
ASPECT-ORIENTED ANALYSIS APPLIED TO THE SPACE
DOMAIN

André Marques, Ricardo Raminhos, Ricardo Ferreira, Rita Ribeiro, Sérgio Agostinho
UNINOVA – Instituto de Desenvolvimento de Novas Tecnologias 2829-516 Caparica, Portugal

João Araújo, Ana Moreira
CITI/Dep. de Informática Universidade Nova de Lisboa 2829-516 Caparica, Portugal

Keywords: Early Aspects, XML technologies, metadata, analysis, specification, space domain.

Abstract: This paper presents an aspect metadata approach, which has been developed in the scope of the “Aspect
Specification for the Space Domain” project. This approach is based on XML and XML Schema
technologies, enabling a rigorous knowledge representation. The proposed approach has been applied to a
real complex system, the “Space Environment Support System”, enabling a comparison and evaluation
between the proposed approach and the “traditional” requirements analysis methods used during the
development of the original version of the system. This paper presents a full description of both the
identified metadata concepts and their relationships. The metadata concepts and associated instances have
been stored in a Metadata Repository that provides simple navigation facilities between concepts. The
Metadata Repository also enables the automatic generation of documentation.

1 INTRODUCTION

Separation of concerns refers to the ability of
identifying, modularizing and possibly reusing
system concerns (e.g., functionalities and global
properties) in a software program. Crosscutting
concerns are usually identified at the final stages of
software development, namely at the
implementation level using aspect-oriented
techniques. However, it is good practice to identify
the system’s crosscutting behaviour as soon as
possible, addressing possible conflicts between
concerns as early as the requirements phase, not
postponing this task to the latter stages of
development.

Different approaches have been proposed for the
representation of concerns structure ((A. Rashid,
2003), (Grundy, 1992), (Lamsweerde, 2001)),
including metadata (R. Ferreira, 2005). This work
proposes a refinement to the “early aspects”
structural metadata (R. Ferreira, 2005), using XML
and XML Schema technologies that provide a
rigorous representation. A full description of the
identified metadata concepts is presented, as well as
the relations between them. The approach is applied
to a real case study in the space domain, the “Space
Environment Support System”, currently operational

at the European Space Technology Centre
(ESA/ESTEC).

Within the scope of “early aspects” a
multidimensional approach (I. Brito, 2004) has been
used for the identification of crosscutting concerns.
This multidimensional approach proved to be a
better way of identifying user needs, when compared
with the traditional bi-dimensional approaches based
on a dominant decomposition using viewpoints, use
cases or goals (e.g. (A. Rashid, 2003)).

This paper is organized as follows. Section 2
presents the ASSD project. Section 3 presents the
concepts specification. Section 4 introduces the
“Space Environment Support System” case study
and identifies the advantages and drawbacks in
applying the proposed methodology and concepts to
a complex operational system. Section 5 discusses
some related work. Finally, Section 6 provides an
overview evaluation of the current proposal and
finishes by drawing some conclusions.

2 ASPECT SPECIFICATION FOR
THE SPACE DOMAIN (ASSD)

Various programming paradigms have increased the
modularity of software, but there are still some

71
Marques A., Raminhos R., Ferreira R., Ribeiro R., Agostinho S., Araújo J. and Moreira A. (2007).
ASPECT-ORIENTED ANALYSIS APPLIED TO THE SPACE DOMAIN.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 71-79
DOI: 10.5220/0002385800710079
Copyright c© SciTePress

properties that classical software development
methods are unable to modularize. These properties
cut across several base (code) modules, producing
scattered and tangled code that is difficult to
maintain and evolve. This is called a crosscutting
concern. A match point is composed by a set of
concerns that need to be composed together. One of
the concerns plays the role of base concern on which
the behaviour of the remaining concerns needs to be
weaved.

The main objective of the ASSD project is to
apply an Aspect-Oriented methodology1 to the
ground segment of space domain projects, at the
early stages of software development. Taking as a
case study an already (successfully) deployed
project using a traditional requirements
methodology, the consortium addressed how
“aspects” could be employed in order to reduce
system complexity, development time and
improving maintenance and evolution tasks. The
development of a “meta-aspect” repository
architecture was also proposed, for storing the
aspects specification identified in the case study,
intended for reuse in further projects. For further
validation, a second application shall be tested by
the industrial partners of the project.

