∩ 
support([a, b]h) ≠ 0, for [a, b]h∈ h

−M  , [c, d]h ∈ h
+M  

Kaburlazos (Kaburlasos,2004) proved that the 
set of   all generalized intervals  Mh is a lattice. If q1, 
q2 ∈M

h are the “intersecting” positive generalized 
intervals [a’, c’]h, [b’, d’] h  which are shown in 
figure 1 then the join q1∨q2 is equal to [a’, d’]h and 
the meet q1∧q2 is equal to [b’, c’]h . In a similar way 
we can defined the meet and join in the case of non 
intersecting positive, intersecting negative, and non 
intersecting negative generalized intervals (Marinagi 
et al, 2006). 

2.1.3 A Metric Distance in the Set of All 
Generalized Intervals Mh 

A valuation v in a lattice L, defined as the area 
“under” a generalized interval, is a real function v: L 
→ R which satisfies v(x)+v(y)= v(x ∨L y) + v(x ∧L 
y), x,y ∈ L.A valuation is called monotone if and 
only if x ≤ y implies v(x) ≤ v(y) and positive if and 
only if x < y implies v(x) < v(y) for x,y ∈ L. 

The role of a positive valuation function v: L→ 
R is to be a mapping from a lattice L of semantics to 
the mathematical field R of real numbers for 
carrying out computations.  
Therefore a metric distance d:L×L→ R can be 
defined in the lattice Mh , h∈ (0,1] given by  d(x, y) 
= v(x ∨L y) - v(x ∧L y), x,y ∈ L. 

Kaburlazos (Kaburlasos, 2004) proved the 
following proposition: 
Proposition 

Let the underlying positive valuation function f: 
R→ R be a strictly increasing real function in R. 
Then the real function v: Mh → R is given by 

v([a, b]h ) = sign ([a, b]h ) c(h) a∫b [f(x) – f(a)] dx 
 

where v is a positive valuation function in Mh, c: 
(0,1] → R+ is a positive real function for 
normalization. A metric distance in Mh is given by: 

dh (x, y) = v(x ∨ y) – v(x ∧ y) 
Therefore, we can choose a positive function f to 

define the valuation function v and also simplify the 
calculation of the distance between the generalized 
intervals at a height h, 0≤h≤1  In the following 
paragraphs we can see how to construct a strictly 
increasing real function fh:R→R and simplify the 
calculation of the definite integral. We can use an 
integrable      mass-function mh: R→ 0R+  as: fh(x) =   

          ∫
x

h dttm
0

)( . 
   Various    mass functions can be considered: 

For mass-function mh(x)=h it follows metric,  
dh([a, b]h , [c, d]h)= h (|a-c|+|b-d|). 

For mass-function mh(x)=3x2 the corresponding 
function is fh(x)=x3 and therefore,  

  dh([-1,0]1, [3,4]1) = [fh(-1∨3) - fh(-1∧3)] + 
[fh(0∨4) - fh(0∧4)] =  92. 

    If the mass function mh(x) is equal to,        

            2

2

( 1 )

x

x

e

e

−

−+  

 
the corresponding (logistic) function is  
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and therefore,  
      dh([-1,0]1, [3,4]1) = [fh(-1∨3) - fh(-1∧3)] + 

[fh(0∨4) - fh(0∧4)] = 2.3312. 

3 FUZZY INTERVAL NUMBERS: 
DEFINITION AND 
COMPUTATION  

Given a population (a vector of real numbers) x = 
[x1,x2,…,xN] of measurements, sorted in ascending 
order, a FIN can be computed by applying the 
CALFIN algorithm below. FIN is regarded as an 
abstract “mathematical object” and could have 
various interpretations and uses. The notation dim(x) 
denotes the dimension of vector x, e.g. dim([2,-1])= 
2, dim([-3,4,0,-1,7])= 5, etc. The median(x) of a 
vector x = [x1,x2,…,xN] is defined to be a number 
such that half of the N numbers x1,x2,…,xN are 
smaller than median(x) and the other half are larger 
than median(x); for instance, the median([x1,x2,x3]) 
with x1 < x2 < x3 equals x2, whereas the 
median([x1,x2,x3,x4]) with x1 < x2 < x3 < x4 was 
computed here as median([x1,x2,x3,x4])= (x2 + x3)/2. 

