
A CONTINUOUS DATA INTEGRATION METHODOLOGY FOR
SUPPORTING REAL-TIME DATA WAREHOUSING

Ricardo Jorge Santos (1) and Jorge Bernardino (1, 2)
(1) CISUC – Centre of Informatics and Systems of the University of Coimbra - University of Coimbra

(2) ISEC – Superior Engineering Institute of Coimbra – Polytechnic Institute of Coimbra

Keywords: Real-time and active data warehousing, continuous data integration, refreshment loading process.

Abstract: A data warehouse provides information for analytical processing, decision making and data mining tools.
As the concept of real-time enterprise evolves, the synchronism between transactional data and data
warehouses, statically implemented, has been reviewed. Traditional data warehouse systems have static
structures of their schemas and relationships between data, and therefore are not able to support any
dynamics in their structure and content. Their data is only periodically updated because they are not
prepared for continuous data integration. For these purposes, real-time data warehouses seem to be very
promising. In this paper we present a methodology on how to adapt data warehouse schemas and user-end
OLAP (On-Line Analytical Processing) queries for efficiently supporting real-time data integration. To
accomplish this, we use techniques such as table structure replication and query predicate restrictions for
selecting data, managing to enable continuous data integration in the data warehouse with minimum impact
in query execution time. We demonstrate the functionality of the method by analyzing its impact in query
performance using benchmark TPC-H executing query workloads while simultaneously performing
continuous data integration at various insertion time rates.

1 INTRODUCTION

A data warehouse (DW) collects data from multiple
heterogeneous operational source (OLTP – On-Line
Transaction Processing) systems and stores
integrated information in a central repository, used
by analytical applications (OLAP – On-Line
Analytical Processing) with different user
requirements. The common form of getting decision
making information is using OLAP tools
(Chaudhuri, 1997). The data source for these tools is
the DW data area, where records are updated
periodically using ETL (Extraction, Transformation
and Loading) tools. ETL processes identify and
extract relevant data from OLTP source systems,
cleaning and molding it into an adequate integrated
format and finally, loading the final formatted data
into the DW’s database (DB).

Executing this update periodically implies that
most recent OLTP source records are not included
into the data area, being excluded from the results
supplied by OLAP tools. It has been assumed that
data in the DW can lag at least a day if not a week or
a month behind the actual operational data in the

OLTP systems (Zurek, 2001). This has been based
on the notion that business decisions do not require
up-to-date information, but only the (recent) history.
This still holds for a wide range of traditional
businesses such as traditional retailing. However,
advents like e-business, online telecommunications
and health systems, for instance, information should
be delivered as fast as possible to knowledge
workers and decision systems which rely on it to
react in a near real-time manner, according to the
most recent data captured by an organization’s
information system (Inmon, 2001). In many health
systems, all new data must be analyzed and coped
with as a continuous data stream. It has to be
immediately processed in order to trigger responses
to knowledge workers and decision makers. In most
cases, update delays greater than a few seconds may
jeopardise the usefulness of the whole system. When
using DWs in this kind of systems, supporting real-
time data warehousing (RTDW) is a vital issue.
These scenarios suggest that the time between the
moment operational data is recorded and the
moment it is required for analytical purposes is
dramatically reduced, making RTDW support a

589
Jorge Santos R. and Bernardino J. (2007).
A CONTINUOUS DATA INTEGRATION METHODOLOGY FOR SUPPORTING REAL-TIME DATA WAREHOUSING.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 589-595
DOI: 10.5220/0002377205890595
Copyright c© SciTePress

critical issue. Additionally, the real-time enterprise
requires data to be always up to date.

DW refreshment (integration of new data) is
traditionally performed in off-line fashion, implying
that while processes for updating the data area are
executed, OLAP users and applications cannot
access any data. This set of activities takes place in a
loading time window, usually during the night, in a
daily, weekly or even monthly basis, to avoid
overloading the operational OLTP source systems
with the extra workload of this workflow. Active
Data Warehousing refers a new trend where DWs
are updated as frequently as possible, due to high
demands of users for fresh data. Real-Time Data
Warehousing (RTDW) is also referred for that
reason in (White, 2002). The conclusions presented
from a knowledge exchange network formed by
major technological partners in Denmark (Pederson,
2004) refer that all partners agree real-time
enterprise and continuous data availability is
considered a short term priority for all business and
general data-based advents.

