
BUSINESS PROCESS MODEL TRANSFORMATION ISSUES
The Top 7 Adversaries Encountered at Defining Model Transformations∗

Marion Murzek
Women’s Postgraduate College for Internet Technologies (WIT), Institute of Software Technology and Interactive Systems

Vienna University of Technology, Austria

Gerhard Kramler
Business Informatics Group (BIG), Institute of Software Technology and Interactive Systems

Vienna University of Technology, Austria

Keywords: Model Transformation, Business Process Modeling Languages.

Abstract: Not least due to the widespread use of meta modeling concepts, model transformation techniques have reached
a certain level of maturity (Czarnecki and Helsen, 2006). Nevertheless, defining transformations in some
application areas in our case business process modeling is still a challenge because current transformation
languages provide general solutions but do not support issues specific to a distinct area. We aim at providing
generic solutions for model transformation problems distinct to the area of horizontal business process model
transformations. As a first step in this endeavor, this work reports on the most pressing problems encountered
at defining business process model transformations.

1 INTRODUCTION

As companies discovered the benefits of Business
Process Modeling (BPM), the use of Business Pro-
cess (BP) models moved from a ”luxury article” to
an ”everyday necessity” in the last years. Meanwhile
many companies own thousands of models which de-
scribe their business. Since business changes over the
years, e.g., business to business interoperability came
up with new inventions in communication and compa-
nies merge with others, there arises a need to keep ex-
isting business models up-to-date and to synchronize
or translate them into a contemporary BPM language.
To facilitate these scenarios, a model transformation
technique for BP models is needed.

At the moment much work is done in the area of
model transformations (MTs). The main research in-
terest lies on the technical aspects of MTs, for ex-
ample transformation languages and verification of
model transformations. Model transformation lan-
guages like ATL (Bézivin et al., 2005), QVT (OMG,
a) or frameworks for general purpose programming
languages like Java provide very good solutions for

∗This research has partly been funded by the Austrian
Federal Ministry for Education, Science, and Culture, and
the European Social Fund (ESF) under grant 31.963/46-
VII/9/2002.

1:1 and 1:n correspondences, thus they seem to be
well suited for horizontal transformations as is the
case when transforming BP models. Defining a trans-
formation between any two BPM languages, however,
is still a difficult task as several domain-specific prob-
lems remain to be solved.

BPM languages are used for a distinct purpose,
namely the illustration processes in a company. So
they all provide very similar concepts to the modeler.
But the particular elements and attributes which are
used to express a concept are more or less different
in the BPM languages. Based on the assumption that
there exist generic solutions for these often occurring
problems, we are currently developing a framework
which provides solutions for typical transformation
problems applied on a generic meta model which con-
tains all concepts of the participating BPM languages.

To the best of our knowledge there is no work on
supporting the definition of transformation problems
in a distinct domain. The contribution of this work is
an overview of the problems one is confronted with
when defining model transformations in the area of
BPM. In a first step, we focus on the control flow part
of BPM languages, as this is perhaps the most critical
part of defining BP model transformations.

This reminder of this work is structured as fol-
lows. The next section puts our work into context

144
Murzek M. and Kramler G. (2007).
BUSINESS PROCESS MODEL TRANSFORMATION ISSUES - The Top 7 Adversaries Encountered at Defining Model Transformations.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 144-151
DOI: 10.5220/0002383201440151
Copyright c© SciTePress



of related work. Section 3 introduces the four dif-
ferent Business Process Modeling (BPM) languages
we inspected, and in section 4 we discuss the seven
most pressing model transformation issues. The con-
clusion in section 5 summarizes this work and gives
an insight into ongoing work.

2 RELATED WORK

There has been and still is much research on the dif-
ferences and equalities of Business Process Modeling
and Workflow languages. They all have a different fo-
cus why and how they analyzed and compared some
of the languages.