Algorithm CALFIN 
1. Let x be a vector of real numbers. 
2. Order incrementally the numbers in vector 

x. 
3. Initially vector pts is empty. 
4. function calfin(x) { 
5. while (dim(x) ≠ 1) 
6. medi:= median(x) 
7. insert medi in vector pts 
8. x_left:= elements in vector x less-than 

number median(x) 
9. x_right:= elements in vector x larger-than 

number median(x) 
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10. calfin(x_left) 
11. calfin(x_right) 
12. endwhile 
13. } //function calfin(x) 
14. Sort vector pts incrementally. 
15. Store in vector val, dim(pts)/2 numbers 

from 0 up to 1 in steps of 2/dim(pts) 
followed by another dim(pts)/2 numbers 
from 1 down to 0 in steps of 2/dim(pts). 

 
The above procedure is repeated recursively log2N 
times, until “half vectors” are computed including a 
single number; the latter numbers are, by definition, 
median numbers. The computed median values are 
stored (sorted) in vector pts whose entries constitute 
the abscissae of a positive FIN’s membership 
function; the corresponding ordinate values are 
computed in vector val. Note that algorithm 
CALFIN produces a positive FIN with a 
membership function μ(x) such that μ(x)=1 for 
exactly one number x. 

Now we can focus on the transition from 
document vectors to document FINs 

 
FINs and documents’ representation and 
construction 
In the Vector Space Model for Information 
Retrieval, a text document is represented by a vector 
in a space of many dimensions, one for each 
different term in the collection. In the simplest case, 
the components of each vector are the frequencies of 
the corresponding terms in the document: 

         Dock = ( fk1, fk2, … fkn ) 
fkj stands for the frequency of occurrence of term 

tj in document Dock.  
Example Table depicts the vector space model 

of a small collection comprising four documents: 
tfkj = tf2,12=6 stands for the frequency of 

occurrence of term t12 in document Doc2. 
ctfj = ctf12=7 stands for the total frequency of 
occurrence of term t12 in the whole collection.  
Then ctf12 is equal to 

1,2 1,12 4,12
1,4

... 0 6 0 1 7k
k

tf tf tf
=

= + + = + + + =∑  

The total frequency, of occurrence of term tj in the 
whole collection, ctfj is equal to kj

k
tf∑  

The collection term frequencies (ctf) are used as 
term identifiers. In order to ensure the uniqueness of 
the identifiers a multiple of a small ε is added to the 
ctfs when needed (see last column of the table).  
If we want to compute the FIN of the Doc1 then we 
focus on the columns: Terms, Doc1, Term 

Identifiers. We repeat the non-zero values of keys as 
many times as the terms are contained in the Doc1. 
In order to ensure the uniqueness of the identifiers 
(keys) we add a multiple of a small ε to the ctfs 
when needed again. The FIN of the document will 
be computed from the identifiers of the terms that 
exist in the document (19 values in our case). 
Eventually, the abscissae vector is exactly the 
“number population” from which the document FIN 
is computed from by the CALFIN algorithm: X= 
(4.333,4.334,4.335,4.667,4.668, 5, 5.25, 5.251, 
5.252, 5.5, 5.501, 5.75, 6, 8, 8.001, 8.5, 8.501, 
8.502,9). Figure 1 shows two FINs which are 
calculated by our algorithm. 

4 FUZZY INTERVAL NUMBERS 
AND DOCUMENTS’ 
SIMILARITY  

The FIN function F: (0,1] → M maps a real number 
h in (0,1] to a generalized interval F(h). The domain 
of function F is shown on the vertical axis, whereas 
the range of function F includes “rectangular shaped 
pulses” (generalized intervals at height h, h∈[0,1] ) 
on the plane.  Now we can use the concepts we have 
already seen in the case of the generalized intervals. 
Hence, a positive Fuzzy Interval Number (FIN) is 
defined as a continuous function F: (0,1] → h

+M  
such that: 
  h1 ≤ h2 ⇒ support(F (h1)) ⊇ support(F( h2)), where 
0 < h1 ≤  h2 <1.  

