
A PROCESS PATTERN LANGUAGE FOR COORDINATED
SOFTWARE DEVELOPMENT

Chintan Amrit, René ter Haar, Mehmet N. Aydin and Jos van Hillegersberg
Department of IS&CM, University of Twente

Keywords: Organizational and process patterns, social networks, software engineering, globally distributed, software
development.

Abstract: In distributed and collocated teams we often find problems in the organizational process structures. Though
process patterns have been around for many years, there has been little research in categorizing the different
solutions to various problems dealing with coordination, for easy access by practitioners. This study aims to
describe a way to use the emerging idea of a pattern language to deal with problems related to coordination
in software development. The patterns are a result of conclusive statements in the information systems and
software engineering field and a pattern language is used to develop these patterns. We propose a technique
to convert the knowledge base in IS and CS research on coordination into process patterns which are more
accessible to practitioners.

1 INTRODUCTION

While there are many ways to describe a patterns,
Christopher Alexander who originated the notion of
patterns in the field of building architecture
described patterns as a recurring solution to a
common problem in a given context and system of
forces (Alexander et al., 1977). In Software
Engineering patterns are attempts to describe
successful solutions to common software problems
(Schmidt et al., 1996). Software Patterns reflect
common conceptual structures of these solutions and
can be used repeatedly when analyzing, designing
and producing applications in a particular context.
Patterns represent the knowledge and experience
that underlie many redesign and re-engineering
efforts of developers who have struggled to achieve
greater reuse and flexibility of their software. The
different types of patterns are:
Design Patterns: Are simple and elegant solutions to
specific problems in object oriented design (Gamma
et al., 1995).
Analysis Patterns: Capture conceptual models in an
application domain in order to allow reuse across
applications (Fowler, 1997).
Organizational Patterns: Describe the structure and
practices of human organizations (Coplien &
Harrison, 2004).
Process Patterns: Describe the Software Design
Process (Coplien & Schmidt, 1995).

 Patterns are most generally represented in natural
language and are typically published in printed
catalogues. Pattern presentation is generally loosely
structured and consists of a series of fields each
having a meaning introduced via an informal
definition or description. An example of such a
structure representing patterns can be found in Table
1.

Table 1: The Pattern framework(based on (Coplien,
1994)).

Field Explanation/Definition
Name: Ideally a meaningful name that will be part
of the shared design vocabulary. Many existing
patterns do not satisfy this requirement for historical
reasons.
Problem: A problem growing from the Forces
Context: The current structure of the system giving
the context of the problem
Forces: Forces that require resolution
Solution: The solution proposed for the problem
Resulting Context: Discusses the context resulting
from applying the pattern. In particular, trade-offs
should be mentioned
Design Rationale/Related patterns: The design
rationale behind the proposed solution. Patterns are
often coupled or composed with other patterns,
leading to the concept of pattern language.

298
Amrit C., ter Haar R., N. Aydin M. and van Hillegersberg J. (2007).
A PROCESS PATTERN LANGUAGE FOR COORDINATED SOFTWARE DEVELOPMENT.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - HCI, pages 298-301
DOI: 10.5220/0002385102980301
Copyright c© SciTePress

Though a lot of literature exists on coordination in
software development (Crowston, 1997; Herbsleb &
Grinter, 1999; Kraut & Streeter, 1995; Parnas,
1972), there is no place where both researchers and
practitioners can look up solutions to known
problems dealing with coordination in software
development. This study aims to provide a
framework by which we can bridge the gap in
literature, dealing with problems of Coordination in
Software Development. In this research we have
tried to convert information systems knowledge
(especially those dealing with social networks of
teams and their tasks) into organizational patterns
that can be used for solving problems related to
coordination in software development. The newly
developed organizational patterns of this study are
related to social networks and processes within
organizations.
The rest of the paper is organized as follows. Section
2 gives a brief overview of the literature on
Coordination. The pattern language is described in
section 3. In section 4 we discuss and summarize the
results of this study and mention some
recommendations for further research.