Wil van der Aalst et al. concentrated on Workflow
Systems and developed the workflow (van der Aalst
et al., ), resource (Russell et al., 2005) and data pat-
terns (Russell et al., 2004). These patterns have been
and are still used to build or analyze workflow and
BPM languages concerning their expressiveness. For
example Wohed et al. (Wohed et al., 2005), (Russell
et al., 2006), (Wohed et al., 2006) and White (White,
2004) inspected the Business Process Management
Notation (BPMN) and the UML 2.0 Activity Diagram
(AD) to find out how far the WF patterns can be rep-
resented in these languages, with the aim of assessing
the weaknesses and strengths of the BPMN and AD
and its coverage of business process modeling prob-
lems. In (Mendling et al., ), EPCs have been analyzed
with regard to the representation of the WF patterns.
Additionally, an extended EPC, ”yet another EPC”
(yEPC) (Mendling et al., 2005) has been developed
which covers all WF patterns.

Zachman et. al developed a framework (Zach-
man, 1987) which defines the system architecture of
an enterprise. He uses the five basic questions ”What,
How, Where, Who, When, and Why” to achive a com-
prehensive view of the whole enterprise. This frame-
work has also been used to evaluate BPM languages,
for example UML 2.0 in (Fatolahi and Shams, 2006).

Korherr et al. (List and Korherr, 2006) compared
seven different BPM languages. Their focus lay on
the Business Process Context Perspective and they
evaluated how expressive these BPM languages are
for modeling business goals and metrics.

The recent work (Störrle, 2006) compares EPCs
and UML 2.0 AD. The comparison is structured by
syntax, semantic and pragmatic of the two languages.
The central question which is left open in this work is
if UML 2.0 AD will replace EPCs in the long run.

In our work we focus on what is important to keep
care of, in case of transforming business process mod-
els between different BPM languages. So this work

compares the syntax and semantics - by means of the
meta model elements - of the concepts provided in
the control flow part of four different BPM languages,
with a specific focus on the differences between lan-
guages and how these differences affect model trans-
formation.

3 BUSINESS PROCESS
MODELING LANGUAGES

In the following the four BPM languages,
ADONIS R© Standard Modeling Language, Business
Process Modeling Notation (BPMN), Event-driven
Process Chains (EPC) and UML 2.0 Activity Dia-
grams (AD), which we have inspected concerning BP
model transformation issues are described.

The concepts illustrated in the following four meta
models capture the basic control flow part (as defined
by Aalst et al. - basic control flow patterns) of each
language. This small core part of each BPM lan-
guage was taken to demonstrate the differences be-
tween these four languages concerning model trans-
formation. Inspections of the remaining concepts of
the BPM languages are out of scope of this work.

3.1 ADONIS Standard Modeling
Language

The ADONIS R© Standard Modeling Language (BOC,
2005) provides different kinds of model types which
cover different business aspects. The BP model is
used to model the business processes itself, i.e., its
control flow aspect. Furthermore it is used to inte-
grate the organizational and the information aspect.
Since our work focuses on the control flow aspect, we
concentrate only on the BP model (see Fig. 1).

ADONIS R© is a graph-structured BPM language,
which implies for example that there could be more
than one end element in a process model. The integral
model element is the Activity. A sequence of activi-
ties is modeled by means of the Successor which rep-
resents the control flow in the ADONIS R© BP model.
To depict a process call within a process, the element
Sub Process Call is used. The Control Objects are
used to model the flow of control.

The ADONIS R© BP model provides no special el-
ement for modeling merges of alternative control
flows. Furthermore, the decision element - Decision
- does not distinguish between alternative split and
multiple alternative split.

BUSINESS PROCESS MODEL TRANSFORMATION ISSUES - The Top 7 Adversaries Encountered at Defining Model
Transformations

145



ADONIS Standard Language – Business Process Meta Model

Business Process Model

Sub Process CallActivity

Start End

Flow Objects

Decision Parallel Split Parallel Join

Control Objects

called process

Activity Start End Decision JoinSplit
Sub 

Process

1

*

*

1

1
1

*

*Successor
cond:Expression

Successor
Parallel

Figure 1: Part of the ADONIS R© BP meta model and the
concrete syntax.