The set of all positive FINs is denoted by F+. 
Similarly, negative FINs are defined. The set F of 
FINs is partially ordered by an ordering relation ≤F, 
which is introduced as follows: 

         Let F1, F2 ∈ F, then F1 ≤F F2 if and only if 
F1(h) ≤ Mh F2(h) 

The relation ≤F is reflexive, anti-symmetric and 
transitive. There are incomparable FINs but we can 
define the meet and the join, again. Using the metric 
distance between two generalized intervals F1(h) 
(=[a,b]h) and F2(h) (=[c,d]h) Kaburlasos  
(Kaburlasos, 2004) proved the following 
proposition: 

Proposition 
Given two positive FINs F1 and F2, then 
    
d(F1,F2)= 

1

1 20
( ( ), ( ))hc d F h F h dh∫  

 
where c is an user-defined positive constant, is a 

metric distance   
Calculation of the distance 
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Figure 1 illustrates how we calculate the distance 
of two FINs F1 and F2 (representing two 
documents) using a mass function. The points a, b, 
c, d are used to define the distance, at height h,  
dh(F1(h),F2(h)) = dh([a,b]h,[c,d]h); dh(F1(h),F2(h)) equals the 
sum of areas of the shaded regions. 

Hence, the distance of the two FINs at the height 
h is given by the sum of areas of the shaded regions, 
and eventually, the distance between the two FINs is 
calculated using the definite integral of the distance 
at height h from h=0 to 1: 

 
 
Distance = 

1 ' '

0 ' '

(| ( ) | | ( ) |)
b d

a c

f t dt f t dt dh+∫ ∫ ∫  
 
The FIN distance is used instead of the similarity 

measure between documents: the smaller the 
distance the more similar the documents. For the 
distance calculations a bell-shaped mass function 
was used:  

 

The positive real numbers ρ, σ, z, t, v are 
parameters; maxctf is the maximum value of all the 
collection term frequencies.  

The mass function used was defined as tuning 
result of our experimentation with the “similar” bell-
shaped mass function proposed by Marinagi et al. 
We used visual representations of mass-functions in 
order to study and improve our calculations. You 
can see some examples of our experimentation with 
such visual representations.   

4.1 Illustrating Our Techniques by a 
First Simplified Experiment 

The retrieved documents were extracted from a 
bibliographic database which is part of the Greek 
National archive of Dissertations. Each document 
(dissertation) is described by the title(s), the 
abstract(s), the key-phrases etc. All these fields of 
the description are bilingual: text in Greek and 
English (or other language e.g. French). 
Unfortunately, there are bibliographic descriptions 
that are not complete e.g. abstracts are not included 
in some cases. Our sample was constructed as the 
union of the retrieved documents by two simple 
queries (searches). More precisely, the documents of 
the National archive of Dissertations were searched 
using the (search) term “Natural Language 
Processing” and retrieved seven documents. Five 
documents contain the search term in their key-
phrases and the other documents contain the term in 
other fields e.g. the abstract. Using the search term  

h 2
(1 )m (t)= [ (1 ) ]

11 1
/

h t
z t

z maxctf

ρ ρ σ σ

ν

+ −
+ −

⎛ ⎞−
+ −⎜ ⎟

⎝ ⎠

Figure 1: Two documents (vectors) illustrated as two Fuzzy Interval Numbers. Each value on the term axis represents a
term (stem). Given two FINs any “cut” at a given height h∈ (0,1] defines two  generalized intervals, denoted by [a’, c’]h, 
[b’, d’] h. In our case the generalized intervals are positive and intersecting. If you consider a “cut” at another height h=0.25
(∈ (0,1]) which  defines a  generalized interval denoted by F(h) or [b, d]0.25 then the area [bd b’ d’] is the support (F(0.25)) 
where  there are about 75% of the values. Calculation of the distance between two FINs (or the similarity between two
documents which are represented by their FINs). Use of a bell-shaped mass function for the calculations. 