The ASSD project used and adapted two main
technologies, namely the Metadata Repository (see
Section 2.1) for storage purposes and the Aspect-
Oriented Requirements Analysis method presented
in (I. Brito, 2004),(I. Brito, 2006), for the early
stages of software development.

The advantages of a repository for storing
metadata were already assessed in the scope of the
Space Environment Information System for Mission
Control Purposes (SEIS) project (M. Pantoquilho,
2004). However, the hybrid combination of the two
technologies (aspect methodology and metadata
repository) as proposed in the ASSD project was
never attempted.

2.1 Metadata Repository

The Metadata Repository is a by-product of the
SEIS project developed for ESA and currently
operational at ESOC. The SEIS project, like many
other large projects, is composed of many sub-
systems, where every module has a need for sharing
metadata. The Metadata Repository is used as a
technology infrastructure where all metadata is
stored in a structured way, and accessible to other
system components.

1 Methodology enabling modularization of crosscutting

concerns.

The Metadata Repository enables the
management of the metadata in a coherent way.
Coherency, and consistency, is achieved due to the
absence of replication and available versioning
support. To increase the flexibility of the metadata
structure, XML Schema documents are used to
define and validate different types of metadata
information.

By including all ASSD metadata in a specialized
Metadata Repository, the validation effort (both
structural and referential) is performed at the server
side and made transparent to the client applications.
Further, the Repository enables metadata
reutilization (especially at the concern level),
navigation and traceability between concepts.
Finally, the Metadata Repository is able to
automatically generate documentation, handling
ASSD metadata in order to create a set of outputs
according to the proposed ASSD methodology.

A specific terminology has been used to identify
each type of information as a layer. Layer M0
represents the objects to be described using
metadata in the above layer. These objects are part
of the host system and are not to be stored in the
Metadata Repository (e.g., a record in a database
table). Layer M1 represents metadata information
about M0. In the Metadata Repository context, this
information is called instances and is stored as XML
documents (e.g., “security”, “concern”). Layer M2
defines the format and rules for each type of
metadata to be stored in the M1 layer. These are
called concepts. A concept is a definition of a
structure to specify a type of metadata and is
represented as an XML Schema (e.g. the “concern”
concept). This paper focuses on the metadata level
M2 for the definition of concepts. Instances (M1
level) are handled by the Metadata Repository while
applying the proposed ASSD Aspect-Oriented
methodology.

3 CONCEPT SPECIFICATION

This section introduces the concepts required for the
representation and logic structure of early aspects.
Seven main structures are proposed: System,
Concern, Stakeholder, Decomposition Node,
Stakeholder Requirement, System Requirement and
Test Case. All concepts are defined through
templates with three columns: attribute name,
cardinality and description.

Considering the authors’ previous work, System,
Concern and Stakeholder structures have been
extended with new fields, and system related

ICEIS 2007 - International Conference on Enterprise Information Systems

72

information has been gathered in the system concept
(in order to make Concern and Stakeholder
independent). The remaining concepts are proposed
for the first time in this paper.

Figure 1: Concept’s main relations.

Figure 1 depicts the main relations for the
proposed concepts. Each arrow represents how the
relation scheme is defined as its navigability.
Analysing the relations some concepts are
independent from the others, such as
DecompositionNode, Stakeholder and Concern. The
System concept, which represents a collection of
interacting and interrelated elements, links together
concepts like Concern, Stakeholder,
StakeholderRequirement and SystemRequirement.
This way, system dependent information is stored in
the main System concept. All references linking the
System concept to the independent concepts are
intended to promote instance reusability.

The following section presents the concepts
required for structuring all the information regarding
the Aspect Specification analysis. Such specification
is important individually for each concern and as a
whole for the definition of a supporting
infrastructure for early-aspects storage.

