
THE JUMP PROJECT: PRACTICAL USE OF SEMANTIC WEB
TECHNOLOGIES IN EPSS SYSTEMS

Giovanni Semeraro, Ignazio Palmisano, Nicola Abbattista
Dipartimento di Informatica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, Italy

Silverio Petruzzellis
Cezanne Software S.p.A. - Via Amendola 172/C, I70126, Bari, Italy

Keywords: Semantic Web, Interoperability, SPARQL.

Abstract: The JUMP project aims at bringing together the knowledge stored in different information systems in order
to satisfy knowledge and training needs in knowledge-intensive organisations. EPSS systems are meant to
support a user in taking decisions, leveraging different information sources that are available. The JUMP
framework is designed to offer multiple ways for the user to request information from a knowledge and doc-
ument base itself as the result of the integration of indipendent systems. In order to simplify communication
and maximize knowledge sharing and standardization of languages and protocols, Semantic Web languages
and technologies are used throughout the framework to represent, exchange and query the knowledge stored
in each part of the framework.

1 INTRODUCTION

The JUMP project1 aims at developing an EPSS
(Electronic Performance Support System) capable of
intelligent delivery of contextualized and personal-
ized information to knowledge workers acting in their
day-to-day working environment on non-routinary
tasks.

While generic queries can be easily fulfilled by
means of standard information retrieval tools like
Google, very often the same power is difficult to be
achieved when the goal of those searches are infor-
mation stored in various company databases, man-
aged by different applications, all running within the
company intranet. It is the case of users knowledge-
able w.r.t. the IT infrastructure and that already have
the background knowledge necessary to achieve most
of the task they are involved in, but not being expert
of all the domains in which the task to be achieved
spans. Tasks of this kind are neither generally cod-
ified in corporate procedures nor completely new to
the worker. Above all, those tasks are by no means

1JUst-in-tiMe Performance support system for dynamic
organizations, co-funded by POR Puglia 2000-2006 - Mis.
3.13, Sostegno agli Investimenti in Ricerca Industriale,
Sviluppo Precompetitivo e Trasferimento Tecnologico

solvable, in terms of information retrieval, by a stan-
dard Internet search. No brute-force approach like
Google desktop search can solve the problem in this
case and, even if it could, the result would never take
into account the connections existing between the var-
ious sources. The goal of an EPSS aiming at sup-
porting information needs spanning through multiple
knowledge bases, namely all the available informa-
tion systems in the company, be them formalized or
not, including binary documents such as video or au-
dio streams, is to act as an agent gluing together the
different sources by means of semantic connections,
and providing the user with contextualized and per-
sonalized information tied to the task being accom-
plished and to his/her characteristics. On the basis of
an accurate and formalized description of the user’s
features and of those of the software tool he/she is us-
ing, as well as the textual information describing the
task being accomplished, like for example the text of
an e-mail just received, the EPSS should select rel-
evant material from the KBs, ranking them accord-
ing to the user profile, and provide them in a list to
the user who will eventually give his/her feedback re-
lated to the validity of the information provided. The
JUMP system has been designed to achieve this goal
by means of a centralized recommendation system

428
Semeraro G., Palmisano I., Abbattista N. and Petruzzellis S. (2007).
THE JUMP PROJECT: PRACTICAL USE OF SEMANTIC WEB TECHNOLOGIES IN EPSS SYSTEMS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - AIDSS, pages 428-431
DOI: 10.5220/0002383304280431
Copyright c© SciTePress



that takes advantage of a common ontology describ-
ing the various knowledge bases.

2 DESIGN & IMPLEMENTATION

The system general architecture is depicted in Figure
1, where the central system (JUMP-EPSS) acts as a
hub of many independent external systems. The in-
volved systems in the current implementation are a
Document Management system, an ERP, a Learning
Management system and a HRM system, but the de-
sign of the platform is such that new systems can be
easily added to the platform as they become available.

2.1 Modularized Design

The basic design idea of the JUMP project is to make
the various portions of the framework as loosely cou-
pled as possible, since one of the requirements of the
framework is the ability to seamlessly add new infor-
mation sources or external systems, each one based on
different technologies, programming languages and
knowledge representation metaphors. This has lead
to adopting standard languages and protocols when
designing the interfaces each of the systems partici-
pating in JUMP has to implement.

Figure 1: Sketch of the JUMP system architecture.

The communication level between JUMP and the
ancillary systems is designed to exchange both meta-
data about relevant items stored in the subsystems
and the items themselves. While the items consid-
ered here (which are the results JUMP can present
to the user) are generic binary objects ranging from
email addresses to audio/video streams, the metadata

about them are expressed through Semantic Web tech-
nologies; to make this possible, some OWL2 ontolo-
gies about the items have been created, in order to
structure specific domain knowledge and instantiate
resources to describe the stored items.