 

ICEIS 2007 - International Conference on Enterprise Information Systems

352



 

Table 1: Vector space model for a collection of documents. 

terms        ctf #docs    Doc1  Doc2  Doc3  Doc4 Term identifiers 

Term1       ctf1=3 2 tf1 1=0 tf2 1=1 tf3 1=0 tf4 1=2 3 

Term2 ctf2=3 2 tf1 2=0 tf2 2=2 tf3 2=1 tf4 2=0 3,333 
Term3 ctf3=3 3 tf1 3=0 tf2 3=1 tf3 3=1 tf4 3=1 3,667 

Term4 ctf4=4 2 tf1 4=0 tf2 4=1 tf3 4=0 tf4 4=3 4 

Term5 ctf5=4 2 tf1 5=3 tf2 5=0 tf3 5=1 tf4 5=0 4,333 

Term6 ctf6=4 3 tf1 6=2 tf2 6=1 tf3 6=0 tf4 6=1 4,667 

Term7 ctf7=5 3 tf1 7=1 tf2 7=3 tf3 7=0 tf4 7=1 5 

Term8 ctf8=5 3 tf1 8=3 tf2 8=1 tf3 8=0 tf4 8=1 5.25 

Term9 ctf9=5 3 tf1 9=2 tf2 9=0 tf3 9=2 tf4 9=1 5,5 

Term10 ctf10=5 3 tf1 10=1 tf2 10=2 tf3 10=2 tf4 10=0 5,75 

Term11 ctf11=6 3 tf1 11=1 tf2 11=0 tf3 11=2 tf4 11=3 6 

Term12 ctf12=7 2 tf1 12=0 tf2 12=6 tf3 12=0 tf4 12=1 7 
Term13 ctf13=8 4 tf1 13=2 tf2 13=2 tf3 13=1 tf4 13=3 8 

Term14 ctf14=8 4 tf1 14=3 tf2 14=2 tf3 14=1 tf4 14=2 8,5 
Term15 ctf15=9 3 tf1 15=1 tf2 15=4 tf3 15=0 tf4 15=4 9 

 

“Information Retrieval” we retrieved twelve 
documents and six of them contain the search term 
in their key-phrases. The FIN-based calculation of 
the distance (similarity) between the documents was 
used.  

 

 

 
Figure 2: Tuning of the mass function using visualization. 

Description of the Classification technique 
The results of the two searches form a parallel 
corpus comprising two sets (classes) of documents 
(dissertations): 

 
{8011, 8432, 8433, 8728, 11137, 11646, 12648} 
{909, 2792, 3015, 3171, 7781, 8553, 8556, 

11143, 12197, 12424, 13239, 13290} 
Then, we can form two sub-collections: 
NLP-Collection = {8011, 8432, 8433, 11137, 

12648} 
IR-Collection = {3171, 8553, 8556, 11143, 

12424, 13290} 
These collections include only the documents 

that contain the search term in their key-phrases. We 
know that in the first NLP-Collection other two 
documents are included: The document 8728 which 
has a detailed (bibliographic) description, and the 
document 11646 which has a shorter one (e.g. no 
abstract is included).  

We measure the distance of these two documents 
from the two collections using the proposed FIN-
based technique and examine if the documents are 
“closer” to the documents of the NLP-Collection. 
Using a different terminology we use the two 
collections as training sets and we try to classify 
correctly the documents 8728, 11646. Then, we 
must focus on the documents of the set {909, 2792, 
3015, 7781, 12197, 13239} which are retrieved by 
the second query and measure the distance of these 
documents from the two collections using the 
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proposed FIN-based technique, and test if they have 
to be classified in the NLP-collection.  

We can calculate the average “matching” of the 
document 8728 from the NLP-collection: 
(0.105721+0.0670487+0.235943+0.213279+0.2565
49+0.240404)/6=0.1865 

If we calculate the distance of the document 
8728 from the IR-Collection = {3171, 8553, 8556, 
11143, 12424, 13290} or the broader collection 
{909, 2792, 3015, 3171, 7781, 8553, 8556, 11143, 
12197, 12424, 13239, 13290} (and we can also use 
or not stop-words file) we conclude that in general it 
looks reasonable to add (classify) the document 
8728 in the NLP-Collection. The details of the 
experiment are summarized in the Table II below. 
As you can see the document 11646 is correctly 
classified in the NLP-Collection. We conclude that 
the validity of the FIN-based calculation of the 
similarity between documents is verified in the case 
of the documents (dissertations) that are related to 
the search term “natural language processing”. 