2 COORDINATION IN
SOFTWARE DEVELOPMENT

Coordination can be defined in the following ways:
“integrating or linking different parts of an
organization to achieve a collective set of tasks”
(Ven et al., 1976)
In software development, it means that different
people working on a common project agree to a
common definition of what they are building, share
information, and mesh their activities. To build
software efficiently, they must share detailed
specifications and information about the progress of
software modules. In sum, they must coordinate
their work so that it gets done and fits together, so
that it isn’t done redundantly, and so that
components of the work are handed off
expeditiously (Kraut & Streeter, 1995)
Coordination also focuses on managing
interdependencies among multiple individuals or
activities involved in the overall task (Crowston,
1997).
In their paper Kraut and Streeter (1995) mention
scale of software projects, inherent unpredictability
of software specifications and tasks as well as the
Interdependence of software components as some of
the factors that lead to the necessity of efficient co-

ordination between the different work groups
involved in the development process.
Practical experience and organizational theory
suggest that previous efforts in software engineering
have not solved the coordination problems in
software engineering. The combination of large size,
uncertainty and interdependence requires special
coordination techniques that may not be necessary in
more routine production environments (Kraut &
Streeter, 1995).
Traditionally, most project management approaches
for improving software development coordination
have emphasised on one of the following three
methods of technical innovations:
Development of new and enhanced methods and
tools (Andres & Zmud, 2001; Crowston, 1997;
Kraut & Streeter, 1995). Modularisation both
technical (Object Oriented Programming) or
managerial such as the organizational separation of
requirements, coding and testing functions, to
encapsulate the behaviour of program elements and
individual software professionals, and thereby
reduce the needs for coordination (Kraut & Streeter,
1995).
Formal procedures, both technical, such as version
control software, case tools, and specification
languages such as test plans, delivery schedules and
requirements documents to control communication
among development personnel. (Crowston, 1997;
Kraut & Streeter, 1995)
While these techniques contributed to a modest
increase in software productivity over the past
twenty years, they only partially address the problem
of coordination. (Kraut & Streeter, 1995)
A more recent approach has involved improved
project management practices applied to software
development process. These practices focus on
improving task decomposition, task assignment and
work group coordination, which are considered
important issues in the context of Coordination
(Andres & Zmud, 2001; Crowston, 1997; Kirsch,
1996). Malone and Crowston (1994) define
Coordination Mechanism as the additional activities
that the firm must perform to overcome this
coordination problem. These coordination
mechanisms may be specific to a particular setting,
such as a code management system to control
changes to software, or general, such as hierarchical
or market mechanisms to manage assignment of
activities to actors or other resources (Malone &
Crowston, 1994). In this paper we concentrate on the
aspect of coordination related to social networks
(teams) and their tasks.

A PROCESS PATTERN LANGUAGE FOR COORDINATED SOFTWARE DEVELOPMENT

299

3 THE PATTERN LANGUAGE

A pattern language is a language that comprises
patterns and the rules to put patterns together in
meaningful ways, in a certain sequence(Coplien &
Harrison, 2004). Coplien’s Organizational Patterns
(1994) provides a process pattern language for
growing organizations; it doesn’t concentrate on one
aspect such as coordination. Further, the patterns
mentioned here are based on papers taken from top
IS journals. Hence, these patterns are backed by
extensive and elaborate empirical validation.
 This section represents the description of nine
patterns related to team and tasks, and team
performance. Each of the patterns is introduced by a
short association to which the pattern is related to.
The patterns are elaborated on basis of the
concerning references in the descriptions. All of the
patterns are successively discussed below.

1. Hierarchical structure in projects with
complex and non-routine tasks (based on
(Cummings & Cross, 2003))

2. Core-periphery structure in projects with
simple and routine tasks (based on (Cummings &
Cross, 2003))

3. Group leader and structural holes (based on
(Cummings & Cross, 2003))

4. Interdependence and conceptual tasks (based
on (Stewart & Barrick, 2000))

5. Team self-leadership and conceptual tasks
(based on (Stewart & Barrick, 2000)),

6. Interdependence, team self-leadership and
behavioural tasks (based on (Stewart & Barrick,
2000))

7. Alignment between design interfaces and team
interactions (based on (Sosa et al., 2004))
Problem

8. Alignment in design interfaces and its
interrelated components (based on (Sosa et al.,
2004))

9. Allocating Tasks in a Virtual Network (based
on (Ahuja et al., 2003)) , Managing shared resources

4 DISCUSSION AND
CONCLUSION

In this research we have tried to convert information
systems knowledge into organizational patterns,
which can be used for solving problems related to
coordination in software development. The newly
developed organizational patterns of this study are
related to social networks and processes within
organizations, and especially related to social
networks of teams and their tasks. Many of the
patterns suggested by Coplien (1994) can be added
to this coordination language, for example, the
Conway’s Law pattern, Code Ownership pattern,
GateKeeper pattern, Bufallo mountain pattern, etc.
We have left them out for the purposes of this paper
in order to describe the process of extracting patterns
from existing information systems literature.
Although these patterns have been tested as
propositions in the papers they have been taken
from, a more thorough testing of the patterns
themselves could improve their reliability. When
this has been done it would be possible to use them
in development projects. While this study describes
some patterns, more research is needed on patterns
in order to develop a larger pattern language related
to team and tasks, and team performance. Much IS
literature is already available on these topics that can
be translated into useful patterns.
Future research can work on extending this language
with more useful and tested patterns in the field of
coordination (related to team and tasks) in software
development.