2.2 Ontologies in the Jump Project

An ontology, following Gruber’s widely accepted def-
inition (Gruber, 1993), is a shared formalization of a
conceptualization, which means that to define an on-
tology it is necessary to choose a formalism, to use
this formalism to encode the conceptualization that
the applications are going to use, and to make this
conceptualization shared, i.e. ensure that the ontol-
ogy is used consistently by all the systems involved.

OWL was used as the representation language for
the JUMP project and Description Logics (Baader
et al., 2003) was consequently adopted as the under-
lying formalism.

2.2.1 Ontology Fragment Creation

Separate ontology fragments have been handcrafted
using the Protégé editor3 in order to represent the
most important concepts inside each of the involved
systems. By “most important” we mean here the
concepts each system domain expert considered of
paramount importance when representing the system
internal knowledge, so that external queries could be
answered by using the ontology fragment. Ontologies
have been then designed bottom-up in order to reflect
the semantics of the underlying databases and coded
functional processes as much as possible, but not aim-
ing at a total ontological replication of the knowledge
bases.

One of the reasons for that is the necessity to find
the right tradeoff between the effort spent in design-
ing the ontologies and the advantages coming from
their usage; for this reason, the line has been drawn
so that all the relations and concepts that are relevant
when querying the system could be expressed through
ontologies, therefore excluding all those concepts and
relations that are only used for implementation pur-
poses or are not likely to be used in a search.

2.2.2 Ontology Fragment Integration

After developing the single Ontology Fragments - OF,
they have been divided into system specific ontolo-
gies and “upper” ontologies; these upper ontologies
are the part of the OFs that the JUMP system should

2http://www.w3.org/2004/OWL/
3http://protege.stanford.edu

THE JUMP PROJECT: PRACTICAL USE OF SEMANTIC WEB TECHNOLOGIES IN EPSS SYSTEMS

429



use when formulating queries for the subsystems. The
Shared Ontology (SO) is therefore the union of all the
upper OFs plus all the relations and concepts that are
specific to the JUMP system; since some concepts are
repeated across systems, the creation of the SO is the
point in which alignment techniques have to be used
in order to simplify and generalize the query writing
phase of the search.

The JUMP component has therefore to interface
with a generic service, sketched in Figure 2, knowing
which subset of concepts and relations are understood
by the service, and has to query it in order to discover
which items that could be relevant for the user the ser-
vice can return.

Figure 2: Sketch of a subsystem architecture.

2.3 Communication Protocols

Being each service based on an existing system that
can potentially use any technology or programming
paradigm, our design choice was to model services
as Web Services or HTTP services, depending on the
specific necessity. More in detail, we identified two
possible requests to a service:

• Find all relevant metadata for a request, i.e. an-
swer a SPARQL query, using the system specific
ontology where possible in order to refine the
query

• Return a specified item upon request (items can
be binary objects in any format)

The first request, in practice, can be answered
through the implementation of the SPARQL Pro-
tocol4 (which amounts to the ability to answer a
SPARQL query through an HTTP or SOAP request),
while the second request can be easily filfilled through
the use of a simple HTTP service, that will answer
to a GET operation with suitable arguments; the rea-
son to use HTTP instead of a Web Service interface is
that, as already said, the items to be presented can be

4http://www.w3.org/TR/rdf-sparql-query/

generic textual or binary objects, in some cases quite
large in size (w.r.t the E-Learning system, the size of
a resource, say a video tutorial for example, can reach
hundreds of megabytes), and therefore the additional
overload of SOAP serialization can be a serious per-
formance bottleneck, not providing any actual advan-
tage over the HTTP solution.

The internal architecture of an ancillary system is
responsibility of the single developer; however, the
JUMP project aims at integrating the four abovemen-
tioned systems in the platform proposing and sharing
a common architectural design. This architecture is
sketched in Figure 2.

The RDFCore component represented in the sub-
system architecture is a RDF storage system built on
top of the Jena Toolkit; it offers a SPARQL Protocol
implementation that, depending on the specific sub-
system architecture, can be directly used to imple-
ment the subsystem interface to the JUMP framework
or can be used to simplify data access. The solution
is described in more detail in (Stoermer et al., 2006).

