SEMANTIC ORCHESTRATION MERGING

Towards Composition of Overlapping Orchestrations

Clementine Nemo, Mireille Blay-Fornarino, Michel Riveill
13S Laboratory, Rainbow team
CNRS - University of Nice-Sophia-Antipolis
930, route des colles, 06903 Sophia-Antipolis

Giinter Kniesel
Computer Science Department I1I, ROOTS group
University of Bonn
Romerster. 164, D-53117 Bonn, Germany

Keywords:

Abstract:

Service Oriented Architecture (SOA), composition, merge, transformation.

Service oriented architectures foster evolution of enterprise information systems by supporting loose coupling

and easy composition of services. Unfortunately, current approaches to service composition are inapplica-
ble to services that share subservices or data. In this paper, we define overlapping orchestrations, analyse
the problems that they pose to existing composition approaches and propose orchestration merging, a novel,
interactive approach to composition of overlapping orchestrations based on their semantic.

1 INTRODUCTION

The need to adapt enterprise information systems
(EIS) to ever changing requirements calls for software
architectures that allow to master complexity without
preventing evolution. Service-oriented architectures
are particularly well-suited for modern EIS. They fos-
ter evolution by supporting loose coupling among ser-
vices and allowing easy composition of new services
from existing ones. Services that do not call them-
selves other services are called basic services (Bartoli
et al., 2005). A service orchestration defines a com-
posite service from several other services.

An orchestration encapsulates knowledge about
how to handle a task, the adaptations required to in-
tegrate services with mismatching interfaces and the
protocols of the integrated services. The ability to ex-
pose an orchestration as a service enables recursive
composition, which in turn enables inter-workflow in-
teraction, higher levels of reuse and additional scala-
bility (Khalaf et al., 2003).

Elaborating a service orchestration is very de-
manding in terms of effort and domain knowledge.
Therefore, different systems have been proposed to
ease the programmer’s tasks For instance, Oracle
BPEL Designer (Chandran and Poduval, 2005) en-
ables completely visual specification of orchestrations
for basic services. The ADAPT framework (Bartoli
et al., 2005) additionally supports automated match-

378

Nemo C., Blay-Fornarino M., Riveill M. and Kniesel G. (2007).

ing of basic service parameters to composite service
parameters with the same name. For other parame-
ters, dataflow relations are visually specified by the
programmer. (Kazhamiakin et al., 2006). For a given
orchestration, Oracle BPEL Designer, Adapt and the
approach of Kazhamian et al. (Kazhamiakin et al.,
2006) support the verification of different safety and
liveness properties. Whereas the above approaches
are confined to orchestration of basic services, Kha-
laf et al (Khalaf et al., 2003) support orchestration of
composite services.

Unfortunately, all known approaches to orchestra-
tion composition are inapplicable to overlapping or-
chestrations, that is, to orchestrations that use com-
mon services or share data. In this context, our paper
provides the following contributions :

e definition of overlapping orchestrations (Sec. 2),

e illustration of the need to compose overlapping or-
chestrations,

e explanation of the problems of existing ap-
proaches in the presence of overlapping orches-
trations,

e introduction of orchestration merging, an alterna-
tive to traditional composition approaches that is
applicable to overlapping orchestrations (Sec. 3).

e introduction of model transformation rules that
guide the merging process (Sec. 4).

SEMANTIC ORCHESTRATION MERGING - Towards Composition of Overlapping Orchestrations.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 378-383

DOI: 10.5220/0002392803780383
Copyright © SciTePress

SEMANTIC ORCHESTRATION MERGING - Towards Composition of Overlapping Orchestrations

Structin(Criterion <c_1>,
Address <a_1>)

GetCriterionl

<Criterion c_1>

SearchHotel

List <hotel_list_1>

Info <hotel_choice_1>

<Address a_1>

CreateResBook

ResBook <pre_book_1>

BookHotel

Bill <hotel_bill_0>

DebitBank

Bill <hotel_bill_1>

[Sensm_}-®

a) HBO: Hotel Booking Orchestration.

