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Abstract: Enterprise Information Systems have to co-evolve with the enterprise they support. Their evolution is the 
one of an important software system. Software evolution should be addressed at all developpement phases 
in order to notably reduce costs (Lehman, 1996). The issue of software systems evolution has been 
addressed mainly at the code level. In this paper we present how evolution of enterprise information systems 
can take place at higher abstraction levels, when using an architecture-centred development process. The 
evolutions addressed are dynamic, i.e. they take place at runtime and concern both planned and unplanned 
evolutions of the enterprise information system. 

1 INTRODUCTION 

Human-centric activities are more and more 
supported by software applications, most enterprises 
relying on an enterprise information system, which 
has to evolve according to requirements, new 
technologies, etc. Thus, evolution and quality of 
software systems is a major issue (Andrade et. al., 
2004, Mens et. al., 2003), related to changes that 
may occur at different level (market, functionalities, 
needs, etc.). 

The evolution is often considered at the latter 
stages of software system development process, i.e. 
implementation and execution, mostly by adopting 
pragmatic approaches (Demeyer et. al., 2002), but it 
is rarely studied in the earlier stages (design, 
modelling, specification). We agree with (Lehman, 
1996), which indicates that evolution should be 
studied at each software development process stage 
in order to notably reduce costs. We claim (Verjus 
et. al., 2006) that some evolutions could be taken 
into account during the design and would not have to 
be postponed to latter phases, namely the 
implementation or  runtime. 

In this paper, we focus on system evolution using 
a software architecture centric approach 
experimented and validated in the ArchWare 
European project (ArchWare, 2001). The project 
address evolutions that may have impact on the 

system software architecture; maintenance tasks that 
have no impact on the architecture are managed 
using classical approaches.  

We classified the system evolution according to 
moment when it takes place, i.e. static or at runtime, 
and to their predictability during the design, i.e. 
planned and unplanned (Cîmpan and Verjus, 2005). 
This paper does not address static evolutions, which 
are taken into account by all the (architectrure) 
modelling approaches (Ding et. al., 2001, Barais et. 
al., 2005, Tibermacine et. al., 2005). A simplist 
description of such changes (be them planned or not) 
is: stop the system, do the change, check 
consistency, run again the system. We focus here on 
cases where the system cannot be stopped, and thus 
the change has to take place at runtime. We illustrate 
how our architecture-centric approch allows taking 
into account, during runtime, planned and unplanned 
dynamic evolutions.  

Planned dynamic evolutions are managed at the 
architectural level and enacted automatically (self-
contained architecture) without external help. 
Unplanned dynamic evolution management implies 
that the considered architecture provides an 
evolution entry point and that an evolution 
mechanism is available for the external environment. 
Thus, human or other external means could 
dynamically evolve the system (architecture) by 
using such entry points. Unplanned dynamic 
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evolution appears to be the most common situation 
(Mens et. al., 2005, Demeyer et. al., 2002, Mens et. 
al., 2003), particularly when considering the 
maintenance of existing software systems. We show 
how our approach allows to manage software 
architecture evolution using a formal architecture 
description language, ArchWare ADL (Oquendo et. 
al., 2002). The language covers both structural and 
behavioural aspects of architecture descriptions as 
well as the expression of  architectural constraints 
and properties. 

This paper is organized as follows: section 2 
presents the ArchWare related foundations and 
technologies; section 3 introduces scenarios that will 
illustrate evolution (both planned and unplanned). 
Then, we focus on planned dynamic evolution in 
section 4 and on unplanned dynamic evolution in 
section 5. Conclusions and perspectives will close 
the paper. 

2 THE ARCHWARE PROJECT 
AND LANGUAGES  

The work presented here has been partially funded 
by the European Commission in the framework of 
the IST ArchWare Project (Archware Consortium, 
2001) and by the French ANR Cook project (Cook 
2006). The ArchWare project proposes an 
innovative architecture-centric software engineering 
framework, i.e. architecture description and analysis 
languages, architectural styles, refinement models, 
architecture-centric tools, and a customisable 
software environment. The main concern is to 
guarantee required quality attributes throughout 
evolutionary software development (initial 
development and evolution), taking into account 
domain-specific architectural styles, reuse of 
existing components, support for variability on 
software products and product-lines, and run-time 
system evolution. The Cook project studies the role 
of software architectures in the reengineering of 
object-oriented applications (Pollet et. al., 2007).  