3.2 UML 2.1 Activity Diagram

The UML 2.1 AD (OMG, b) is also a specification of
the OMG. The meta model in Fig. 2 contains a very
small part of the UML 2.1 language, the basic control
flow elements which could be used for modeling BP
models.

UML 2.0 Activity Diagram

Activity

CallBehaviour
Action

Activity Node

InitialNode DecisionNode

Control
Node

Opaque
Action

references
Activity Edge

1

*

*

*

1

1
1*

Final Node

FlowFinalNode ActivityFinalNode

ForkNode

JoinNode

MergeNode

ControlFlow

*

1

Opaque
Action

Activity
Final

Initial
Node

Flow
Final

Decision/Merge
Node

Join/Fork
Node

CallBehaviour
Action

guard:String

Control
Flow

Figure 2: Part of the UML 2.1 AD meta model and the con-
crete syntax.

The Activity denotes different from
ADONIS R© and BPMN the whole BP model.
The central element is the Opaque Action which is
used to model the activities within a process. The
Call Behavior Action represents the concept of a sub
process call. Control Nodes are used to structure
the process. There is a Fork Node and a Join Node
provided to express a concurrent flow and a Decision
Node and a Merge Node to model an alternative
flow. The Initial Node marks the begin of a process
model. The AD differs between two final nodes, the
Flow Final Node (FFN) and the Activity Final Node

(AFN). The FFN is used to mark the final of a distinct
flow, that means if it is reached the remaining tokens
in the process will proceed. Whereas the AFN marks
the end of the whole process which means if it is
reached the remaining tokens in the process are killed
immediately. The only Activity Edge we considered
here is the Control Flow which is used to connect
the Activity Nodes to form the flow of control of a
process.

3.3 Business Process Modeling Notation

The BPMN (OMG, 2006) was primarily intro-
duced by the Business Process Management Initiative
(BPMI.org) and is now a finally adopted specification
by the Object Management Group (OMG). It has been
designed as a graphical language to describe business
process models and map them to the Business Pro-
cess Execution Language (BPEL) for Web Services
1.1 (IBM, ). The meta model illustrated in Fig. 3
shows the elements which are used to model the con-
trol flow aspect.Business Process Modeling Notation

Start
Event

End
EventTask OR

Parallel
Fork/Join

+

Decision/Merge

+

Sub-Process

Business Process Diagram

Sub-Process

Event

FlowObject

Parallel Fork Parallel Join

Gateway Activity

Task

references
ConnectingObject

1

*

*

*

1

1

1

*

Inclusive (OR)

Decision

Exclusive (XOR)

Start Event

End Event

Sequence Flow
condition:String

Sequence
FlowXOR

Figure 3: Part of the BPMN meta model and the concrete
syntax.

In the BPMN the Task is the central element of
the process model. The Sub-Process is used to model
a reference to a sub process within a process model.
Gateways are used to depict different flows (parallel,
alternative etc.) of the process. To model the be-
gin and the end of a process model Events are used.
The Core Elements can be connected by the Sequence
Flow to form the process model.

ICEIS 2007 - International Conference on Enterprise Information Systems

146



3.4 Event Driven Process Chains

Event Driven Process Chains (EPCs) (Keller et al., )
have been introduced by Keller, Nüttgens and Scheer
in 1992. EPCs are basically used to model processes.
We focus on the main elements which are used to
model the integral and control flow aspect of a BPM
(see Fig. 4). Event-driven Process Chains

EPC
Business Process

Complex
Function

Event

Process Flow
Objects

XOR OR AND

Logical
Operator

Function

Basic
Function

references

Control Flow 1

*

*

*

1

1

1

*

Basic 
Function

Event AND OR

XORAND

XOR

OR

Complex 
Function

Control
Flow

Figure 4: Part of the EPCs meta model and the concrete
syntax.

The Function describes an activity. It creates and
changes Information Objects within a certain time.
The Event represents a BP state and is related to a
point in time, it could be seen as passive element
compared to the function as an active element (com-
pare (Mendling and Nüttgens, 2003)). To model a sub
process call the Complex Function is used. The Logi-
cal Operators elements are used to structure the pro-
ceed of the BP model.