Structin(Criterion <c_2>,

Address <a_2>)
GetCriterion2

<Criterion ¢_2>

SearchFlight

List <flight_list_1>

Info <flight_choice_1>

<Adress a_2>

CreateResBook

ResBook <pre_book_2>
BookFlight

Bill <flight_bill_1>

&= sendsil] [(DebitBank | -+@®

Bill <flight_bill_2>

b) FBO: Flight Booking Orchestration.

Figure 1: Initial hotel booking orchestration and flight booking orchestration.

2 PROBLEM STATEMENT

In this section we introduce our representation
of orchestrations, define overlapping orchestrations,
demonstrate the need for composing them by intro-
ducing a running example and discuss the problems
that they pose to known composition approaches.

2.1 BPEL Orchestrations

In this paper, we focus on orchestrations as defined
by the OASIS Consortium (MacKenzie et al., 2006).
The Business Process Execution Language for Web
Services (BPEL4WS) is the principal standard defin-
ing orchestrations. It supports primitive activities to
receive, return, read, assign, and modify data, invoke
a service, terminate the orchestration, wait or throw
an exception. In order to combine primitive activi-
ties BPEL supports structured activities allowing se-
quential, concurrent and conditional execution of ser-
vices. Orchestrations built from BPEL activities are
described in the following by UML activity diagrams.
For simplicity, we regard an orchestration as a func-
tion with a single parameter. This is no restriction
since a set of parameters can always be replaced by a
single parameter whose value is the aggregation of in-
dividual parameter values. The aggregation of values
and the selection of subcomponents from an aggre-
gate are represented as explicit adaptation activities,
marked by gray boxes in the diagrams. For instance,
in Fig.1a) GetAddr selects the address part of the or-
chestration’s input and CreateResBook generates an
aggregate from the address and the hotel choice infor-
mation.

2.2 Running Example

We use the classic example of a travel agency as our
reference use case (Kazhamiakin et al., 2006). A
travel agency offers booking of flights or hotels. The
booking system consists of two orchestrations. The
first describes the hotel booking process (Fig. 1a) and
the flight booking process (Fig. Figure 1b).

We explain in detail the first example:

e The Hotel Booking Orchestration (HBO) takes an
input that consists of two data elements with dif-
ferent types. The Criterion variable encapsulates
information used to select hotels. The Address
variable represents the address of the customer.

e The HBO is started by extracting the Criterion
value from the input and passing it as a parameter
to an invocation of the SearchHotel service.

e With the list of bookable hotels returned by
SearchHotel the Chooseln service is invoked to let
the user select a hotel.

e The selected hotel and the customer address are
aggregated and passed to the BookHotel service.

e Finally, the process invoices the payment to the
customer’s bank and sends him the bill. This is
done by invoking first the DebitBank service and
passing the returned Bill to the SendBill service
(which has no return value).

The flight booking orchestration (Figure 1b) only
differs in the objects on which it works (flights instead
of hotels) and in that SendBill and DebitBank are exe-
cuted concurrently. The orchestration returns the Bill
produced by DebitBank.

379

ICEIS 2007 - International Conference on Enterprise Information Systems

2.3 Opverlapping Orchestrations

We say that two orchestrations overlap if they share
services or would share input or output data after
composition. In the travel agency example, the two
presented orchestrations overlap because they share
the services Chooseln, DebitBank and SendBill and
because in a composition they would share the cus-
tomer address.

Now assume that the travel agency wants to jointly
offer flights and hotels to its customers. For this, it
needs to have an integrated process for booking flights
and hotels. Implementation of such a process either
requires writing a completely new service (which is
certainly undesirable) or the ability to compose the
existing services.