3.1 System

The structural representation for the System template
is depicted in Table 1, describing the system in
terms of the context in which it is applicable and
defining the consequences resulting from its usage.
 Table 2 presents an instance (i.e., an example) of
the System concept regarding a simple log
component.

Table 1: The System template.

Attribute
name # Description

Name 1 The System name.

Description 1 Short description of the intended
behaviour of the system.

Aliases 0..N Additional names (synonyms) that
also identify the system.

URLs 0..N List of URL references valuables in
the system understanding.

Parent
reference 0..1

Points to the parent system of this
system, enabling hierarchy between
systems.

Context 1

Description of the environment in
which the problem and solution
occur and for which the solution is
desirable.

Known uses 0..N

Presents a set of “real world”
applications that implement the
system, providing some “warranty”
over its quality.

Motivations 1..N Description of problematic situations
(examples).

Similar
systems 0..N

List of similar systems, enabling a
navigation mechanism between
them.

Stakeholders 1..N
List of stakeholders involved in the
system that have a direct or indirect
influence in the system.

Concerns 1..N List of concerns involved in the
problem modelling.

Keywords 0..N List of keywords of this system for
searching purposes.

Extension 0..1 Additional extensions to the
definition of the system.

Table 2: The LOG’s System concept instantiation.

Attribute
name Instantiation

Name Log

Description The Log component registers all the task
activities from SESS components.

Aliases Logging Log
URLs None.
Parent
reference Data Processing Module

Context
While Data Processing Module applications
are executing, actions of these applications
are registered by the LOG component.
Information Systems
Critical Systems Known uses
Banking Systems
Data traceability.

Motivations Need to show data in simple and structured
way.

Similar
systems None.

Name Role
Developer Developer Stakeholders
Administrator Administrator

Concern
Name Stakeholder Stakehold

er Priority

Administrator Very
Important Logging

Developer Important

Concerns

Persistence Administrator Very
Important

ASPECT-ORIENTED ANALYSIS APPLIED TO THE SPACE DOMAIN

73

Developer Important
Keywords Log Catalogue Event
Extension None.

The Stakeholder attribute (the Stakeholder
concept is defined in Table 5) contains a list of
stakeholders involved in the system that have a
direct or indirect influence (e.g. “Administrator”,
“Application”, “Client”, “Company”). Since the
ASSD project will provide a client tool allowing the
possibility of generating UML use cases, there is
still the possibility to define if a system’s
stakeholder is an actor or not, i.e., if a given
Stakeholder will be part of a UML use cases
diagram. The Concern attribute (the Concern
concept is defined in (Table 3) contains the list of
concerns that compose the system. For each concern,
a list of needed or requested concerns is available. A
list of stakeholders is associated to each Concern,
where each stakeholder has a priority towards the
concern: “Very Important”, “Important”, “Medium”,
“Low”, “Very Low” or “Don’t Care”. Since a
concern results from a system requirement, a list of
system requirements (the System Requirement
concept is defined in (Table 8) that need this concern
can be defined. A concern can be decomposed
through a decomposition node and for each
decomposition, a value of this analysis is given:
“Satisficed2”, “Weakly satisficed”, “Undecided”,
“Weakly denied”, “Denied”, or “Conflict” (L.
Chung, 2000). Finally, and for extensibility
purposes, a Mapping of each concern to an artefact
can be made at a later stage of software
development.

3.2 Concern

Table 3 presents the template for describing a
concern, while Table 4 presents an instance
example. The Classification attribute identifies the
concern according to its type, e. g. functional or non-
functional (Sommerville, 2004): “Delivery”,
“Efficiency”, “Ethical”, “External”, “Functional”,
“Implementation”, “Interoperability”, “Legislative”,
“Organisational”, “Performance”, “Portability”,
“Privacy”, “Product”, “Reliability”, “Safety”,
“Space”, “Standards”, or “Usability”.

Table 3: The Concern template.

Attribute
name # Description

Concern name 1 The name of the concern.

2 Satisfice: decide on and pursue a course of action

satisfying the minimum requirements to achieve a goal.

Description 1 Short description of the intended
behaviour of the concern.

