
A METHOD PROPOSAL FOR ARCHITECTURAL RELIABILITY
EVALUATION

 Anna Grimán, María Pérez, Luis E. Mendoza and Edumilis Méndez
Processes and Systems Department – LISI

Universidad Simón Bolívar, Caracas, Venezuela

Keywords: Evaluation method, Software reliability, Software architecture, Scenarios, Software quality.

Abstract: Software quality characteristics, such as reliability, maintainability, usability, portability, among others, are
directly determined by software architecture and, in consequence, it constitutes a very important artifact to
be evaluated as soon as a general design is obtained. This article proposes a method to estimate software
reliability by evaluating software architecture. Our method combines the strengths of three evaluation
methods: ATAM (Kazman et al, 2000), DUSA (Bosch, 2000) and AEM (Losavio et al., 2004) obtained by
identifying the main features needed in reliability architectural evaluation and studying several architectural
mechanisms which promote this quality characteristic. Based on these features and the advantages of the
studied methods and mechanism, we established phases, activities, roles, inputs/outputs, and artifacts; and
we constructed a feasible method which can be applied in any organization interested in improving its
software construction process and product.

1 INTRODUCTION

According to (ISO 9126, 2000), Reliability is
defined as the system’s capability to perform its
functions within certain operative conditions within
a specific time period. The sub-characteristics of
Reliability (maturity, fault tolerance, and
recoverability) are globally associated to the
software’s architecture or to each component in
particular. In addition there are certain metrics that
help us quantify those sub-characteristics.
Currently, the demands of the critical and Real-Time
systems are growing (Laprie, 1995). These systems
in particular are used in ever more complex tasks,
wherein errors can lead to catastrophic
consequences. As a result, these systems must be
more reliable, since they must be able to perform
despite those errors. An interruption in the system’s
service may lead to critical and dire situations. On
the other hand, many organizations which render
less critical services also require systems with high
capabilities to satisfy their clients (e.g. online
banking). Consequently, Reliability becomes a key
characteristic for different organizations (Laprie,
1995).

Additionally Reliability (as well as other quality
characteristics), is directly promoted by the
software’s architecture. In this sense, there are
different architectural quality evaluation methods.
However, none of these methods addresses
Reliability in depth. The purpose of this article is to
propose an Architectural Reliability Evaluation
Method (AREM). To that end we have studied in
detail several existing evaluation methods:
Architecture Trade-off Analysis Method -ATAM,
(Kazman et al, 2000), Software Architecture
Analysis Method –SAAM (Kazman et al., 1994),
Cost Benefit Analysis Method - CBAM (Nord et al.,
2004), Architecture Level Modifiability Analysis -
ALMA (Bengtsson et al., 2004), Architectural
Evaluation Method - AEM (Losavio et al., 2004),
Software Architecture Comparison Method -
SACAM (Stoermer et al., 2004), and Design and
use of Software Architecture - DUSA (Bosch, 2000)
as well as architectural mechanisms. After an in-
depth feature analysis, we have used as basis ATAM
(Kazman et al., 2000), DUSA (Bosch, 2000) and AEM
(Losavio, 2004).
This way our proposal is grounded in a rigorous
revision of the concepts related to software
reliability evaluation, which allowed us to establish
a set of phases, activities, roles, inputs/outputs, and

564
Grimán A., Pérez M., E. Mendoza L. and Méndez E. (2007).
A METHOD PROPOSAL FOR ARCHITECTURAL RELIABILITY EVALUATION.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 564-568
DOI: 10.5220/0002393205640568
Copyright c© SciTePress

artifacts. We were also able to construct a feasible
method. Section 2 shows ontology for software
architecture reliability which served as our frame of
reference. Section 3 presents the proposed model
and finally in section 4 we present our conclusions
and future research.