Unfortunately, known approaches to service com-
position are inapplicable in our example. They would
treat the existing orchestrations as black boxes that
are executed either sequentially or in parallel. In both
cases, black-box reuse of the existing orchestrations
would lead to highly undesirable effects:

e The payment service (DebitBank) would be called
twice for the same journey, resulting in double as
high network traffic and twice as long time for
payment authorization.

e Separate processing of hotel and flight payment
might result in authorization of the first and rejec-
tion of the second payment if the customer’s ac-
count balance is insufficient for paying both. Such
cases need further invocations of the payment ser-
vice for revoking the already performed first pay-
ment. In addition to the added costs and network
traffic, their treatment complicates the task of the
programmer who specifies the orchestration, re-
quiring complex additional code for transaction
management.

e In the case of direct debit payments, which are
preferred by many companies because they only
involve a relatively small, fixed fee per transaction
the double service invocation will result in double
online payment costs.

e Two separate bills would be sent to the customer,
increasing the postage costs of the company and
confusing the customer. If the bills do not arrive
simultaneously, customers might believe that the
booking not shown on the received bill had failed.

The problem illustrated by this small example is that
black-box reuse prevents identification and proper
treatment of shared data and shared services. For in-
stance, in our example one would need to send just
one joint bill to the customer and ask the online pay-

380

ment service just once for the fotal sum of the journey.

Structin(Criterion <c_1>, | Criterion <c_2>, Address <a_2>)

GetCriterion2
Criterion <c_2>
SearchFlight

List <flight_list>

GetCriterionl

Criterion <c_1>

SearchHotel

List <hotel_list>

Info <hotel_choice>

Chooseln

Info <flight_choice>

GetAddr

Address <a_12>

CreateResBook

ResBook <pre_book_1>

BookHotel

Bill <hotel_hill_0>

Bill <journey_bill_2>

Figure 2: Merged Journey Booking Orchestration (JBO).

3 ORCHESTRATION MERGING

When confronted with overlapping orchestrations
without proper tool support, developers typically cre-
ate a new orchestration in which they integrate the
initial orchestrations via a series of routine transfor-
mations. The application of the following standard
actions on our example yields the merged orchestra-
tion illustrated in Figure 2:

(i) Unifying input data: Input parameters that rep-
resent the same data are unified. In our example,
the programmer determines that this is the case for
the Address a_1 and Address a_2 components of
both inputs (Figure 1). Therefore they are unified
in Figure 2. The search Criterion c_1 and Cri-
terion c¢_2 components for hotels and flights are
different, so both are kept. In order to have only
one input parameter, a structure is created to en-
capsulate a_1, c_1 and c_2.

(ii) Detecting multiple calls to the same service: If
the same service is invoked on the same data and
the result is assigned to the same (or a unified)
variable, then the invocations can be unified. If
the input or output variables are different, the
programmer can still decide that they should
be unified. For instance, in our example, the
programmer decides to send just one joint bill
to the customer and ask the online payment
service just once for the foral sum of the journey.
Therefore she merges the flight and hotel bills
using the CreateJourneyBill adapter. However,
the two calls to the Chooseln service are kept

SEMANTIC ORCHESTRATION MERGING - Towards Composition of Overlapping Orchestrations

since their input data and output data is different
and must not be unified.

(iii) Preserving the partial order of instructions:
The order of instructions in the resulting or-
chestration has to respect the orders of the input
orchestrations. The hotel booking orchestration
(Fig. 1a) imposes an order between DebitBank
and SendBill. The flight booking orchestration
(Fig. 1b) in the resulting orchestration, these two
invocations are executed in the order specified for
hotel booking.

(iv) Unifying output data: In order to be correctly
defined, the resulting orchestration must return a
single output data element. Therefore, the devel-
oper has to unify the output parameters or aggre-
gate them into a joint structure. This is similar to
point (i). This case does not occur in our exam-
ple since one of the input orchestrations returns
no result.