In ArchWare, a software architecture is 
considered as a set of typed nodes connected by 
relations. When describing architectures, the nodes 
are termed components and the relations termed 
connectors. These components and connectors and 
their compositions have specified behaviours based 
on π-calculus (Milner 1999), and are annotated with 
quality attributes. ArchWare proposes a set of 
languages for: (1) describing the architecture 
(ArchWare ADL), (2) architecture properties 
(ArchWare AAL), (3) architecture refinement 

(ArchWare ARL). ArchWare ADL offers different 
language layers for describing architecture, from the 
more generic one (the core language), to language 
that are more and more specific. Such layers can be 
defined by the user, using the style mechanism. 
(Cîmpan et al., 2005) presents the layered 
construction of the language. 

The core description language ArchWare π-ADL 
is based on the concept of formal composable 
components and on a set of operations for 
manipulating these components (Oquendo et. al., 
2002). The ADL supports the concepts of 
behaviours and abstractions of behaviours, to 
represent respectively running components and 
parametric component types. Behaviour is described 
using all the basic π-calculus operations as well as 
composition and decomposition. Communication 
between components is via channels represented by 
connections (representing component interfaces as 
well). The ArchWare ADL allows the definition of 
evolvable architectures, i.e., where new components 
and connectors can be incorporated and existing 
ones can be removed, governed by explicit policies. 

A language based on well-known component 
connector, Archware C&C-ADL, is proposed as a 
layer built on top of the core language. Given its 
formal foundation on π-calculus, its ability to 
represent both structural and behavioural aspects of 
architectures, as well as architectural constraints 
ArchWare ADL has an expressive power higher than 
most existing ADLs (Medvidovic et. al., 2000, 
Verjus et. al., 2006). 

In this paper we use the Archware C&C-ADL for 
illustrating the planned dynamic evolution and the 
core language for illustrating the unplanned dynamic 
evolution. In both cases, properties are represented 
using ArchWare AAL.  

3 EVOLUTION SCENARIOS  

The chosen evolution scenarios are related to a 
Supply Chain Management System (SCMS), 
entailing an enterprise information system, with its 
clients and its suppliers. The enterprise information 
system and its suppliers constitute what we will call 
hereafter an EAI solution. The SCMS architecture 
will be modified according to particular 
requirements and/or constraints. Other case studies 
using the ArchWare approach in have been 
published (Blanc dit Jolicoeur et. al., 2002, Pourraz 
et. al., 2006, Ratcliffe et. al., 2005, Revillard et. al., 
2005). 
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Initial scenario. Whenever a client passes an 
order to the EAI, it first asks for a quotation. If the 
quotation satisfies the client, it makes an order. The 
ordering system (or component), takes the order, 
updates the stock and may ask a supplier for 
restocking if the current stock is not enough to 
satisfy the order.  

Planned dynamic evolution scenario. Two 
dynamic evolutions are planned. One concerns the 
dynamic change of the invoice system, and another 
the arrival of new clients in the global architecture. 
The architecture is self-contained and evolves in 
response to external stimulus .  

Unplanned dynamic evolution scenario. The 
initial restocking process no loger fits the 
requirements. We show how the architect can 
improve the restocking process by adding a new 
supplier and by modifying the restocking request 
process. This evolution will both modify the 
structure as well as the intern behaviour of 
components.  

4 PLANNED DYNAMIC 
EVOLUTION  

We consider in this section dynamic evolutions that 
were planned by the system architect, while 
architecting the system. ArchWare C&C-ADL offers 
mechanisms for representing such evolving 
architecures (Cîmpan et. al., 2005). The language 
continues and improves previous language 
propositions for the description of dynamic 
architectures, such as Dynamic Wright (Allen et. al., 
1998) or π-Space (Chaudet et. al., 2000). 

Figure 1: The SCMS global architecture. 

In our scenario the clients comunicate with the 
EAI component either for demanding a quote for a 
product (using their respective quote port), either for 

passing an order for a product (using their respective 
order port). 

As it is represeted by a composite component, 
the supply chain has a special architectural element, 
the choreographer, which handles its evolution. The 
choreographer is implicitly connected to all 
components and connectors in the composite. Its 
ArchWare C&C-ADL description is given later.  