2 A CONCEPTUAL MODEL FOR
RELIABILITY
ARCHITECTURAL
EVALUATION

Even though the bibliography refers to Reliability in
a recurrent manner, there is no agreement as to the
concepts related to that particular quality
characteristic.
Consequently, before proposing a Reliability
Evaluation Method, it was necessary to create a
model to represent the involved concepts and their
relationships. To specify the issues related to
evaluating Reliability in software architectures
ontology was proposed regarding those key concepts
(Grimán et al., 2005).
Figure 1 shows the conceptual model of Reliability of
software architecture as a set of related concepts
(Grimán et al., 2005). It can be observed that there is
a large number of conceptual relationships that,
when considered, shall help to perform a much more
systemic assessment of the architecture, which will
translate in a much more objective and effective
selection of the software architecture, ideal for the
development of Information Systems (IS). Some of
the concepts are shown in the Figure 1.

Figure 1: Conceptual Model for Software Reliability
Evaluation (Grimán et. al, 2005).

Summarizing Figure 1, Reliability contains the
following sub-characteristics: maturity, fault
tolerance and recoverability. There are also three
complementary approaches used to improve System
Reliability (Sommerville, 2002): fault prevention,
fault detection and elimination, and fault tolerance.

Only two of these three approaches correspond to
measures that can be applied in the early stages of
the development process; that is, during the
architecture design, to increase a system reliability:
fault prevention and tolerance, because decisions
about the techniques to be used to prevent and
tolerate faults in a system can be made during the
architecture design, whereas decisions regarding
techniques to be used to detect and eliminate faults
in a timely fashion correspond to the stages of
system testing.

The method we designed for the Architectural
Reliability Evaluation (which was called AREM) is
based on the quality model provided by the ISO/IEC
9126 international standard (as shown in Figure 1).
The following section describes the proposed
method in detail.

 3 AREM PROPOSAL

AREM is oriented to determine if the architecture
meets the initial Reliability requirements of the
system. As described previously AREM is based
upon the best practices within the existing methods
used for reliability evaluation. In this section we
describe the AREM’s components.

3.1 Quality Specification Model

In order to specify the quality requirements, this
method uses the quality model proposed by ISO/IEC
9126 (ISO/IEC, 2000). The functional and the
quality requirements are refined into sub-
characteristics which can be measured at an
architectural level according to the standard, and that
are addressed through a Utility Tree (UT) that will
serve as a tool to specify Architectural Quality. UT
is a scenario-oriented tool to evaluate quality
characteristics. This way AREM is also a scenario-
oriented evaluation method

3.2 Roles Involved

The roles involved in AREM are: Requirement
Engineer who analyses the Reliability requirements

A METHOD PROPOSAL FOR ARCHITECTURAL RELIABILITY EVALUATION

565

of the system; and Architect who performs the
architecture evaluation.

3.3 Phases

AREM consists of five (5) phases which involve a
series of steps:

1) Initial Phase: consists of the elicitation of the
Reliability requirements, as well as the definition of
the quality model which specifies the requirements
and relates them to the quality attributes and the
architecture presentation:.

• Step 1. Analyze the Reliability
requirements of the system and then
prioritize them.

• Step 2. Specify the quality model to be used
for defining Reliability. Some of the
metrics may be specified additionally
according to specific components and/or
connectors. We recommend to use the
quality model proposed by the ISO/IEC
9126 standard.

• Step 3. Present the initial architecture.

2) Research and Analysis Phase: deals with the
estimation of the key Reliability requirements and
with the architectural focus.

• Step 4. Identifying the architectural
approaches. These are identified but not yet
analyzed. Also identified in this step are the
design patterns and the architectural styles,
patterns and mechanism.

• Step 5. Adapt the UT for Reliability, as
well as, those quality sub-characteristics of
the system which are related to Reliability
(availability and security). These quality
requirements are elicited, prioritized and
specified in scenarios.