EPCs do not provide a specific element to indi-
cate the begin and the end of a BP model, therefor
the Event is used. Event elements are not allowed to
be in front of an OR and XOR element. Function and
event elements must alternate in the proceed of the BP
model and are connected via the Control Flow. An-
other restriction in EPCs is that branches parallel as
well as alternative must be split and merged with the
same kind of Logial Operator.

4 MODEL TRANSFORMATION
ISSUES

Although we have taken the control flow aspect which
is a small part of each BPM language and their de-
scriptions may sound very similar, there are a lot of
differences concerning the representation of concepts.

Before introducing the transformation issues
themselves we first have to consider how differences
between BPM languages should be handled by a

model transformation. Model transformations aim at
preserving the semantics of a model. Unfortunately
this high ambition can not always be achieved. If this
is not possible, for example if there is missing a cor-
responding semantic concept, then the next stage of
requirements is to avoid loss of information during
the transformation. This can be obtained by annotat-
ing target model elements, for example inserting in-
formation into a annotation attribute of an element,
for reasons of documentation or back-transformation.
If this is also not possible then another alternative is
to ask the user - provide user interaction - to decide
what should happen in a distinct case. It can also hap-
pen that the target model must be semantically en-
riched, because of mandatory elements in the target
meta model. In this case new information based on
the existing information has to be created.

The following transformation issues have been en-
countered during the definition of transformations be-
tween the BPM languages introduced in Section 3.
Each issue is described by its name, the participating
elements and the problem description. Different kinds
of examples are provided to establish understanding
of the transformation problem.

To illustrate some of the solutions, ATL has been
used because it is one of the most well-known trans-
formation languages. The solutions would look dif-
ferent in other transformation languages such as QVT
but the problems would remain the same.

4.1 Decision (Un)Ambiguity

In ADONIS R© there is only one element (Decision) to
express inclusive and exclusive alternatives. In ADs
an exclusive split is modeled by a Decision Node
and the inclusive split by a Fork Node with guard
conditions on the departing Control Flows. BPMN
and EPCs provide one distinct element for each con-
cept Inclusive(OR)/Exclusive(XOR) in BPMN and
OR/XOR in EPCs.

The transformation problem in case of transform-
ing ADONIS R© models into EPC models is to decide
if a Decision is used as an exclusive or an inclusive
split. The distinction can be made depending on the
conditions on the outgoing edges of the Decision in
ADONIS R© . The main problem is to decide whether
the value of the cond attribute on the departing Suc-
cessors of a Decision are exclusive or inclusive.

In the following the transformation problem is il-
lustrated by means of an example transformation code
in ATL where a ADONIS R© Decision should be trans-
formed to an EPC OR or XOR:
rule decision2xor{
from:

d: adonis!decision

BUSINESS PROCESS MODEL TRANSFORMATION ISSUES - The Top 7 Adversaries Encountered at Defining Model
Transformations

147



((d.outgoing.conditions).ifExclusive())
to:

x: epc!xor
}

rule decision2or{
from:

d: adonis!decision
(not (d.outgoing.conditions).ifExclusive())

to:
x: epc!or

}

The function ifExclusive() decides whether the con-
ditions are exclusive or not. Unfortunately there is
no straightforward implementation because there are
various kinds of exclusive conditions. For example:
True/False, 0/1, X/not X and antonyms in general.

One possibility could be to check the conditions
as words via an encyclopedia that contains antonyms,
for example WordNet (Miller et al., 1998).

4.2 Invisible Merger

Two of the BPM languages we inspected offer the
possibility to model a merger of a Alternative split
implicitly, i.e. without using a distinct element. In
ADONIS R© the mergers of flows which have been
split by a Decision are implicitly modeled, there
is no explicit merge element provided. In BPMN
the choice for modeling an explicit exclusive(XOR)
merger is left to the user.

In this case the transformation problem is to de-
cide on which position in the process model an im-
plicit (exclusive or inclusive) merge is used (for ex-
ample see Fig. 5). On this position an XOR or OR
merge must be inserted in the target model.