Parent
reference 0..1

Concern related with the current
one. This reference points to the
parent concern of this concern,
permitting hierarchy between
concerns.

Sources 0..4
States the concerns origins:
stakeholder, concern, catalogue
and/or system.

Classification 1
This attribute helps the selection
of the most appropriate approach
to specify this concern.

Contributions 0..N
List of concerns that are affected
positively/negatively3 by this
concern.

Similar
concerns 0..N

List of similar concerns, enabling
a navigation mechanism between
them, not necessarily from the
same System.

Decomposition
node 0..1

Reference to the root of the
Decomposition Node of the
current concern.

Keywords 0..N List of keywords of this concern
for searching purposes.

Extensions 0..N Additional extensions to the
definition.

3 Negative contributions are analysed to identify potential

conflicts between concerns

ICEIS 2007 - International Conference on Enterprise Information Systems

74

Table 4: The Configurability’s Concern instance.

Attribute name Description
Concern name Configurability

Description
The capability of defining the
configuration and behaviour of an
application.

Parent reference None.

Sources Stakeholder

Classification Implementation

Concern Name Contribution
Value

Client Portability +
Modularity +

Contributions

Server Portability +
Similar concerns None.
Decomposition
node None.

Keywords Configuration, Extensibility.

Extensions None.

3.3 Stakeholder

Table 5 presents the template for describing a
stakeholder.

Table 5: The Stakeholder template.
Attribute name # Description
Stakeholder
name 1 The name of the Stakeholder’s

instance.

Description 1 Short description of the intended
behaviour of the Stakeholder.

Parent
reference 0..1

Stakeholder related with the
current one. This reference points
to the parent stakeholder of this
stakeholder, allowing a hierarchy
between stakeholders.

Contact
information 0..1

General stakeholder information:
address(es), email(s), phone and
fax numbers..

Keywords 0..N List of keywords of this concern
for searching purposes.

3.4 Decomposition Node

Table 6 presents an example of the Decomposition Node
concept. The Is operationalization attribute
determines if the current decomposition provides
operations, processes, data representation,
structuring, or specific constraint. That is, it informs
if it provides a concrete functional mechanism to
accomplish the decomposition or not. This is known
in the literature as operationalization (L. Chung,
2000). The Decomposition contributions attribute
refers to the nodes that contribute with a given value
(“Make”, “Help”, “Unknown”, “Hurt” or “Break”
(L. Chung, 2000)) to the current Decomposition; yet
a justification for the choice of the Decomposition
Contributions’ value can be applied to this. The

Decomposition operator attribute describes which
logical operator (i.e., “AND”, “OR”) decomposes
the current node. A justification can be applied to
support or deny the way target components are
selected.

Table 6: A Decomposition Node example.
Attribute name Description

Name Encryption

Description
The capability to make the contents of
a message or file unintelligible to
anyone not authorized to read it.

Is
operationalization False

Decomposition
contributions None.

Or decomposition Decomposition
operator RSA 3DES

Keywords Security Cryptography

3.5 Stakeholder & System Requirement

The Stakeholder Requirement template is presented
in Table 7. The Classification attribute allows to
choose from an enumeration of values
(Sommerville, 2004): “Delivery”, “Efficiency”,
“Ethical”, “Functional”, “Implementation”, “Space”,
“Interoperability”, “Performance”, “Safety”,
“Portability”, “Privacy”, “Reliability”, “Standards”,
or “Usability”, whereas the System Reference
attribute is mandatory in the way that it directly
points to the system that owns the current
Stakeholder Requirement. The Priority attribute
defines the priority of the current Stakeholder
Requirement in the scope of the System, which is
referred in the System Reference attribute. The
MoSCoW rules (Stapleton, 1997) were used for this
purpose.

Table 7: The Stakeholder Requirement template.

Attribute
name # Description

Name 1 The Stakeholder Requirement name.

Description 1
Short description of the intended
behaviour of the Stakeholder
Requirement.

Source
stakeholder 1 The stakeholder that is responsible

for elicitation of this requirement.

Classification 1 Classification of the requirement.

System
reference 1 The system that is referenced by the

current stakeholder requirement.