UT is a technique to transfer the goals of the quality
characteristics of the system to Quality Scenarios
that can be proven. It also helps to elicit a definition
of the quality requirements of the system in a
practical and operational way that can be understood
by the stakeholders (Jones and Lattanze, 2001).

Scenarios, besides clarifying requirements, help to
prioritize which parts of the architecture should be
elicited in the first place (Kazman, 1999).

The Reliability analysis starts by considering several
fault scenarios (see Table 1). In response, the

architecture should manage the different types of
faults: timing, semantic and system faults.

Table 1: Scenarios proposed.

SCENARIO
Scenario 1: A system suffers a software failure in normal
operation and is reset.
Scenario 2: A power failure occurs in a system in normal
operation and it is replaced.
Scenario 3: One of the servers fails in normal operation.
Another server assumes operation.
Scenario 4: A failure occurs and the system notifies the user;
the system can continue functioning in degraded mode.
Scenario 5: The demands for electronic FTP come to a site
where the FTP server is low, the system is suspended for a
period of time from the first failed demand and all resources
are available while demands are suspended.
Scenario 6: A failure occurs and the system can interrupt its
service for a determined period of time. This interruption is
not measured versus the system availability unless it exceeds a
well-defined interval.
Scenario 7: Demands for the electronic FTP come to a site
where the FTP server is low; the system is suspended for a
period of time from the first failed demand. The user with the
failed site continues sending new orders every 10 minutes, the
system queues the demands.
Scenario 8: A failure occurs during demand transaction in
normal operation. The system recovers the demands before the
failure. No demand should be lost as a result of the overload
or failure of the system.
Scenario 9: Due to previous deliberate intrusions into the
system, public data are transformed into private data and
access is regulated in normal operation.
Scenario 10: In Normal operation, A failure occurs in a
component of a critical system and it continues providing its
services uninterruptedly.
Scenario 11: A mistake in the replication process results in a
loss of synchronization of a transaction in the database with
the backup of the database. The transaction is synchronized
with the backup.
Scenario 12: A large number of customers need access to the
server side object. The server has to deliver data within a
determined response time.
Scenario 13: A large number of demands on an individual
data entity come to the system from a user interface under
normal conditions. The system has to transfer data within a
determined period of time.
Scenario 14: An unexpected external message is received by
a process during normal operation. The process informs the
operator that the message has been received and continues
operating without interrupting its services.

The description of the fourteen (14) Reliability
scenarios proposed in this research consists of the
six elements defined by Kazman (1999): stimulus,
source, response, environment, stimulated artifact,
and response measurement.An example of the
scenario’s components is shown next:
Scenario 7: Demands for the electronic FTP come
to a site where the FTP server is low; the system is
suspended for a period of time from the first failed
demand. The user with the failed site continues

ICEIS 2007 - International Conference on Enterprise Information Systems

566

sending new orders every 10 minutes, the system
queues the demands.

• Stimulus: The demands for the electronic
FTP come to a site where the FTP server is
low. The user with the failed site continues
sending orders every 10 minutes.

• Source of stimulus: Internal.
• Response: Queue the demands.
• Environment: Normal operation.
• Stimulated artifact: System.
• Response measurement: Service suspension

time.
Figure 2 shows an example of a UT proposed in
AREM, which is obtained by adapting its
components.

• Step 6. Analyze the architectural
approaches. Based on the scenarios of
higher priority identified in Step 5 we
analyze the architectural approaches which
direct these scenarios. The architectural
patterns and styles, the design patterns and
the previously identified mechanisms are
analyzed. Potential risks, sensitive points
and dependencies and interactions between
the remaining quality characteristics and
Reliability are identified (trade-offs.)

Reliability

Availability

Safety

(Risk, Scope)

Recoverability

Maturity

Fault tolerance

A server fails ans another server replaces it.

A software faillure occurs in a server ans the server is reset within 2 minutes.

A fault occurs ans the system notifies the user; the system can continue functioning in a
degraded mode.