In a nutshell, accomplishing near zero latency
between OLTP and OLAP systems consists in
insuring continuous data integration from the first
type of systems to the other. To make this feasible,
several issues need to be taken under consideration:
(1) Operational OLTP systems are designed to meet
well-specified (short) response time requirements,
meaning that a RTDW scenario would have to cope
with the overhead implied in those OLTP systems;
(2) The DW tables directly related with transactional
records (commonly named as fact tables) are usually
huge in size, and therefore, addition of new data and
consequent operations such as index updating would
certainly have impact in OLAP systems’
performance and data availability. Our work focuses
on the DW perspective, presenting an efficient
methodology for continuous data integration ETL
loading process and techniques on how to adapt the
DW’s schemas for supporting continuous data
integration and adapting OLAP queries for using all
the integrated data.

The remainder of this paper is as follows. In
section 2, we refer background and related work in
real-time data warehousing. Section 3 explains our
methodology, and in section 4 we present an
experimental evaluation and demonstrate its
functionality. The final section contains concluding
remarks and future work.

2 RELATED WORK

The DW needs to be updated continuously to reflect
source data updates. DW users are often not only
interested in monitoring current information, but
also in analyzing the history to predict future trends.
Therefore, real-world DWs are often temporal, but
their temporal support is implemented in an ad doc
manner that is difficult to automate. In practice,
many operational source systems are nontemporal,
i.e., they store only the current state of their data, not
the complete history. So far, research has mostly
focused on the problem of maintaining the
warehouse in its traditional periodically update setup
(Yang, 2001B) (Labio, 2000). In a different line of
research, data streams (Abadi, 2003) (Babu, 2001)
(Lomet, 2003) (Srivastava, 2004) appear as a
potential solution. Nevertheless, research in data
streams has focused on topics concerning the front-
end, such as on-the-fly computation of queries
without a systematic treatment of the issues raised at
the back-end of a DW (Karakasidis, 2005). Much of
the recent work dedicated to RTDW is focused on
conceptual ETL modelling (Vassiliadis, 2001)
(Bruckner, 2002A) (Bouzeghoub, 1999) (Simitsis,
2005), lacking the presentation of specific
extraction, transformation and loading algorithms
along with their consequent OLTP and OLAP
performance issues. Our contribution is the
presentation of a methodology which efficiently
enables continuous data integration in the DW and
aims to minimize its negative impact in OLAP end
user query workload executions. The issues focused
in this paper concern the DW end of the system,
referring how to perform the loading processes of
ETL procedures and the DW’s data area usage for
efficiently supporting continuous data integration.
Extracting and transforming of operational (OLTP)
source systems data are not the focus of this paper.

In (Bouzeghoub, 1999) the authors describe an
approach which clearly separates the DW
refreshment process from its traditional handling as
a view maintenance or bulk loading process. They
provide a conceptual model of the process, treated as
a composite workflow, but they do not describe how
to efficiently propagate the date. In (Vassiliadis,
2001), authors describe ARKTOS ETL tool, capable
of modeling and executing practical ETL scenarios
by providing explicit primitives for capturing
common tasks (such as data cleaning, scheduling
and data transformations). ARKTOS uses a
declarative language, offering graphical and
declarative features for defining DW
transformations optimizes execution of complex

ICEIS 2007 - International Conference on Enterprise Information Systems

590

sequences for transformation and cleansing tasks.
Recently, (Kuhn, 2003) presents a zero-delay DW
with Gong, which assists in providing confidence in
the data available to every branch of the
organization. Gong, a Tecco product (Binder, 2003),
offers data uni/bi-directional replication between
homogeneous and heterogeneous distributed DBs.
Gong enables zero-delay business, assisting in daily
running and decision making in the organization.

3 OUR METHODOLOGY

The main problems in maximizing functionality of a
RTDW are related with ETL processes needed for
integrating new data. These processes lead to two
major problems: (1) a significant amount of
processing time is necessary for extracting and
transforming OLTP data, that affects the processing
speed and availability of the OLTP source systems;
(2) DW updating operations are complex and time
consuming, lowering its availability to OLAP
applications and end users. The major issue is how
to enable continuous data integration, assuring that it
minimizes negative impact in main characteristics of
the system, such as:

• OLAP analytical most recent data availability;
• OLAP analytical environments’ response time;
• OLTP operational systems’ response time.
Therefore, we are motivated by the following

requirements in real-time data warehousing:
• Maximizing the freshness of DW data by

efficiently and rapidly integrating most recent
OLTP data, preferably with continuous data
integration;