Priority 1 Priority of the Stakeholder
Requirement.

Keywords 0..N List of keywords for searching
purposes.

Table 8 presents the template for describing a
System Requirement. The Stakeholder Requirement
attribute holds a list of all stakeholder requirements

ASPECT-ORIENTED ANALYSIS APPLIED TO THE SPACE DOMAIN

75

that complies with the current System Requirement.
The System Reference attribute is mandatory in the
way that it directly points to the system that owns
the current System Requirement. The Type attribute
describes the category of the System Requirement
that can be either “Private”, “Internal” or “Public”.

Table 8: The System Requirement template.

Attribute
name # Description

Name 1 The System Requirement name.

Description 1
Short description on the intended
behaviour of the System
Requirement.

Parent
reference 0..1

System Requirement related with this
one. This reference points to the
parent System Requirement of this
System Requirement, enabling
hierarchical structure between
System Requirements.

Stakeholder
requirement 0..N

List of Stakeholder Requirements
that complies with the current
requirement.

System
reference 1 Reference to the system that owns

the current system requirement.
Type 1 Type of the requirement.
Classification 1 Classification of the requirement.
Priority 1 Priority of the System Requirement.

Keywords 0..N List of keywords of this System
Requirement for searching purposes.

3.6 Test Case Concept

The Test Case description is presented in Table 9.
Table 9: The Test Case template.

Attribute
name # Description

Name 1 The name of the Test Case.

Description 1 Short description of the intended
behaviour of the test case.

Expected
tester profile 1

The profile of the tester that shall
perform the test (e.g. “Administrator”,
“User”).

Test method 1
Specifies the test method to be applied:
“Testing”, “Code Inspection” or
“Review”.

System
reference 1 System to which this test case refers to.

Test Objective
Description

Description of the
test case objective.

Objective 1
Tested
Requirements

A set of references
for the tested
requirements.

Test
dependencies 0..N References to the tests that shall be

executed before this test case.
Pre-
requisites

Requisites required to
perform the test.

Inputs Data required to perform
the test.

Test details 0..N

Procedure Description of the test to
be performed.

Outputs
Generated
outputs
description. Expected

Results
Pass
Criterion

Condition for
the test to be
successful.

Test Campaign Type of test4.

System Version
System
version that
was tested.

Name Tester name.
Tester

Profile Tester
profile.

Test case
executions 0..N

Result Test Result

Keywords 0..N List of keywords of this test case for
searching purposes.

4 CASE STUDY APPLICATION

The main objective of the Space Environment
Support System (SESS) system is to provide
accurate real-time information about the ongoing
Space Weather (combination of conditions on the
sun, solar wind, magnetosphere, ionosphere and
thermosphere) conditions and spacecraft onboard
measurements along with predictions for supporting
the decision-making process. Within this system the
Data Processing Module is a critical component.
This module is responsible for all file retrieval,
parameter extraction and further transformations
applied to all identified data, and validation
mechanisms, ensuring that all real-time availability
constraints are met.

In the scope of the ASSD project both the
methodology and defined concepts were applied to
this module. For this purpose, an independent team
performed the Aspect-Oriented analysis for the
proposed case studies, that were later validated by
the developer team of the actual SESS project.

4.1 The Data Processing Module

The design of the data processing module was
inspired on a typical ETL architecture, but following
a completely different paradigm of implementation.
Instead of creating specific code for downloading
and extracting information for each input file, a
declarative language (based on XML technology)
and an engine for processing ETL scripts (named
File Format Definitions) were created. The Data
Processing Module components and interactions are
depicted in Figure 2: (i) the File Retriever (FR)
Engine acquires near real-time data from multiple

4 I.e. “Unit Tests”, “Integration Tests”, “System Tests”,

and “Acceptance Tests”.