Paper 
assigned

Well-known
author?

Review paper
carefully

no

Update own CV
"Reviewed Papers”

Review paper fast

Paper
reviewed

yes

Download and
print paper

Figure 5: Invisible Merge in ADONIS R© .

The central questions to solve this transformation
problem are ”How to find invisible mergers?” and
”How to find their corresponding split elements?”.

One suggestion to solve this problem is an algo-
rithm which detects the positions in the model where
more than one Successor leads into an element. Then
the algorithm must follow all the control flow back-
wards until it finds a common split element. This is

easy in case of block-structured models. But if we are
faced with a BPM language which allows the mod-
eling of graph-structured models as it is the case in
our four languages, then this algorithm provides only
a partial solution. A more powerful solution approach
for this can be found in (Murzek et al., 2006).

4.3 Mandatory Events

In EPCs Events are mandatory. It is required that
before and after a function there must be an Event,
i.e. that Events and Functions have to alternate during
the flow of the process model. A further restriction
in EPCs is, that it is not allowed to model an Event
which is followed by an XOR or OR element (see
semantics of EPCs in (Keller et al., ) and (Mendling
and Nüttgens, 2003)) There is no semantically
corresponding element in ADONIS R© . In BPMN
(Intermediate Events) as well as in AD (Receive
and SendSignal) there are events specified. But the
concept of events in BPMN and AD differs from the
concept of the Events in EPCs. In EPCs the Events
are business states, meaning that a process is in a
distinct state, furthermore the events are used to mark
the begin and the end of a process. In BPMN and
AD events represent external triggers which could be
used to model external influences or interaction with
the process. As the events in BPMN and AD could be
assigned to an interaction aspect of BPM they have
not been taken under consideration in this work.

The transformation problem is to decide where to
insert events in the process model and to make sure
that the target model is in a valid state after the trans-
formation.

A possible straightforward solution is to convert
for example an Activity in ADONIS R© into an Event
and a Function connected by a Control Flow. This
would avoid having any Events followed by an OR or
XOR. Nevertheless it could result in invalid EPC pro-
cess models. An example for this problem is shown
by the transformation of the ADONIS R© model frag-
ment in Fig. 6 into the EPC model fragment in Fig. 7.

Activity Start End

Decision Parallel SplitParallel Join

a

b

c

S

A

B

C

S_c

S_b

S_a A

B

C

a)

ORnew

c

b

a

S

A

B

C

b)

Figure 6: Start with following Decision in ADONIS R© .

The model in Fig. 7 violates the syntax of EPC

ICEIS 2007 - International Conference on Enterprise Information Systems

148



Activity Start End

Decision Parallel SplitParallel Join

a

b

c

S

A

B

C

S_c

S_b

S_a A

B

C

ORnew

c

b

a

S

A

B

C

b)

OR

c

b

a

S

A

B

C

Figure 7: Invalid EPC model - alternating Event/Function
condition violated.

models in two ways. First there is an Event followed
by an OR split and second the same Event is fol-
lowed by three Events, but it is mandatory that Events
and Functions alternate during the flow of the process
model. So this solution is only partially satisfying and
a review by the modeler is necessary.

4.4 Different Start Objects

In AD, BPMN and EPCs it is possible to define
multiple start objects for one process model. But the
semantics of multiple start objects is different. In
AD all Initial Nodes will be activated if the process
starts. This means that the Initial Nodes themselves
mark the beginning of a process but do not depict
any events which trigger the process. By contrast
the activation of one of the Start Events in EPCs
or BPMN is sufficient to trigger the begin of the
process. However the semantics of multiple Start
Events in BPMN changes if all of the outgoing flows
of these Start Events are leading to the same Activity
which implies a Parallel Join in front of the Activity.
Then the process starts, if all of the Start Events
are activated. In ADONIS R© only one common start
element is allowed.