A fault occurs during demand trtansactions. The system recovers the demands before the
failure. No demand should be lost as result of the system overload or failure.

A fault occurs in a component of a critical system and the system continues to deliver its services
uninterruptedly

Due to deliberate intrusions public data become private and the access to the systems is regulated.

L = LOW
M = MEDIUM
H= HIGH

A software failure occurs in a server and the server is reset.

A power failure ocurrs in a server. It is replaced..

An unexpected outside message is received by a process during normal operation. The process notifies
the operator that the message has been received and keeps operating without interrupting its services.

Due to a large number of demands the server delivers data within 40 seconds without interrupting
service due to overload

A large number of demands on an individual data entity enter the system. The system has to
transfer data within a certain period of time.

Figure 2: Example of a UT proposed in AREM (Grimán et
al., 2005).

3) Trial Phase: the results of previous phases are
compared to the specified Reliability requirements.

• Step 7. Analyze the results of Step 6 based
on the ranges assigned to each scenario, in
order to determine which attributes of the
UT are inhibited, and perform a new
iteration of the previous step to re-analyze
the previously identified aspects. This is
done in order to identify and document
other architectural risks, sensitivity points,
styles and trade-offs.

4) Transformation of the Architecture Phase:
consists of improving the architecture so that the

initial architecture is transformed into the ideal
architecture following the specified Reliability
requirements

• Step 8. Transform the selected architecture.
This can be achieved by using the different
architectural and design patterns and styles.
The objective is to further improve
Reliability by refining the architecture

5) Report Phase: This phase summarizes the results
obtained during the previous phases

• Step 9. Present the results. Based on the
information collected in the previous
phases, the evaluator summarizes the
results: final set of scenarios and their
prioritization, Reliability UT and related
quality characteristics, risks, sensitivity
points and trade-offs.

The phases Trial and Report and Research and
Analysis are based on ATAM’s phases (Clements et
al., 2002). The phase Transformation of the
Architecture corresponds to the last phase of the
DUSA (Bosch, 2000).
Table 2 shows the inputs and outputs for AREM’s
phases and steps, as well as the corresponding role.

Table 2: AREM’s inputs/outputs.

Final Results

Requirements of
Reliability of the System

Specification of the
Quality Model

Document of risks and
no risks. Points of

sensitivity and Inter-
dependencies The

architectural focuses
documented. Analysis of

patterns, styles
mechanisms identified.

Final Results.Architect9. Present ResultsReports

Documenting
transformations
achieved

Architecture initial
documented

Documenting
transformations achieved Architect8.Transform the selected Architecture

Transformation
of the

Architecture

Analysis of results.

Documenting of risks ,
points of sensitivity and
Inter-dependencies. The
architectural focuses are
documented. Analysis of

patterns, styles
mechanisms identified.

Analysis of results Architect

7. Analyze the results obtained in Step 6
and perform a new iteration on the
analysis of the architectural aspects
identified
(focuses, patterns, styles etc.).

Trials

Documenting of risks,
points of sensitivity
and Inter-
dependencies. The
architectural focuses are
documented. Analysis
of patterns, styles
mechanisms identified

The architectural
focuses. patterns , styles

mechanisms

Documenting of risks ,
points of sensitivity and
Inter-dependencies. The
architectural focuses are
documented. Analysis of
patterns, styles
mechanisms identified

Architect

6. The architectural focuses, design
patterns and architectural styles
mechanisms, risks, points of sensitivity
and Inter.-dependencies

Utility tree and set of
scenarios.