ICEIS 2007 - International Conference on Enterprise Information Systems

76

external sources in the Internet holding scientific
data, based on a set of schedulers, and using a set of
well-known protocols like HTTP, FTP or Web
Service invocation. For each downloaded file, a
local copy is placed in a File Cache for backup
purposes and the file is sent for processing by the
FET component; (ii) the File Extractor and
Transformer (FET) Engine applies a File Format
Definition to each input file, extracting all relevant
information and delivering it to the Data Delivery
interface (data entry point for the Data Integration
Module); (iii) all File Format Definition files are
generated by the File Format Definition Editor
graphical application, based on a sample of an input
file and user annotations over that file; (iv) all
information regarding the description of the files to
download, File Format Definitions and applications
configurations are stored in a Metadata Repository.

Figure 2: The Data Processing Module architecture.

4.2 Analysis / Discussion of the Results

An analysis of the DPM component focusing on the
newly identified concepts has been performed for
the main DPM’s components: File Retriever, File
Format Definition Editor and File Extractor and
Transformer. Instances for these proposed concepts
have been inserted in the Metadata Repository
describing all DPM components. All this
information was then manipulated by the Metadata
Repository (via the XSLT language) applying the
methodology proposed in ASSD project and the
resulting outputs have been formatted to HTML.
From these outputs, relevant information and
characteristics (in both textual and graphical format)
can be extracted: (i) the Concerns contributions (i.e.,
positive, negative, inexistent) and relations are
represented pictorially in a tabular format, which
enables a high-level validation of the analysis
correctness; (ii) conflicts between concerns are
automatically identified and an explanation facility
is available for determining the reason of the conflict
as the stakeholders that must be contacted to
unblock the conflicting situation. Many conflicts are
thus resolved at the early steps of the software
development instead during the implementation
phase; (iii) concerns conflicts are resolved through
prioritization that will be followed during the
implementation phase; (iv) crosscutting
functionalities are detected for each module,
enabling a better strategy for their future
implementation.
Comparing the proposed aspect-oriented
methodology with the traditional requirement

analysis (supported by UML 2.0 diagrams) that was
applied initially to the SESS system, several
advantages have been identified: (i) almost all the
conflicts that were found during the implementation
of SESS have been identified at the early stages of
the software lifecycle using the aspect-oriented
paradigm. Since these conflicts were only detected
during implementation, some functionalities had to
be refactored since the initial implementation
collided with other system functionalities that were
found to be more important. The adjustment of
these functionalities conducted to an unnecessary
waste of resources; (ii) the initial analysis of SESS
although complete, offered some level of ambiguity
in some system functionalities, namely in their
prioritization. Using the aspect-oriented approach a
better prioritization was accomplished between
system concerns. This feature enabled the developer
to focus on the development tasks, and not to
suspend them in order to solve analysis ambiguities;
(iii) by applying the aspect-oriented analysis,
stakeholders had a more active participation in the
project, due to their direct involvement in the
definition of priorities for the system functionalities.
Using the herein proposed concepts and
methodology, there is a higher participation and
inter-activity in the project between stakeholders,
facilitating the communication among them and
perception of the project for all; (iv) due to the
feature of automatic identification of crosscutting
behaviour, the developer may “think ahead”, prior
to the start of the actual implementation, the best
way to implement the crosscutting behaviour,
instead of refactoring this behaviour at later
development stages.

In the following two subsections a set of
representative examples of these features are
presented for the File Retriever and File Extractor
and Transformer components.

4.2.1 File Retriever

Regarding the analysis of the File Retriever
component, the most significant negative
contributions are due to the Bandwidth Usage, CPU
Usage, Response Time and Space Performance
concerns. These negative contributions appears for
the Bandwidth Usage and CPU Usage concerns
since the File Retriever system intends to minimize
the use of network bandwidth (as much as possible,
since this component downloads multiple input files,
sometimes simultaneously) and the CPU Usage
since most performed operations are I/O bound and
not CPU bound. Space Performance also appears
with many negative contributions due to the
existence of the File Retriever’s cache, where copies
of all downloaded files are stored for backup

Data Processing
Module

Metadata
Repository

External
Data
Service
Provider

File
Cache FFDE

FET Engine FR Engine

D
at

a
D

el
iv

er
y

M
od

u
le

Staging Area
(DIM Component)

ASPECT-ORIENTED ANALYSIS APPLIED TO THE SPACE DOMAIN

77

purposes. Finally, Response Time have multiple
negative contributions since the duration for the
input file download must be minimized as possible
in order to accomplish the real-time constraint that
data must not take more than five minutes from the
moment the download starts (FR responsibility) until
data it made available to the user in the client tools.