REFERENCES

Ahuja, M. K., Galletta, D. F. and Carley, K. M. (2003)
Individual centrality and performance in virtual r\&d
groups: An empirical study. Manage. Sci. 49 (1), 21-
38.

Alexander, C., Ishikawa, S. and Silverstein, L. A. (1977)
A pattern language. New York.

Andres, H. P. and Zmud, R. W. (2001) A contingency
approach to software project coordination. Journal of
Management Information Systems Vol. 18 (Issue 3),
p41.

Borgatti, S. P. and Everett, M. G. (2000) Models of
core/periphery structures. Social Networks 21, 375-
395.

Burt, R. (1992) Structural holes. Harvard University
Press, Cambridge, MA.

Campion, M. A., Medsker, G. J. and Higgs, A. C. (1993)
Relations between work group characteristics and

ICEIS 2007 - International Conference on Enterprise Information Systems

300

effectiveness: Implications for designing effective
work groups. Personnel Psychology 46 (4), 823-850.

Coplien, J., O (1994) A development process generative
pattern language. Proceedings of PLoP/94,
Monticello, Il., pp 1--33.

Coplien, J., O. and Harrison, N., B. (2004) Organizational
patterns of agile software development. Upper Saddle
River, NJ, USA.

Coplien, J. O. and Schmidt, D. C. (1995) Pattern
languages of program design. New York, NY, USA.

Crowston, K. (1997) A coordination theory approach to
organizational process design. Organization Science 8
(2), 157-175.

Cummings, J. N. and Cross, R. (2003) Structural
properties of work groups and their consequences for
performance. Social Networks 25, 197-210.

Eisenstat, R. A. (1990) Fairfield coordinating group. San
Francisco.

Emery, J.-B. F. L. and Trist, E. L. (1969) Socio-technical
systems. Penguin, London.

Fowler, M. (1997) Analysis patterns: Reusable object
models. Reading MA.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995)
Design patterns: Elements of resuable object oriented
software. MA.

Herbsleb, J., D. and Grinter, R., E. (1999) Architectures,
coordination, and distance: Conway's law and beyond.
IEEE Softw., Los Alamitos, CA, USA, pp 63--70.

Kirsch, L. J. (1996) The management of complex tasks in
organizations: Controlling the systems development
process. Organization Science 7 (1), 1-21.

Krackhardt, D. (1994) Graph theoretical dimensions of
informal organizations. In Computational organization
theory, pp 89-111, Lawrence Erlbaum Associates, Inc.

Kraut, R., E. and Streeter, L., A. (1995) Coordination in
software development. Commun. ACM, New York,
NY, USA, pp 69--81.

Malone, T. W. and Crowston, K. (1994) The
interdisciplinary study of coordination. ACM Comput.
Surv. 26 (1), 87-119.

Mcgrath, J. E. (1984) Group interaction and performance.
Prentice-Hall, Englewood Cliffs, NJ.

Parnas, D. L. (1972) On the criteria to be used in
decomposing systems into modules. Commun. ACM,
New York, NY, USA, pp 1053--1058.

Pearce, J. A., Iii and Ravlin, E. C. (1987) The design and
activation of self-regulating work groups. pp 751-782.

Schmidt, D., Fayad, M. and Johnson, R. E. (1996)
Software patterns. Commun. ACM, pp 37-39.

Sosa, M. E., Eppinger, S. D. and Rowles, C. M. (2004)
The misalignment of product architecture and
organizational structure in complex product
development. J Manage. Sci. 50 (12), 1674-1689.

Stewart, G. L. and Barrick, M. R. (2000) Team structure
and performance: Assessing the mediating role of
intrateam process and the moderating role of task type.
The Academy of Management Journal 43 (2), 135-148.

Trist, E. L. (1981) The sociotechnical perspective: The
evolution of sociotechnical systems as a conceptual

framework and as an action research program. Wiley,
New York.

Ven, A. H. V. D., Delbecq, A. L. and Koenig, R., Jr.
(1976) Determinants of coordination modes within
organizations. American Sociological Review 41 (2),
322-338.

A PROCESS PATTERN LANGUAGE FOR COORDINATED SOFTWARE DEVELOPMENT

301