3.1 Interactive Orchestration Merging

With the current state of the art, developers per-
form all of the above steps manually when confronted
with the need to compose overlapping orchestrations.
They inspect the BPEL specification of the input or-
chestration, identify shared data and shared service
calls and manually create the integrated orchestration.
Some environments ease understanding BPEL code
by providing graphical notations (Bartoli et al., 2005),
(Ben Mokhtar et al., 2006). Howeyver, this is insuffi-
cient since the identification of overlaps and the detec-
tion of unification candidates, the decision about uni-
fication and the merge process itself is still left to the
programmers. They have to repeat these steps after
every change of the input orchestration, even if none
of the sharing relations has been modified. This is not
only a waste of human resources but also a source of
errors that can be injected in the course of the manual
process.

One could consider automated orchestration mer-
ging as an alternative. However, full automation is
infeasible unless semantic specifications of each ser-
vice and data item are available. Without them we
cannot deduce, for instance, how to compose the two
calls to the Chooseln service. Therefore, we propose
an interactive orchestration merging process that indi-
cates potential merging points to developers, remem-
bers their decisions for later reuse, automates the uni-
fication of invocations or data items decided by the
programmers in order to eliminate potential sources
of errors and automatically unifies input and output
data whose conceptual identity can be derived from
previous unification steps.

3.2 Merge Process

The interactive merge process illustrated in Figure 3
comprises three phases: the creation of an orchestra-
tion model, the transformations of the orchestration
model and the reverse engineering of BPEL from the
model.

From BPEL to an Orchestration Model (OM): In
the first step, the BPEL specification of each input or-
chestration is transformed to an internal representa-
tion. This phase corresponds to the transformation Tj,
in Figure 3. It verifies and normalizes the input. Vari-
ables are renamed to avoid accidental name clashes,
as shown in Figure la) and 1b). Multiple basic in-
vocations of the same service are grouped in a struc-
ture named complex invocation. We verify that each
branch of an alternative has at most one reply. These
preparations simplify the later steps.

Guiding the developer throughout the merging of
OMs: The merging tool explores all the orchestration
models given as inputs and detects required decision
points. Decision points can be potential merge points
or problem cases. For instance, concurrent reading
and writing of the same variable is a problem case
that requires the programmer to decide about an order
of these operations. Alternatively, two variables with
the same type in invocations of the same service could
be candidates for a unification. Developers choose
to unify the merge candidates or mark them as se-
mantically different. The transformation process au-
tomatically computes the resulting orchestration and
updates the remaining merging points. After every
transformation, the process verifies that the partial or-
der of instructions from the input orchestrations is still
preserved. For example, if in some block of an input
orchestration the service A is invoked before the ser-
vice B, the corresponding block of the resulting or-
chestration must not invoke the service B before A. In
addition, the precedence relationship must not contain
cycles introduced by unification of two variables. If
a cycle is detected the last merge is undone and the
programmer is asked to revise his related decision.

Back to BPEL: The merge is finished when the re-
sulting orchestration is a function with one input and
one output, and all shared calls are unified or marked
as different. When this final state is reached the result
model is transformed back to BPEL with the transfor-
mation 7,,, shown in Figure 3.

Figure 3 shows the global process in which trans-
formation rules implement the steps explained above
and guide the actions of programmers. The transfor-
mation rules are detailed in Section 4.

381

ICEIS 2007 - International Conference on Enterprise Information Systems

orch_1

orch_2 w mod_2

‘ Tm2
O—Tn— @

mk

1 -
O _Tin_’§ ./

orch_n 1 mod_n

« (Chransformation >

O *Tinﬁi ‘——Tml* o

| —
@

Merge process

mod_merged orch_merged

- — O ~ Tout— O
c T

ij

Legend:

(O BPEL

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i . Orchestration

model

_ T, _, Transformation

Figure 3: Interactive merge process guided by transformation rule execution.