Specification of the
Quality Model

Utility tree and set of
scenarios Architect

5. Adapt the utility tree to Reliability
and to the Quality characteristics related
to Reliability.

Architectural focuses,
design patterns and
architectural styles and
patterns identified

Initial Architecture
documented

Architectural focuses,
design patterns and
architectural styles and
patterns identified

Architect

4. Identify the architectural focuses,
design patterns and architectural styles
and patterns which promote or prevent
Reliability

Research and
Analysis

Initial Architecture
Documented -Initial Architecture

documentedArchitect3.Present the Initial Architecture

Specification the
Quality Model-Specification the Quality

ModelArchitect2. Specify the Quality Model to use in
order to define Reliability

Prioritized Reliability
Requirements

Requirements of
Reliability of the System

Prioritized Reliability
Requirements

Requirements Engineer
Architect

1. Analyze the Reliability requirements
of the system and prioritize them.

Initial

Exits EnteringDeliverablesRolesActivities Phases

Final Results

Requirements of
Reliability of the System

Specification of the
Quality Model

Document of risks and
no risks. Points of

sensitivity and Inter-
dependencies The

architectural focuses
documented. Analysis of

patterns, styles
mechanisms identified.

Final Results.Architect9. Present ResultsReports

Documenting
transformations
achieved

Architecture initial
documented

Documenting
transformations achieved Architect8.Transform the selected Architecture

Transformation
of the

Architecture

Analysis of results.

Documenting of risks ,
points of sensitivity and
Inter-dependencies. The
architectural focuses are
documented. Analysis of

patterns, styles
mechanisms identified.

Analysis of results Architect

7. Analyze the results obtained in Step 6
and perform a new iteration on the
analysis of the architectural aspects
identified
(focuses, patterns, styles etc.).

Trials

Documenting of risks,
points of sensitivity
and Inter-
dependencies. The
architectural focuses are
documented. Analysis
of patterns, styles
mechanisms identified

The architectural
focuses. patterns , styles

mechanisms

Documenting of risks ,
points of sensitivity and
Inter-dependencies. The
architectural focuses are
documented. Analysis of
patterns, styles
mechanisms identified

Architect

6. The architectural focuses, design
patterns and architectural styles
mechanisms, risks, points of sensitivity
and Inter.-dependencies

Utility tree and set of
scenarios.

Specification of the
Quality Model

Utility tree and set of
scenarios Architect

5. Adapt the utility tree to Reliability
and to the Quality characteristics related
to Reliability.

Architectural focuses,
design patterns and
architectural styles and
patterns identified

Initial Architecture
documented

Architectural focuses,
design patterns and
architectural styles and
patterns identified

Architect

4. Identify the architectural focuses,
design patterns and architectural styles
and patterns which promote or prevent
Reliability

Research and
Analysis

Initial Architecture
Documented -Initial Architecture

documentedArchitect3.Present the Initial Architecture

Specification the
Quality Model-Specification the Quality

ModelArchitect2. Specify the Quality Model to use in
order to define Reliability

Prioritized Reliability
Requirements

Requirements of
Reliability of the System

Prioritized Reliability
Requirements

Requirements Engineer
Architect

1. Analyze the Reliability requirements
of the system and prioritize them.

Initial

Exits EnteringDeliverablesRolesActivities Phases

3.4 Discussion

As shown previously, AREM is a method which not
only facilities the evaluation of the architecture but
also promotes the design of a solution through the
transformation of the architecture when there are
inhibited attributes or characteristics. AREM then,
can be used to evaluate architectures with different

A METHOD PROPOSAL FOR ARCHITECTURAL RELIABILITY EVALUATION

567

levels of maturity or detail, depending on the
evaluator’s objective.
Another important element of AREM is the use of
questioning and measuring techniques (scenarios
and metrics, respectively). This combines the
exploratory potential of the scenarios with the
quantitative way to represent the results.
On the other hand, the proposed roles do not suggest
a specific number of people in a team. The role of
Requirement Engineer can be represented by all the
people in a team who are familiar with the
requirements of the system. The role of Architect
can be represented by those technicians involved in
database, infrastructure, networks etc.
Finally, even though AREM focuses on Reliability
evaluation, the architectural trade-offs obtained in
step 6 are focused on other quality characteristics.