This leads to two different semantical problem ar-
eas:

1. The difference in the semantics of start objects in
AD compared to the start objects in other BPM
languages and

2. The different semantics of multiple start objects.

In case of multiple start events with an exclusive
alternative semantics in BPMN (see Fig. 8(a)) it is
possible to create one common Initial Node in the AD
target model with a proceeding Decision Node (see
Fig. 8(b)). The Decision should be annotated with a
condition that checks for the trigger of the process.
This workaround preserves all of the information and
as much of the BPMN semantics as possible. When
transforming an Activity in AD back to BPMN this
workaround needs to be taken into account such that
the original model can be reconstructed.

x

y

x

y

(a) source (b) target

xor

a

b
and

a

b
+

a

b

x

y

a

b

xor
a

b

Start erfolgte durch?

x

y

Workaround

Rücktransformation

(a) (c)(b)

Triggered by?
a

b

a

b

Figure 8: Possible solution in AD for multiple start objects
in BPMN.

The model transformation cycle in Fig. 9 shows
another problem resulting from a workaround neces-
sary when transforming an AD model part with two
Initial Nodes (a) into a BPMN model part (b) and
back again (c). The model in Fig. 9(a) is semantically
equivalent but syntactically different from the model
part in Fig. 9(b).

x

y

x

y

(a) source (b) target

xor

a

b
and

a

b
+

a

b

x

y

a

b

xor
a

b

Start erfolgte durch?

x

y

Workaround

Rücktransformation

(a) source (c) target(b) target/source

Triggered by?
a

b

a

b

Figure 9: Different model structure AD (c) at back transfor-
mation from BPMN (b).

4.5 Split/Merge Unambiguity

This problem has been considered in our work be-
cause at first sight the provided Logical Operators
(LO) in all four BPM languages seemed to be equiva-
lent but the solution is not a trivial 1:1 transformation.

In EPCs there is only one element used to depict
splits and mergers for a distinct LO. In BPMN it is
the same, except for the parallel fork and join there
are two different elements.

The problem in case of models of these BPM lan-
guages is to decide whether a LO is the begin or the
end of a branch of the control flow in a process model
when transforming to a language which requires to
make that distinction.

Once more the Control Flow elements - leading to
or departing from a LO - have to be taken into consid-
eration. Three different cases can be distinguished:

1. LO with one incoming and more than one outgo-
ing Control Flows,

2. LO with more than one incoming and one outgo-
ing Control Flow and

3. LO with more than one incoming and outgoing
Control Flows.

In case of (1) we have to transform it into a split
object. In case of (2) the LO has to be transformed to a
join or merge object. In case of (3) the AND Operator

BUSINESS PROCESS MODEL TRANSFORMATION ISSUES - The Top 7 Adversaries Encountered at Defining Model
Transformations

149



has to be split into three elements: one split element
(Parallel Split in ADONIS R© , Parallel Fork in BPMN
and Fork Node in AD) and one join/fork element (Par-
allel Join) connected by a control flow edge. If the LO
is an XOR then the transformation leads to one Deci-
sion element with more than one incoming and out-
going Successors in case of ADONIS R© and BPMN
and to three objects, Merge Node, Control Flow and
Decision Node in AD.

The following ATL transformation code example
defines the above solutions for a transformation from
EPC to ADONIS R© :
rule and2parallelSplit{
from a: epc!AND (a.incoming->size() = 1 and

a.outgoing->size() > 1)
to ps: adonis!ParallelSplit(...) }

rule and2parallelJoin{
from a: epc!AND (a.incoming->size() > 1 and

a.outgoing->size() = 1)
to pj: adonis!ParallelJoin(...) }

rule and2parallelJoinSplit{
from a: epc!AND (a.incoming->size() > 1 and

a.outgoing->size() > 1)
to psp: adonis!ParallelSplit(...),

suc: adonis!Successor(...),
pjo: adonis!ParallelJoin(...)

}

The transformation in the reverse direction may
be optimized to reestablish the original model. In
this case a corresponding transformation to the
”and2parallelJoinSplit” rule, which merges a Paral-
lel Split, a Successor and a Parallel Join to an AND
element, has to be found. As a rule in ATL can only
match one element in the ”from” part this will require
a more complex solution algorithm in ATL.