Table 2: Experimental details. 

Docume
nt 

IR-
collection 

NLP-
Collection 

Comments 

8728 0.3228 0.1865 Correct 
11646 0.6788 0.2606 Correct 

 
 When the documents were restricted only in the 

English part (e.g. title and abstract only in English) 
the documents’ length was reduced and some 
documents were erroneously classified. This was an 
indication that our technique is more appropriate in 
the case of “large” documents. In some cases there 
was a need to “correct” the classification errors (and 
in general improve our results) using a technique of 
weights (or penalties or comparison with the top-x 
“hits”) as we can see in Table III. Some 
improvement could be also mentioned in the case of 
adding in the collections “artificial” documents 
(centroids) comprising elements of the documents. 
We had also indications that such techniques will be 
more useful in the case of bigger documents. The 
same experiment was also conducted and all the 
documents without abstracts were removed. Only 
the documents {8011, 8432, 8433, 8728}, {909, 
2792, 3015, 3171, 7781, 8553, 8556, 12197} were 
used and we can report some improvement. Then we 
“split” every document in two documents: the Greek 
part of the document and the English one e.g. 
8728Gre, 8728Eng. In table III we can see how we 
can improve our classification results. 

Table 3: Improved classification results. 

Document 
number 

Distance 
from IR-
collection 

Distance 
from NLP-
Collection 

Comment
s 

8728Gre 0.5889 0.1507  
8728Eng 0.7551 0.1503  
3171Gre 0.1088 0.1451 use of 

weights 
3171Eng 0.2904 0.2922 use of 

weights 
8553Gre 0.1773 0.2220 use of 

weights 
8553Eng 0.2141 0.3833  
8553Eng    <=0.0680 0.0776 use of the 

top 4/5 
“hits” 
only 

Table 4: Brief experimental corpora description. 

Title and Author Lang 
        Common Sense Parenting (CSP) Learn 
at home kit: A clinical effectiveness 
evaluation of a commercially available video 
training program for parents. 

Sean T. Smitham, Ph.D., Western 
Michigan University, 2004 

English 

The effects of group size on incentive 
effectiveness: A meta-analysis. 

Angelica C. Grindle, Ph.D., Western 
Michigan University, 2002 

English 

A Market Analysis of consumer 
behaviour  for companies in a self-insurance 
group, Bismarck J. Manes Jr., M.A., 
Western Michigan University, 2006 

English 

Refinement of temporal constraints in 
an event recognition system using small 
datasets, George Paliouras (NCSR 
"Demokritos", Greece)  

English 

A Formal Semantics for the C 
Programming Language, Nikolaos S. 
Papaspyrou (National Technical University 
of Athens) 

English 

Updating and retrieving information 
through relational database views, Panayiota 
Plessa (Ministry of Education, Greece)  

Greek 

The role of asynchronous hypermedia 
conferencing in education and training, Cleo 
Sgouropoulou (TEI of Athens) 

Greek 

Information system’s Security 
management for coalitions in distributed 
environments Petros Belsis (TEI of Athens) 

Greek 
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5 CONCLUSIONS 

We have concluded that the FIN-based calculation 
of the similarity between documents is a novel 
method for solving various problems in the case of 
CLIR-systems. We verified in our experiments that 
if we focus on the documents (dissertations etc) that 
are related to different search terms then we can 
apply FIN-based techniques and calculate correctly 
the distance (similarity) between documents.  

Such techniques include the following cases: 
1. Use partitions (“collections”) of the sample (e.g. 

you can use the NLP-Collection and the IR-
Collection) and calculate the distance of the 
(“unclassified”) document from such partitions 
(“collections”). This distance is some kind of 
average distance of the document from all the 
elements of the collection. 

2. Use partitions (“collections”) of the sample, and 
define the number of “hits” (e.g. top-4 or top-5). 
Calculate the distances of the (“unclassified”) 
document from the (e.g. four or five) documents 
of each partition. Use only the (top-x) documents 
which are closer to the unclassified one. Then 
you can calculate the average distance of the 
unclassified document from these top-x 
documents. 