Two planned dynamic evolutions are considered 
here: (1) the integration of a new invoice system, 
intern to the EAI and (2) new clients join the supply 
chain (transparently for EAI and the existing 
clients). 

First planned dynamic evolution. The EAI 
component entails four components, dedicated to the 
management of respectively quotes, orders, stocks 
and invoices, connected as shown in Figure 2. The 
invoice handler is intern to the composite, the other 
components being attached to composite ports. The 
connectors among components are basic, and not 
represented here.   
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Figure 2: The EAI composite component. 

Let us have a look at the ArchWare C&C-ADL 
definition of the order component, which is an 
atomic component with three ports. (cf. Figure 3).  
OrderHandler is component with{ 
 ports {  
  stockP is InvoiceDemandPort; 
  invoiceP is InvoiceDemandPort; 
  orderP is OrderPort; } 
 configuration { new stockP ; new stockP; new 
orderP }  
 computation { 
   via orderP~orderReq receive product:String, 
quantity:Integer; 
   via stockP~invoiceReq send product, 
quantity ; 
    via stockP~invoiceRep receive  ack: String; 
   via orderP~orderRep send  ack; 
   if (ack==“OK”) then { 
  via invoiceP~invoiceReq send product, 
quantity ; 
   via invoiceP~invoiceRep receive  invoice: 
String; 
  via orderP~invoice send  invoice 
   } 
   recurse 
 } } 

Figure 3: Order system atomic component. 
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The orderP port is connected to one of the 
composite ports, and allows the reception of orders 
from clients, containing both a product identification 
and a desired quantity. The stockP port allows the 
order system to ask the stock handler to check if the 
product is available in the required quantity. The 
stock handler confirms the resource availability or 
indicates it’s unavailability. The message is 
transmitted to the client. If the product is available, 
the order system asks the invoice handler (to which 
it is connected via the the  invoiceP port) an 
invoice, which once received is sent to the client. 
This behaviour is repeted recursively.   

The ArchWare C&C-ADL EAI composite 
component definition is presented in Figure 4. Every 
component in a composite is potentially dynamic, 
several instances can be created at runtime. The 
constituents part entails the declaration of different 
component types, an instance of each being created 
in the configuration part. The later entails equally 
the expression of different attachements among 
components.  
EAI is component with{ 
 ports {  
  erpOrderP is OrderPort; 
  eaiQuotationP is QuotationPort; 
  eaiEvolveP is EAIEvolutionPort; } 
 constituents { 
  orderComponent is OrderHandler; 
  invoiceComponent is InvoiceHandler; 
  stockComponent is StockHandler; 
  quotationeComponent is QuoteHandler}  
 configuration {  
  new orderComponent; new invoiceComponent; 
new stockComponent; new quotationeComponent; 
  attach orderComponent~orderP to eaiOrderP; 
  attach quotationComponent~quotationP to 
eaiQuotationP; 
  attach orderComponent~stockP to 
stockComponent~stockP; 
  attach orderComponent~invoiceP to 
invoiceComponent~invoiceP; }  
 choreographer {  
  via eaiEvolveP~newInvoice receive 
newInvoiceComponent:InvoiceSystem; 
 detach orderComponent from invoiceComponent ; 
 insert component newInvoiceComponent in 
invoiceComponent; 
 attach orderComponent~invoiceP to 
invoiceComponent#last~invoiceP; 
 via eaiEvolveP~ackP send “ok”; 
 recurse;  
 }} – end of the meta-component EAI 

Figure 4: EAI composite component. 

As already mentioned, a composite evolution is 
handled by its choreographer. For the EAI 
composite, a port is dedicated to the reception of the 
evolution message (the evolution decision is taken 
elsewhere). The EAI composite is ready to evolve its 
invoice system, a new component version can be 
received via the evolution port. Once the new 
invoice component is received, the choreographer 
detaches the current orderComponent and the 

invoiceComponent. The newly received invoice 
handler is inserted as instance of invoiceComponent 
type. We recall that all components are dynamic, 
meaning that several instances can co-exist at 
runtime. The last instance can be addressed using the 
component type name followed by #last. Thus 
using invoiceComponent#last the choreographer 
attaches the new invoice component version to the 
order system.  