4.6 Join Specification Problem

This problem can only be observed in ADs. Con-
trary to ADONIS R© , BPMN and EPCs which provide
a possibility to express inclusive alternative merge in
ADs there is no semantically correct way to depict
such mergers. So the problem is how to express a in-
clusive alternative merge in ADs.

In (White, 2004) a possible but as per (Wohed
et al., 2005) incorrect (in terms of the semantics of an
executable workflow model) attempt to cover an in-
clusive alternative merge in ADs has been made (see
Fig. 10).

In this solution the problem of the transformation
definition lays on the derivation of the ”Join Spec” ex-
pression, which could be derived from the departing
edges of the corresponding inclusive alternative split.
The ATL transformation code for this example is to
comprehensive to illustrate it here.

1. bb

Action Activity Final Initial Node Flow FinalDecision/Merge NodeJoin/Fork NodeCallBehaviourAction

a

b
c

{Join Spec = A or B}

A

B

Figure 10: Incorrect attempt to capture a synchronising
merge - Figure taken from (Wohed et al., 2005).

Another alternative would be to ask the user to de-
cide how to transform this problem.

BP models are not designed for executing them di-
rectly. They are used to support the understanding of
business processes and furthermore they can provide
an adequate documentation of the business processes
in a company. Therefore the solution in Fig. 10 can
be satisfying for business people.

4.7 Different Final Nodes

AD provide the possibility to model different kinds
of end nodes, the Activity Final Node (AFN) and the
Flow Final Node (FFN). The semantics of these nodes
is as follows: When a FFN is reached the remain-
ing tokens in a model will succeed. In contrary if the
AFN is reached all remaining tokens in the processed
will be ”killed” immediately. In the other BPM lan-
guages the end element is used corresponding to the
FFN. There is no semantically equivalent to the AFN.

The problem regarding the FinalNodes in AD is
to decide how to transform the AFN. A FFN can be
transformed into an end element in either of the three
BPM languages. But if an AFN is transformed into
an End element in ADONIS R© , BPMN or EPC the
semantics of the process model is different.

There are two supposable solutions: First an an-
notation of the end object in the target language if
an attribute for annotations is provided. Second the
creation of an additional Activity, Function or Task
which is called ”Terminate process” and which is in-
tegrated in front of the end object.

5 CONCLUSION

In this work there have be introduced transformation
problems observed at defining model transformations
between four BPM languages. Although we only fo-
cused on the transformation of the basic control flow
aspect of four BPM languages we encountered seven
non-trivial problems. As they are similar between dif-
ferent BPM languages we suggest to provide general
solutions for often arising problems. This will reduce
the effort of defining BP model transformations and

ICEIS 2007 - International Conference on Enterprise Information Systems

150



the number of times that some of these wheels have
to be reinvented.

The transformation issues illustrated can be cate-
gorized into two different areas:
1. Transformation requirements which raise prob-

lems at the implementation level, they have
technical complexity, for example the Decision
(Un)Ambiguity and the Invisible Merger problem.

2. Transformation requirements which raise prob-
lems concerning their feasibility are situated at the
application level, they contain application com-
plexity, for example the Different Final Nodes and
the Join Specification Problem.
The technical complexity affects model trans-

formation languages themselves. General transfor-
mation languages like ATL (Bézivin et al., 2005),
QVT (OMG, a) or programming languages like Java
provide very comprehensive but unspecific possibili-
ties to define such transformations. Unspecific in the
sense that they provide a language to define ”every-
thing” but nothing in special.

The problems on the application level are of con-
ceptual nature and so they could hardly be solved
with technical inventions. But there can be provided
second level mechanisms like user interaction which
does not solve the problem, but supports the user
at transformation. The ”adversaries” on the techni-
cal level can be attacked, for example by providing
reusable general solutions for distinct problems in the
area of BP model transformation.

REFERENCES

Bézivin, J., Jouault, F., and Touzet, D. (2005). An Introduc-
tion to the ATLAS Model Management Architecture.
Technical report, LINA.