4 TRANSFORMATION RULES
FOR ORCHESTRATION
MERGING

We define an orchestration as a tuple o = (V, I, prec,
cond) where V is a set of variables described by a
name and a type, I is a finite set of instructions, prec
is a function that returns the list of instructions pre-
ceding a given instruction and cond is a function that
returns a list of conditions that must be true before
executing a given instruction. A ‘switch’ statement is
expressed by a set of mutually exclusive conditions.

An instruction is characterized by an identifier, an
ordered list of input variables, an ordered list of out-
put variables and a primitive activity. A primitive ac-
tivity is a basic invocation, a return or an adapter. A
complex invocation groups several basic invocations
to the same service in order to normalize orchestra-
tions. It is characterized by the name of the invoked
service, the set of basic invocations to this service and
a composition function that defines how the results of
basic invocations are related (Montagnat et al., 2006).

In order to define and analyze! transformations of
orchestrations, we use an orchestration model and de-
fine transformation rules on this representation. We
adopt the logic-based model representation and the
conditional transformation formalism developed by
Kniesel (Kniesel and Koch, 2004; Kniesel, 2006). For
lack of space, we do not describe the formal details of
the representation but confine ourselves to an infor-
mal description of the transformation rules that guide
the developer in creating new orchestrations:

e At most one input variable: This rule detects a
'Describing the use of Condor (Kniesel and Bardey,

2006) for analysing dependencies between transformation
rules is outside the scope of this paper.

382

potential merge point when an input variable is
free, i.e. unconnected to the output of any instruc-
tion. The programmer is asked to formulate re-
lationships between free variables. Depending on
the variable types, different relationships can be
expressed. Variables with identical types can be
unified (e.g. type Address in our example). If the
value of a variable is contained in another one, the
variables are in an inclusion relationship. For in-
stance, the bill identifier is contained in the vari-
able denoting the bill. In this case, an adapter is
added with the Bill variable as input and the Iden-
tifier variable as output. If none of these relation-
ships hold between the input variables (vI...vn),
we generate a new variable (v) whose type aggre-
gates the input variables types. This new variable
is the input of the merged orchestration. We gen-
erate adapters that yield the values of each for-
mer input variable (v1...vn) by accessing the cor-
responding component of (v).

e A single return in each branch : When an output is
expected, there must not exist more than a single
returned element for each branch. As in the previ-
ous rule, if we detect that there exist several return
instructions, the developer must specify relation-
ships between these instructions, e.g. mathemat-
ical operations that combine their results. Vari-
ables are then composed or some return instruc-
tions are removed.

e Unifying basic invocations : This rule detects a
potential merge point when there are several basic
invocations to the same service and when these
invocations (i/...in) are not part of a complex in-
vocation. The user can either unify them, or create
a complex invocation. In the first case, an adapter
can be used to unify input variables. Output vari-
ables are unified automatically. A new basic invo-

SEMANTIC ORCHESTRATION MERGING - Towards Composition of Overlapping Orchestrations

cation i is created that is subject to all the guard-
ing conditions of the unified instructions (i/...in).
In the second case, invocations (i/..in) have to be
separately executed : a complex invocation (i) is
created by the user who specifies the composition
function. Each basic invocation (i1..in) references
the complex invocation (7). The functions cond
and prec concerning the orchestration remain the
same.

o Unifying complex invocations : This rules consid-
ers the need for a merge when a complex invoca-
tion to a service A, and another invocation (basic
or complex) to the same service A are detected.
The developer must specify the result of the merge
as a new complex invocation that is referenced by
all the merged basic invocations.

o Unifying adapters: When several instructions use
the same adapter with the same input variable, this
rule proposes to the user to unify these instruc-
tions and subsequently also the output variables.