Second planned dynamic evolution. We will 
see how new clients can dynamically join the supply 
chain, this evolution being handled by the 
SupplyChain choreographer. The arrival of a new 
client is completely transparent to the EAI 
component.  The connector that links the clients to 
the EAI component also evolves, but this evolution 
will not be shown here. 
SupplyChain is component with{ 
 ports {  
  eaiEvolveP is EAIEvolutionPort; 
  newClientP is ClientPort; } 
 constituents { 
  clientComponet is Client; 
  eaiComponent is EAI; 
  clientToEai is ClientToEAIConnector;}  
 configuration {  
  new clientComponet; new eaiComponent; new 
clientToEai; 
  attach clientComponent~orderP to 
clientToEai~clientOrderP; 
  attach clientToEai~eaiOrderP to 
eaiComponent~eaiOrderP; 
  attach clientComponent~quotationP to 
clientToEai~clientQuotationP; 
  attach clientToEai~eaiquotationP to 
eaiComponent~eaiQuotationP;  } 
choreographer {  
choose { 
  via eaiEvolveP~newInvoice  
     receive newInvoiceComponent:InvoiceSystem; 
  via eaiComponent~eaiEvolveP~newInvoice  
     send newInvoiceComponent; 
  via eaiComponent~eaiEvolveP~ack  
     receive ack:String;} 
or {  
  via newClientP~createOut receive c : Client; 
  insert component c in Client ; 
  via clientToEai~newClientP~createIn send ; 
  via clientToEai~newClient~createOut receive ; 
  attach clientComponent#last~orderP to  
    clientToEai~clientOrderP#last; 
  attach clientComponent#last~quotationP to  
    clientToEai~clientQuotationP#last;} 
then recurse 
} } – end meta-component SupplyChain 

Figure 5: Supply chain composite component. 

The supply chain choreographer handles both the 
arrival of a new client, and the reception of a new 
version of the invoice handler (which is passed to 
the EAI component). Any new client is inserted in the 
composite as instance of the Client component type. 
A request for evolution is sent to the ClientToEAI 
connector, which will create in response two ports in 
order to allow the connection of the new client. 
Once the connector indicates that the new ports have 
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been created, the choreographer makes the 
attachement between the client and the newly 
created connector ports. The access to the last 
instance (for both the client and the connector ports) 
are made as previously using the #last suffix. 

Using these two evolution examples we shown 
how ArchWare C&C-ADL allows the definition of 
dyanmicaly evolving architectures.  

Besides the verification of component types, as 
in the reception of a new invoice component or a 
new client, other properties verification can be 
performed in order to ensure the global coherence 
for the system. Such properties can concern both 
structural and behavioural aspects. Examples of 
structural properties include components 
connectivity (no unconnected component), the 
existence of particular components (imposing the 
existence of at least one instance of invoice 
component is the EAI composite), etc. Behavioural 
properties concern the components or ports 
behaviour. In Figure 6, the property 
requestBeforeReplyOfOrderSystem states that an 
order system cannot send a reply befor receiving a 
request. This property has to be preserved after the 
system evolves (reception of the new invoice 
system, or new client).  
requestBeforeReplyOfOrderSystem is property {  on 
OrderSystem.instances apply 

   forall {os | (on os.actions apply isNotEmpty) 
implies 
    (on os.orderP~orderReq.actionsIn apply 

 exists {request | on 
os.orderP~orderRep.actionsOut apply 
   forall {reply | every sequence {(not 
request)*. reply}  

      leads to state {false} }   } ) } } 

Figure 6: Property ensuring the order between send and 
request. 

The evolutions presented in this section have to 
be planned during the system architecture definition. 
In the following we will show how it is possible to 
handle unplanned dynamic evolutions.  

5 UNPLANNED DYNAMIC 
EVOLUTION  

Research activities leaded in the ArchWare project 
encompass a virtual machine able to interpret 
architectural descriptions coded using the core 
language ArchWare π-ADL (cf. section 1 above). In 
the following, the illustrating example is specified 
using the core language (and not in the C&C layer, 
as in the previous section). The ArchWare 
environment proposes specific components that 

allow managing such evolutions (Oquendo et. al., 
2004).  