Four concerns have been identified as the most
required within the File Retriever system, namely:
Configurability, Bandwidth Usage, Data Recovery
and Error Notification.

The Configurability concern is required by many
FR’s operations since all download activity is
configured, or based, on metadata (e.g. the sites for
the data service providers, URLs, port numbers,
protocols, path and names of the files to download).
Bandwidth Usage is also fairly required since the
main goal of FR is to download data from external
sites. Finally, Data Recovery and Error Notification
are also important since failed download activities
must be reported to the system administrator and to
the scheduler threads that may try to recover the lost
data.
Two main clusters of conflicts have been identified
for the system: (i) Bandwidth Usage versus Data
Format Interoperability / Data Delivery / Data
Recovery / Transfer Data Using a Web Service /
Transfer Data Using FTP Protocol and Transfer
Data Using HTTP Protocol: all download and data
delivery activities affect the network bandwidth
resource; (ii) CPU Usage versus Data Processing:
although minimum, Data Processing is required for
managing the scheduling of operations, thus
requiring the use of the CPU resource.

The following concerns have been identified as
crosscutting, as they interfere with multiple system
functionalities: Backup, Bandwidth Usage,
Configurability, Data Delivery, Data Format
Interoperability, Data Recovery, Error Notification,
Persistence, Scheduling, Transfer Data Using a Web
Service, Transfer Data Using FTP Protocol and
Transfer Data Using HTTP Protocol.

4.2.2 File Extractor and Transformer

Regarding the analysis of the File Extractor and
Transformer component, most significant negative
contributions are related with Bandwidth Usage and
CPU Usage. This pattern confirms the performed
analysis since the FET system is a major resource
user, thus affecting negatively these two concerns.

Five concerns have been identified as the most
required within the File Extractor and Transformer
system, namely: Configurability, Data Format

Interoperability, Data Recovery, Error Notification
and Validity.

These concerns are required very often since
they are strongly coupled to the Validity concern that
is an important issue for the FET system. The FET
system must, on the one hand, process all input files,
determining if the extracted data is valid or if the
input file format has changed. When detecting these
abnormal cases, the system must not be
compromised nor compromise other processing
requests (Data Recovery) and the system
administrator must be advised as soon as possible
that some input files are not being processed (Error
Notification). The FET component requires both
internal configuration (ETL script configuration for
each particular input file) and parameterization
(regarding the Data Delivery Web Service), which
justifies the strong need for the Configurability
concern. Finally, the FET component needs to
interchange data with data delivery interfaces and
with the FR component, so data communication
normalization is required (Data Format
Interoperability).

Regarding conflicts, these have been identified in
four match points: Computation in Parallel, Data
Delivery, Data Processing and Transfer in Parallel.
From these the most representative clusters are: (i)
Bandwidth Usage versus Data Delivery / Data
Format Interoperability / Data Recovery / Transfer
in Parallel: Data Delivery usually refers to a
considerable amount of data requiring high
Bandwidth Usage. That is also affected by
interoperability constraints, possible recovery
actions and simultaneous transfer connection; (ii)
Data Recovery versus Response Time / Parallelism:
Data Recovery slows down Response Time while
Parallelism makes the system prone to error (due to
concurrent execution flows).

The following concerns have been identified as
crosscutting (as they affect multiple system
functionalities): Bandwidth Usage, Configurability,
Data Delivery, Data Format Interoperability, Data
Recovery, Error Notification, Transfer Data Using a
Web Service and Validity.

5 RELATED WORK

Some approaches have been proposed related with
the work presented in this paper. In (I. Brito, 2006)
an initial approach for the representation of a
Concern template is provided. However, this
approach is limited to the Concern concept (e.g. no
requirement information is available) and the
navigation between concepts is limited. On the other

ICEIS 2007 - International Conference on Enterprise Information Systems

78

hand, the work described in (Grundy, 2000) refers a
repository for storing aspect components. However,
the repository is not structured and merely associates
code files to a component name. Searching
capabilities are restricted and the solution is specific
to the domain and problem.