BOC (2005). ADONIS 3.7 - User Manual III: ADONIS
Standard Modeling Method. BOC Ltd.

Czarnecki, K. and Helsen, S. (2006). Feature-based sur-
vey of model transformation approaches. IBM Sys-
tems Journal, pages 621–645.

Fatolahi, A. and Shams, F. (2006). An investigation into
applying uml to the zachman framework. Information
Systems Frontiers.

IBM. Business Process Execution Language for Web Ser-
vices version 1.1. IBM.

Keller, G., Nüttgens, M., and Scheer, A.-W. Semantische
Prozeßmodellierung auf der Grundlage ”Ereignisges-
teuerter Prozeßketten (EPK)”. Technical report, Insti-
tut für Wirtschaftsinformatik Universität Saarbrücken.

List, B. and Korherr, B. (2006). An evaluation of conceptual
business process modelling languages. In SAC ’06:
Proceedings of the 2006 ACM symposium on Applied
computing.

Mendling, J., Neumann, G., and Nüttgens, M. Towards
Workflow Pattern Support of Event-Driven Process
Chains (EPC). In Proceedings of the 2nd GI Workshop
XML4BPM at the 11th GI Conference BTW 2005.

Mendling, J., Neumann, G., and Nüttgens, M. (2005). Yet
another event-driven process chain.

Mendling, J. and Nüttgens, M. (2003). EPC Modelling
based on Implicit Arc Types. In Proceedings of the
2nd International Conference on Information Systems
Technology and its Applications (ISTA).

Miller, G. A., Fellbaum, C., and Tengi, R. (1998). Wordnet:
A lexical database for the english language.

Murzek, M., Kramler, G., and Michlmayr, E. (2006). Struc-
tural patterns for the transformation of business pro-
cess models. EDOCW’06, pages 18–28.

OMG. MOF QVT Final Adopted Specification. Object
Management Group.

OMG. UML 2.1 Superstructure Specification. Object Man-
agement Group.

OMG (2006). Business Process Modeling Nota-
tion Specification. Object Management Group,
http://www.bpmn.org/.

Russell, N., ter Hofstede, A. H. M., Edmond, D., and
van der Aalst, W. M. P. (2004). Workflow Data Pat-
terns. Technical report, Queensland University of
Technology.

Russell, N., van der Aalst, W. M. P., ter Hofstede, A. H. M.,
and Edmond, D. (2005). Workflow resource patterns:
Identification, representation and tool support. In Pro-
ceedings of the 17th Conference on Advanced Infor-
mation Systems Engineering (CAiSE05).

Russell, N., van der Aalst, W. M. P., ter Hofstede, A. H. M.,
and Wohed, P. (2006). On the suitability of uml 2.0
activity diagrams for business process modelling. In
APCCM ’06: Proceedings of the 3rd Asia-Pacific con-
ference on Conceptual modelling.

Störrle, H. (2006). A Comparison of (e)EPC and
UML 2 Activity Diagrams. In EPK 2006
Geschäftsprozessmanagement mit Ereignisges-
teuerten Prozessketten.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kie-
puszewski, B., and Barros, A. P. Workflow Patterns.
Distributed and Parallel Databases.

White, S. A. (2004). Process Modeling Notations and
Workflow Patterns. BPTrends.

Wohed, P., van der Aalst, W. M., Dumas, M., ter Hofstede,
A. H., and Russell, N. (2005). Pattern-based Analy-
sis of UML Activity Diagrams. In Proceedings of the
25th International Conference on Conceptual Model-
ing (ER’2005).

Wohed, P., van der Aalst, W. M., Dumas, M., ter Hofstede,
A. H., and Russell, N. (2006). On the Suitability of
BPMN for Business Process Modelling. In Proceed-
ings 4th International Conference on Business Pro-
cess Management.

Zachman, J. A. (1987). A framework for information sys-
tems architecture. IBM System Journal.

BUSINESS PROCESS MODEL TRANSFORMATION ISSUES - The Top 7 Adversaries Encountered at Defining Model
Transformations

151