Figure 7: The initial architecture. 

value client is abstraction(String: 
quotationRequest, Integer: qty);{ 
 value quotationReq is free connection(String); 
 value quotationRep is free connection(Float); 
 value orderReq is free 
connection(String,Integer); 
 value orderRep is free connection(String); 
 value invoiceToClient is free 
connection(String); 
 value quotationBeh is behaviour { 
    via quotationReq send quotationRequest; 
    via quotationRep receive amount:Float; 
    unobservable; } 
 quotationBeh(); 
 choose { 
    quotationBeh(); 
 or 
    behaviour { 
       via orderReq send quotationRequest, qty; 
       unobservable; 
       via orderRep receive ack:String; 
  if (ack == "OK") then { 
     via invoiceToClient receive 
invoice:String; 
  } } }   
 done };  
value supplier1 is abstraction(); { 
   value restockingOrder1Req is free 
connection(String, Integer); 
   value restockingOrder1Rep is free 
connection(String); 
   via restockingOrder1Req receive wares:String, 
quantity:Integer; 
   unobservable; 
   via restockingOrder1Rep send "OK"; 
   done }; 
value quotationSystem is abstraction(Float: 
price); { … } 
value orderSystem is abstraction();{ … } 
value stockingControl is abstraction(Integer: 
stock); { … } 
value restockingSystem is abstraction();{ … } 
value invoiceSystem is abstraction();{ … } 
value erp is abstraction(Float: price, Integer: 
stock); { 
 compose {  quotationSystem(price) 
  and orderSystem() 
  and invoiceSystem() 
  and stockingControl(stock) 
  and restockingSystem() } };  
value eai is abstraction(Float: price, Integer: 
stock); { 
 compose {  supplier1(20) 
  and    erp(price, stock) 
  } }  
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}; 

Figure 8: Initial architecture description (extract). 

We do not present here all the tools and how they 
interact and cooperate together but we focuse on 
how the description language and its associated 
virtual machine allow such evolution to take place. 

Before focusing on the architecture evolution 
process, let us recall that whenever a customer is 
asking for an order, if the desired product quantity is 
less that the corresponding stock quantity, a 
restocking request is emited to a supplier in order to 
satisfy the customer order request. 

At the beginning, (cf. Figure 8), we assume that a 
sole supplier is involved and is always able to satisfy 
restocking requested by the restocking system. (cf. 
Figure 7). Let us imagine now that this supplier is no 
longer able to satisfy restocking requests, or the 
restocking manager has decided to change the 
restocking process by involving more than one 
supplier. If the desired restocking quantity exceeds 
the initial supplier (named supplier1) restocking 
ability, a second request is then addressed to another 
supplier (named supplier2); the second restocking 
request quantity is computed by subtracting the 
quantity the supplier1 is willing to provide to the 
customer's initial request. This evolution scenario is 
interesting: on one hand it implies changes in the 
system architecture structure by adding a new 
supplier (cf. Figure 9); on another hand, it enforces 
the dynamic change of the restocking process for 
taking into account that a restocking request may not 
be satisfied; in this case, a new supplier joins the 
architecture and the initial restocking request has to 
be split among the two suppliers. The system 
behavior has to be dynamically changed according 
to the new configuration and process (cf. Figure 9). 

 Figure 9: The architecture after evolution.  

Let us see now how the evolution is managed at 
the architectural code level and enacted by the 

virtual machine. The architectural element named 
evolver (cf. Figure 10) is notified (via the evolReq 
connection) by the SCMS abstraction as soon as an 
evolution (an architectural change) is mandatory.  
value evolver is abstraction(); { 
 value evolReq is free connection(); 
 value evolRep is free connection(Boolean, 
abstraction); 
 via evolReq receive; 
 choose {{via evolRep send false, any();} 
 or {value evol_arch_part is ARCH-EVOLUTION; 
  via evolRep send true, evol_arch_part ;}} 
};  
value scms is abstraction(); { 
   value evolReq is free connection(); 
   value evolRep is free connection(Boolean, 
abstraction() ); 
   compose { 
     behaviour { 
 via evolReq send; 
 via evolRep receive evolution:Boolean,  
                
evol_arch_part:abstraction(Float,Integer); 
 if (evolution) then { 
  evol_arch_part(100.00, 32) 
 } else { 
  eai(100.00, 32) } 
      } 
     and client("rollings", 12)} 
};  
-- The SCMS abstraction that is the entire system 
architecture 
value scms_arch is abstraction(); { 
   compose {  scms() 
     and evolver()} 
};  

Figure 10: The evolver and scms abstractions containing 
evolution mechanisms and managing evolution process. 