The authors previous work (R. Ferreira, 2005) in
this domain provided a better expressiveness in
terms of available concepts and relations between
them, comparing with the existing work. However,
in a more rigid evaluation of these concepts’
modularization some shortcomings have been
identified: (i) only the concepts closely related with
the representation of systems and concerns were
identified. Concepts regarding the representation of
requirements and test cases were missing; (ii) almost
all concepts could not be reused in other case
studies, since metadata specific to each case study
was being stored at the concept level (e.g. Concern)
instead at a case study level (i.e. System); (iii) only
one case study had been applied to the proposed
specification, resulting in non- independent and
generic concepts.

6 CONCLUSIONS

This paper presented a refinement to early-aspects
specification. For this purpose a set of concepts have
been introduced and validated using a set of real
case studies. Applying the proposed approach, a
better traceability regarding the decisions took from
requirement elicitation to testing was achieved by
the inclusion of Stakeholder Requirement and
System Requirement concepts. Further, Concerns
can be decomposed via the Decomposition Node
concept and tested with the Test Case concept. In
this way more information is available to describe
systems. Another major improvement is the concept
independence from the system information,
increasing instance reusability. In order to solve the
problem of the “tangled information”, metadata
previously present at Concern or Stakeholder
concept that were system dependent had been moved
to the System concept. This allowed the reuse of
stakeholder and concern instances, allowing in a
special way the creation of a Concern library
(enhancing normalization).

All concepts have been validated in a thorough
way with different sets of case studies that acted as
independent training and testing sets. This
methodology was applied to the Data Processing
Module (partially presented herein) of a real
application on the Space domain.

As future work, a structural improvement has to
be performed in the concern attribute at the system
concept, since the stakeholders’ priorities for the
concerns need to be prioritized not generally at the
system level but particularly at the match point level
(I. Brito, 2004). This results, as explained in (I.
Brito, 2006), that a same stakeholder may have
different interests on the same concern depending on
the selected system.

REFERENCES

A. Rashid, A. Moreira, J. Araújo 2003 Modularisation
And Composition Of Aspectual Requirements. ACM
Press, International Conference on Aspect-Oriented
Software Development (AOSD 2003), ACM Press,
Boston, USA

J. Grundy 1992 Aspect-Oriented Software Engineering – a
Use Case Driven Approach. Addison-Wesley,

J. Grundy 2000 Storage and retrieval of Software
Components using Aspects. Australian Computer
Science Conference, Canberra, Australia

I. Brito, A. Moreira 2006 Aspect-Oriented Requirements
Analysis (Internal document).

I. Brito, A. Moreira 2004 Integrating the NFR framework
in a RE model. Early Aspects 2004: Aspect-Oriented
Requirements Engineering and Architecture Design,
workshop of the 3rd International Conference on
Aspect-Oriented Software Development, Lancaster,
UK, 22-26 March 2004

L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, Non-
Functional Requirements In Software Engineering.
2000, Kluwer Academic Publishers

A. Lamsweerde 2001 Goal-Oriented Requirements
Engineering: A Guided Tour. 5th Int’l Symp. On RE,
IEEE CS Press,

M. Pantoquilho, N. Viana, R. Ferreira, J. Moura Pires, A.
Donati, A. Baumgartner, F. Di Marco, L. Peñin, T.
Hormigo 2004 SEIS:A Decision Support System For
Optimizing Spacecraft Operations Strategies.

R. Ferreira, R. Raminhos, A. Moreira 2005 Metadata
Driven Aspect Specification. Workshop on Aspect-
Oriented Modeling, MoDELS/UML 2005, Jamaica

I. Sommerville, Software Engineering. 7th ed.
International Computer Science Series. 2004,
Addison-Wesley

J. Stapleton, Dynamic Systems Development Method: A
Framework For Business Centered Development.
1997, Addison-Wesley

ASPECT-ORIENTED ANALYSIS APPLIED TO THE SPACE DOMAIN

79