3. Use increased weights for the search terms that 
are contained in the retrieved documents. 

4. Use of positive weights in the case that the 
search term is included in a document of the 
partition and use of penalty (negative weight) in 
the case that the search term is not included. 

5. If the length of the documents is greater then the 
results of the method are better.  
A strategy related to the specific sample of 
classified and unclassified documents could be 
defined. As an example, you can combine 1 & 2 
and if it is necessary weights and penalty: If the 
general (average) distance of a document from a 
collection (which is calculated from the 
distances of the document from all the classified 
documents of the collection) and the partial one 
(which is calculated from a number of the top-x 
distances) are not “consistent” you must use 
weights following the appropriate technique. 

ACKNOWLEDGEMENTS 

This work was co-funded by 75% from the 
European Social Fund and 25% by National 
Resources (EPEAEK-II)-Archimedes. 

REFERENCES 

Radecki,T (1979), “Fuzzy Set Theoretical Approach to 
Document Retrieval” in Information Processing and 
Management, v.15, Pergammon-Press 1979. 

Kraft, D.H. and D.A. Buell (1993), “Fuzzy Set and 
Generalized Boolean Retrieval Systems” in Readings 
in Fuzzy Sets for Intelligent Systems, D. Dubius, 
H.Prade, R.R. Yager (eds). 

Kaburlasos, V.G. (2004), “Fuzzy Interval Numbers 
(FINs): Lattice Theoretic Tools for Improving 
Prediction of Sugar Production from Populations of 
Measurements,” IEEE Trans. on Man, Machine and 
Cybernetics – Part B, vol. 34, no 2, pp. 1017-1030. 

Petridis, V. and V.G. Kaburlasos (2003), “FINkNN: A 
Fuzzy Interval Number k-Near-est Neighbor Classifier 
for prediction of sugar production from populations of 
samples,” Journal of Machine Learning Research, vol. 
4 (Apr), pp. 17-37, 2003  

Kaburlasos and Petridis (2000), Fuzzy Lattice 
Neurocomputing models, Neural Networks, 13(10), 
1145-1170. 

Petridis and Kaburlasos (1998), Fuzzy lattice neural 
network (FLNN): A hybrid model for learning, IEEE 
Trans. Neural Networks, 9(5), 877-890. 

 Petridis and Kaburlasos (2000), An intelligent 
mechatronics solution for automated tool guidance in 
the epidural surgical procedure, Proc. 7th Annual conf. 
Mechatronics and Machine Vision in Practice, pp 201-
206. 

Petridis and Kaburlasos (2001), Clustering and 
classification in structured data domains using Fuzzy 
Lattice Neurocomputing, IEEE Trans. Knowledge 
Data Engineering, 13(2), 245-260, 2001 

Kaburlasos et al (1997), Automatic detection of bine 
breakthrough in orthopedics by fuzzy lattice 
reasoning: The case of drilling in the osteosynthesis of 
long bones, Proc. Mechatronics Computer systems for 
Perception and Action, pp 33-40. 

Athanassiadis and Mitkas (2003), Applying machine 
learning techniques on air quality data for real-time 
decision support, Proc. Intl. NAISO Symposium on 
Information Technologies in Environmental 
Engineering. 

Kaburlasos V.G., Spais V, Petridis V, Petrou L, Kazarlis S, 
Maslaris N, and Kallinakis A, Intelligent clustering 
techniques for prediction of sugar production, 
Mathematics and Computers in Simulation, 60(3-5), 
159-168, 2002 

Kaburlasos V.G. Papadakis S. (2005)  granular Self 
Organizing Map (grSOM) neural network for 
industrial quality control, Proc of SPIE, Mathematical 
Methods in Pattern and Image Analysis, 2005 

Kaburlasos V.G. , Fuzzy Interval Numbers (FINs): Lattice 
Theoretic Tools for Improving Prediction of Sugar 
Production from Populations of Measurements 

Marinagi, Alevisos, Kaburlasos, Skourlas, Fuzzy Interval 
Number (FIN) Techniques for Cross Language 
Information Retrieval, Proc. 8th ICEIS, 2006 

FUZZY INTERVAL NUMBER (FIN) TECHNIQUES FOR MULTILINGUAL AND CROSS LANGUAGE
INFORMATION RETRIEVAL

355