2.4 Dataflow Design Metaphor

The architecture described here is based on the
metaphor of data pipes: by reusing an idea presented
in (Palmisano et al., 2006), we model the answer to
the input query as a data flow coming out of the con-
junction of many data streams, each one originating
into a Store and corresponding to a URI in the query
Dataset. Since it is possible that different parts of
the query refer to different portions of the knowledge
base (i.e. some variables of the SPARQL query can
be fully binded in a subset of the dataset), we wrap
the query execution in a component called Query An-
alyzer, which has responsibility to split or rewrite the
query through the different portions of the knowledge
base, which are then queried independently.

The knowledge necessary to redirect a pattern to
a specific portion of the dataset must be available for
the Query Analyzer component, in order to rewrite
the query for each specific Locator that will feed the
results. This information can be represented as a list
of URIs associated to each section of the knowledge
base, where each URI corresponds to one of the pred-
icates of the statements contained in that section of
the knowledge base, or to the types of the individu-
als described therein; moreover, it is possible to do
the same thing with a set of namespaces instead of
full URIs, but this implies that different namespaces
are to be used for different sections of the knowledge
base; to prevent clashing, it is possible to just think
of joining two pipes with the same set of namespaces
or URIs (or where one has a superset of the other),

ICEIS 2007 - International Conference on Enterprise Information Systems

430



however this diminishes the effectiveness of the opti-
mizations presented so far. It is therefore important
to choose the partitioning of the knowledge base in
order to simplify these issues.

3 PROTOTYPE

The JUMP project is an ongoing project; so far, a pro-
totype implementing what presented in this paper has
been developed as an internal proof of concept to ver-
ify that interfacing systems through the JUMP frame-
work is feasible and useful even outside the project
scope itself (one of the side effects of the explicit
knowledge representation, in fact, is the ability of the
systems to implement interfaces to other frameworks,
e.g. frameworks based on HR-XML5 standard for
Human Resource management systems).

Other features currently under development in the
prototype are related to the different possible inter-
faces that the user can exploit in order to query the
system. In particular, the possible interactions that
have been depicted so far include support to Microsoft
IBF (Information Bridge Framework) smart tags (in
PUSH mode, i.e. without the user explicitly request-
ing services), and SMS and email support (in PULL
mode, i.e. as answer to a user explicit request). Since
the user is likely to be a fairly experienced computer
user and not a computer programmer, the query is ex-
pected to be a simple text query, not different from a
normal query that could be issued against a standard
query engine such as Google6 or Yahoo7. However,
we are exploring the possibility of offering the user a
more expressive language, e.g. giving the ability to
specify the class of results to which he/she is inter-
ested, like in:

Deliverable(FP 6 EU Project)

which carries the extra information that the resource
we are looking for, besides being related to the key-
words European Project 6th Framework Programme,
belongs to the class Deliverable or one of its sub-
classes.

4 CONCLUSIONS

In this paper we presented the design and initial im-
plementation steps of a framework for knowledge
and document sharing between different systems,

5http://www.hr-xml.org/
6www.google.com
7www.yahoo.com

aimed at satisfying user information needs on the base
of his/her current task and background knowledge,
through the use of Sematic Web technologies. We
also presented some design issues and the solutions
we adopted to overcome the problems found so far.
An initial prototype and some current and future de-
velopments of the design were also presented.

ACKNOWLEDGEMENTS

This work has been co-funded by Regione Puglia,
Italy, through the research funding program named
POR Puglia 2000-2006 - Mis. 3.13, Sostegno agli In-
vestimenti in Ricerca Industriale, Sviluppo Precom-
petitivo e Trasferimento Tecnologico.

REFERENCES

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P., editors (2003). The Description
Logic Handbook. Cambridge University Press.

Gruber, T. R. (1993). A translation approach to portable
ontology specifications. In Knowledge Engineering,
5(2), page 199220. Academic Press.

Palmisano, I., Redavid, D., Iannone, L., Semeraro, G.,
Degemmis, M., Lops, P., and Licchelli, O. (2006). A
RDF-Based Framework for User Profile Creation and
Management. In Gabrys, B., Howlett, R. J., and Jain,
L. C., editors, Knowledge-Based Intelligent Informa-
tion and Engineering Systems, volume 4253 of Lec-
ture Notes in Artificial Intelligence, pages 606–613.
Springer.

Stoermer, H., Palmisano, I., Redavid, D., Iannone, L., Bou-
quet, P., and Semeraro, G. (2006). Contextualiza-
tion of a RDF Knowledge Base in the VIKEF Project.
In Proceedings of the 9th International Conference
on Asian Digital Libraries, Shiran Kaikan (Kyoto,
Japan), 27-30 November (to appear), Lecture Notes
in Computer Science. Springer Berlin / Heidelberg.

THE JUMP PROJECT: PRACTICAL USE OF SEMANTIC WEB TECHNOLOGIES IN EPSS SYSTEMS

431