4 CONCLUSIONS

Architectural evaluation must be performed during
early stages of the software’s development.
Nevertheless, during each stage of the development
process, the metrics can identify potential problem
areas that can undermine the fulfillment of the
requirements (specifically those related to
Reliability.) Finding those areas during the
development stage reduces costs and prevents
potential changes after the development cycle.
AREM entails rigorous usage, but also reports a
number of advantages since it is based on the
strengths of those methods which proved efficient
when evaluating reliability.
In the future we expect to work on a combination of
AREM and other methods, in order to provide a
study of architectural trade-offs (such as
Maintainability, Security and others).

REFERENCES

Bosch, J., 2000. Design and Use of Software Architecture.
Addison Wesley. Harlow, England, 2000.

Bengtsson P., Lassing N., Bosch J. and Vliet H., 2004.
Architecture-level modi.ability analysis (ALMA). The
Journal of Systems and Software 69 (2004) 129-147.

Clements, P., Kazman, R., and Klein, M., 2002.
Evaluating Software Architectures: Methods and Case
Studies. Addison Wesley.

Griman, A., Valdosera L., Mendoza, L., Pérez, M. &
Méndez, E., 2005. Issues for evaluating reliability in
software architectures. Proceedings of the Eleventh
Americas Conference on Information Systems,

Omaha, Nebraska, Estados Unidos de América, 2926-
2931.

ISO/IEC 9126, 2000. International Organization for
Standardization ISO/IEC 9126 Software Engineering
Product Quality.

Jones, L., and Lattanze, A., 2001. Using the Architecture
Tradeoff Analysis Method to Evaluate Wargame
Simulation System: A Case Study.
http://www.sei.cmu.edu/pub/documents/01.reports/pdf
/01tn022.pdf

Kazman, R., Bass, L.,Abowd, G., and Webb, M.,1994,
SAAM: A Method for Analyzing the Properties of
Software Architectures. Proceedings of the Sixteenth
International Conference on Software Engineering.

Kazman, R.,Klein, M., and Clements, P., 2000. ATAM:
Method for Architecture Evaluation. TECHNICAL
REPORT CMU/SEI-2000-TR-004.

 http://www.sei.cmu.edu/pub/documents/00.reports/pdf
/00tr004.pdf

Kazman, R., 1999. Using Scenarios in Architecture
Evaluations. http://www.sei.cmu.edu/news-at-
sei/columns/the_architect/1999/June/Architect.jun99.p
df.

Laprie J.-C., 1995. Dependable Computing: Concepts,
Limits, Challenges. Special Issue of the 25th
International Symposium On Fault-Tolerant
Computing. IEEE Computer Society Press. Pasadena,
CA. pp. 42-54.

Losavio, F., Chirinos, L., Matteo, A., Le´vy, N., and
Ramdane-Cherif, A., 839, 2004. ISO quality standards
for measuring architectures. Journal of 840, Systems
and Software 72 (2), 209–223.

Nord, R., Barbacci, M., Clements, P., Kazman, R.,Klein,
M., O'Brien, L.,and Tomayko, J.,2004. Integrating the
Architecture Tradeoff Analysis Method (ATAM) with
the Cost Benefit Analysis Method (CBAM) (CMU/SEI-
2003-TN-038).
http://www.sei.cmu.edu/publications/documents/03.re
ports/03tn038/03tn038.html#chap04

Sommerville I., 2002. Ingeniería del Software, Editorial
Addison. Wesley, Sexta Edición, México.

Stoermer, Ch., Bachmann, F., and Verhoef, Ch., 2003.
SACAM: The Software Architecture Comparison
Analysis Method. CMU/SEI-2003-TR-006 ESC-TR-
2003-006.
http://www.sei.cmu.edu/publications/documents/03.re
ports/03tr006.html

ICEIS 2007 - International Conference on Enterprise Information Systems

568