The way the architectural elements are organized 
is quite important regarding the evolution: because 
the evolver is attached to a specific abstraction, only 
this abstraction (and all of its sub-abstractions) may 
evolve. If it is unknown (or difficult to anticipate) on 
which abstraction the evolution will occur, one 
should attach the evolver to the abstraction that 
contains the entire system (the root abstraction). The 
side effect of attaching the evolver to the root 
abstraction is that for a small evolution (implying a 
very small part of the system), all of the architecture 
has to be expressed again in the evolution 
abstraction (called ARCH-EVOLUTION in the following 
and in the code examples) as shown later.  

Notice that we do not make any assumptions 
about the nature of the evolution and what really the 
changes and the evolution policy will be. However, 
we have to specify where the evolution may occur. 
In the previous architectural description (cf. Figure 
10), when the evolver is requested, either (choose in 
the piece of code) the architect decides that no 
evolution/change is required (i.e., the evolution 
parameter received on the connection is equal to 
false), either the architect asks for an evolution (i.e., 
the evolution parameter received on the connection 
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is equal to true). In the latter case, the virtual 
machine looks for a specific architectural abstraction 
(called ARCH-EVOLUTION), by dynamically loading an 
ARCH-EVOLUTION.adl file. Thus it is up to the 
architect to define the evolution and to produce the 
ARCH-EVOLUTION.adl file when it is required. 
The ARCH-EVOLUTION abstraction is first sent on the 
evolRep connection, and then dynamically applied: 
the evolved architecture currently behaves as the one 
integrating the changes expressed in the ARCH-
EVOLUTION abstraction (cf. architectural abstraction 
7). The evolved architecture now contains a new 
supplier (called supllier2) and the restocking 
process has changed accordingly. Notice that the 
new supplier (supplier2) does not behave as the 
existing supplier (supplier1) (i.e., it is not the same) 
because the evolution we introduced (cf. section 3) 
requires two different suppliers; we assume that a 
restocking request to the new supplier (supplier2) 
will only be satisfied if the requested quantity is less 
or equal to the supplier2’s stock quantity for a given 
product.  

The restocking process has now to take into 
account the existence of a new supplier, and the 
initial demand may be split (according to the 
quantity requested) between two suppliers (cf. 
Figure 11). The eai abstraction has been replaced by 
the evol_arch_part abstraction (corresponding to the 
ARCH-EVOLUTION described in the ARCH-
EVOLUTION.adl file), integrating all architectural 
changes (cf. Figure 11). The transformation from the 
initial architecture (without evolution) and the 
evolved one (integrating the changes) takes place in 
the scms abstraction (cf. Figure 10), by using the 
evolReq and evolRep connections as we saw. These 
mechanisms allow several evolution strategies, each 
coded in a specific abstraction expressed in the 
evolver architectural element. 
value supplier2 is abstraction(Integer capacity); 
{ 
  value restockingOrder2Req is free 
connection(String, Integer); 
  value restockingOrder2Rep is free 
connection(String, Integer); 
  via restockingOrder2Req receive wares:String, 
quantity:Integer; 
  unobservable; 
  if (quantity > capacity) then { 
 via restockingOrder2Rep send "NOK",capacity; } 
  else { 
 via restockingOrder2Rep send "OK",capacity; 
 } 
  done 
};  
value restockingSystem is abstraction(); { 
  value restockingReq is free connection(String, 
Integer); 
  value restockingOrder2Req is free 
connection(String, Integer); 
  value restockingOrder2Rep is free 
connection(String, Integer); 
  value restockingOrder1Req is free 
connection(String, Integer); 

  value restockingOrder1Rep is free 
connection(String); 
  via restockingReq receive wares:String, 
quantity:Integer; 
  via restockingOrder2Req send wares, quantity; 
  via restockingOrder2Rep receive ack:String, 
qtyReceived:Integer; 
  if (ack == "NOK") then { 
   via restockingOrder1Req send wares, (quantity-
qtyReceived); 
 unobservable; 
 via restockingOrder1Rep receives ack2:String; 
} 
  unobservable; 
  done 
} 
value erp is abstraction(Float: price, Integer: 
stock); { 
 compose {  quotationSystem(price) 
  and orderSystem() 
  and invoiceSystem() 
  and stockingControl(stock) 
  and restockingSystem() 
} 
-- The evolved abstraction implying two suppliers 
value ARCH-EVOLUTION is abstraction(Float:price, 
Integer: stock); { compose {  erp(price, stock) 
  and supplier1() 
  and supplier2(20) } 
};  

Figure 11: ARCH-EVOLUTION.adl architectural 
description (extract). 