S CONCLUSION AND
PERSPECTIVES

In this paper we addressed the need to broaden the
applicability of orchestration composition to overlap-
ping orchestrations, which share services or parame-
ters. We demonstrated that traditional black-box com-
position of orchestrations is inappropriate in the case
of overlapping orchestration because it fails to avoid
redundant or erroneous multiple invocations of the
same service. Therefore, programmers facing the task
to combine overlapping orchestrations must currently
perform a tedious and error-prone manual process.

As a remedy, we presented orchestration merg-
ing, an interactive, computer supported process that
guides programmers step-by-step through the integra-
tion task, automating many subtasks. Orchestration
merging identifies potential merge points and gives
programmers a chance to to unify them or mark them
as distinct. If programmers decide to merge, the sys-
tem automates the merging steps. After each trans-
formation it checks the consistency of the orchestra-
tion model and computes remaining merging points.
When errors are detected, developers can undo pre-
ceding merging steps. We believe that our approach
is a contribution to more reliable and easy to evolve
service-oriented systems.

Besides the ongoing implementation of our ap-
proach there are different interesting conceptual ex-
tensions. Continuous evolution of orchestrations by
substitution, addition and deletion of services sug-

gests the need to integrate verification of service com-
patibility (Martens, 2005), substitutability of services
(Camara et al., 2005) and equivalence of services
(Ben Mokhtar et al., 2006).

REFERENCES

Bartoli, A., Jiminez-Peris, R., Kemme, B., Pautasso, C.,
Patarin, S., Wheater, S., and Woodman, S. (2005).
The ADAPT framework for adaptable and compos-
able web services. IEEE Distributed Systems Online,
6(9).

Ben Mokhtar, S., Geogantas, N., and Issarny, V. (2006).
COCOA : Conversation-Based Service Composition
for Pervasive Computing Environments. In IEEE In-
ternational Conference on Pervasive Services (ICPS),
Lyon (France).

Camara, J., Canal, C., Cubo, J., and Vallecillo, A. (2005).
Formalizing WSBPEL Business Processes Using Pro-
cess Algebra. In Foundations of Coordination Lan-
guages and Software Architectures (FOCLASA), San
Francisco (CA). Springer.

Chandran, P. and Poduval, A. (2005). Adding BPEL to the
Enterprise Integration Mix. Technical report, ORA-
CLE.

Kazhamiakin, R., Pistore, M., and Santuari, L. (2006).
Analysis of communication models in web service
compositions. In WWW °06: Proceedings of the 15th
international conference on World Wide Web, pages
267-276, New York, NY, USA. ACM Press.

Khalaf, R., Mukhi, N., and Weerawarana, S. (2003).
Service-Oriented Composition in BPEL4WS. In In-
ternational World Wide Web Conference (WWW), Bu-
dapest (Hungary). W3C.

Kniesel, G. (2006). A Logic Foundation for Conditional
Program Transformations. Technical report IAI-TR-
2006-01, ISSN 0944-8535, CS Dept. III, University
of Bonn, Germany.

Kniesel, G. and Bardey, U. (2006). An analysis of the cor-
rectness and completeness of aspect weaving. In Pro-
ceedings of Working Conference on Reverse Engineer-
ing 2006 (WCRE 2006, pages 324-333. IEEE.

Kniesel, G. and Koch, H. (2004). Static composition of
refactorings. Science of Computer Programming (Spe-
cial issue on Program Transformation), 52(1-3):9-51.
http://dx.doi.org/10.1016/j.scico.2004.03.002.

MacKenzie, M., Laskey, K., McCabe, F., Brown, P., and
Metz, R. (2006). Reference Model for Service Ori-
ented Architecture 1.0. Technical Report wd-soa-rm-
cdl, OASIS.

Martens, A. (2005). Simulation and equivalence between
bpel process models. In Design, Analysis, and Simu-
lation of Distributed Systems Symposium, San Diego
(California).

Montagnat, J., Glatard, T., and Lingrand, D. (2006). Data
composition patterns in service-based workflows. In
Workshop on Workflows in Support of Large-Scale
Science (WORKS’06), Paris, France.

383