Dynamically changing an architecture may cause 
drawbacks (inconsistency, lost properties). In order 
to limit their importance, architectural constraints 
can be defined and the architecture can be analyzed 
whenever the architect wishes. Such constraints and 
properties are expressed using the ArchWare AAL 
language (Alloui et. al., 2003). Details on the 
properties checking and architecture validation and 
verification can be found in (Alloui et. al., 2003, 
Alloui et. al., 2005). Remember that the modified 
architecture can be checked against the initial 
architecture identified properties. If such verification 
succeeds, changes can be applied by dynamically 
evolving the architecture as presented. 

6 CONCLUSION 

Enterprise information systems require evolution in 
order to support enterprise activities, to adapt to 
market changes and enterprise evolutions. In our 
scenario, we illustrated changes that are related to 
the composition of the system (by adding for 
example a supplier) as well as the behaviour of the 
system (in other words the business process) by 
modifying the restocking process. Other case studies 
have been realized using the ArchWare approach 
and technologies, i.e., for a Manufacturing 
Execution System for a Grid-based application in a 
health-related project (Manset et al., 2006). Other 
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reserarch activities are directly inspired from these 
results (Pourraz et al., 2006). 

Architecture evolution support is an important 
issue (Andrade and Fiadeiro, 2003). Current 
researches in this area are concentrated either on low 
abstraction levels (implementation), either on a very 
high levels (traditionnaly called conceptual level). 

Firstly, we claim that the ADL has to support 
evolution: architecture evolution has to be expressed 
using the language itself. Few ADLs have such 
features (Darwin (Magee et al., 1995), π-Space 
(Chaudet and Oquendo, 2000), Piccola (Nierstrasz 
and Achermann, 2000)), while most of them are 
based on process algebras. Secondly, the 
architecture descriptions have to be enactable and on 
the fly change mechanisms have to be provided. 
This latter point is very important. Most research 
activities focusing on architecture evolution can only 
address static evolution because they are not based 
on an adequate ADL: changes on architectures are 
made either on abstract architectures (Egyed and 
Medvidovic, 2001), either directly in the code (cf. 
(Pollet et al., 2007) for a good survey on research 
leaded in this topic). In this context, the consistency 
between the two abstractions levels becames an 
important issue (Oreizy et al., 1998, Garlan et. al., 
2003, Carriere et. al., 1999, Erdogmus, 2000, Van 
der Hoeck et. al., 2001, Aldrich et. al., 2002, Pinzger 
et al., 2004, Rank, 2005, Roshandel et. al., 2004, 
Nistor et. al., 2005).  

The approach presented in this paper proposes 
the following interesting features: 

• ArchWare ADL is a formal high level 
Architectural Description Language that 
covers structural and behavioural 
architecture description; it is also an 
interpretable language (accompanied by 
a virtual machine) with specific 
evolution support mechanisms; 

• The ArchWare development process is 
shorter than most of the software-
intensive system development 
processes: conceptual (or abstract) level 
and implementation are unified. Thus, 
there is no need to manage consistency 
between them avoiding gaps and 
discrepancies: the executing system 
architecture is the specified one; 

• The ArchWare ADL formal foundations 
allow the architect to formally describe 
enterprise information systems, to check 
the system architecture; 

• The evolution is managed directly and 
dynamically at the architectural code, 
each change consequence(s) on the 
architecture being verifyied before 
being applied. 

In our illustrating scenario, we showed that the 
initial system is able to evolve dynamically by 
applying architectural abstractions that are unknown 
at the beginning (before system execution) but that 
can be formalized during system (architecture) 
execution. Evolution could be a cascading process 
for which changes may be applied on a previously 
modified architecture (with properties checking at 
each evolution step). 
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