• Minimizing OLAP instructions response time
while simultaneously performing continuous
data integration;

From the DW side, updating huge tables and
related structures (such as indexes, materialized
views and other integrated components) makes
executing OLAP query workloads simultaneously
with continuous data integration a very difficult
task. Our methodology shows how to minimize the
processing time and workload required for update
processes. We also present how to adapt those
OLAP workloads in order to take advantage of all
the most recent data and minimize the impact caused
by its integration in its execution time. Finally, our
methodology allows to facilitate the DW off-line
update time window, because the extraction and
transformation issues are no longer present at that
moment, for the data already lies within the DW and

all ETL data extraction and/or transformation
routines have been executed during the continuous
data integration. Furthermore, the data structure of
the replicated tables is exactly the same as the
original DW schema. This minimizes the time
window for packing the data area, since its update
represents a one step process by resuming itself as a
cut-and-paste operation from the temporary tables to
the original ones, as we shall demonstrate further on.

Our methodology is focused on four major areas:
(1) data warehouse schema adaptation; (2) ETL
loading procedures; (3) OLAP query adaptation; and
(4) DW database packing and reoptimization.

3.1 Adapting the DW Schema

For the area concerning DW schema adaptation, we
adopt the method presented in Figure 1. By
supplying empty or small sized tables without any
kind of constraint or attached physical file related to
it for supporting the record insertion operations
inherent to continuous data integration, we
guarantee the simplest and fastest logical and
physical support for achieving our goals (Kimball,
2005). Transactional OLTP records should be
loaded into the DW sequentially. The unique
sequential identifier attribute present in each
temporary table will allow discarding the rows
which have been replaced for the identified OLTP
transaction, as we shall demonstrate further on.

Data warehouse schema adaptation method for
supporting real-time data warehousing: Creation of
an exact structural replica of all the tables of the data
warehouse that could eventually receive new data.
These tables (referred from now on as temporary
tables) are to be created empty of contents, with no
defined indexes, primary key, or constraints of any
kind, including referential integrity. For each table, an
extra attribute must be created, for storing a unique
sequential identifier related to the insertion of each row
within the temporary tables.

Figure 1: Method for adapting the data warehouse’s
schema for supporting our real-time methodology.

3.2 ETL Loading Procedures

To refresh the DW, once the ETL application has
extracted and transformed the OLTP data into the
correct format for loading the data area, it shall
proceed immediately in inserting that record as a
new row in the correspondent temporary table,
filling the unique sequential identifier attribute with
the autoincremented number. This number starts at 1
for the first record to insert in the DW after
executing the packing and reoptimizing technique

A CONTINUOUS DATA INTEGRATION METHODOLOGY FOR SUPPORTING REAL-TIME DATA
WAREHOUSING

591

(explained in section 3.4), and then autoincremented
by one unit for each record insertion. The algorithm
for continuous data integration by the ETL tool is
similar to Figure 2.

Trigger for each new record in OLTP system
 Extract new record from OLTP system
 Clean and transform the OLTP data, shaping it into

the data warehouse destination table’s format
 Increment record insertion unique counter
 Create a new record in the data warehouse

temporary destination table
 Insert the data in the temporary destination table’s

new record, along with the value of the record
insertion unique counter

End_Trigger

Figure 2: Continuous data integration algo in ETL tool.

3.3 OLAP Query Adaptation

Suppose a sales data warehouse has the schema
illustrated in Figure 3, with two dimensional tables
(Store and Customer, representing business
descriptor entities) and one fact table (Sales, storing
business measures aggregated from transactions).
This DW stores sales value per store, per customer,
per day.

Figure 3: Sample sales data warehouse schema.

Consider the OLAP query presented in Figure 4,
used for calculating the total revenue per store in the
last seven days.
SELECT S_StoreKey,
 Sum(S_Value) AS Last7DaysSaleVal
FROM Sales
WHERE S_Date>=Date()-7
GROUP BY S_StoreKey

Figure 4: OLAP query for calculating the total revenue per
store in last seven days.

The modified schema for supporting RTDW
based on our methodology is illustrated in Figure 5.

To take advantage of our schema modification
method and include most recent data in the OLAP
query response, the queries should be rewritten
taking under consideration the following rule: the
FROM clause should join all rows from the required
original and temporary tables with relevant data,

excluding all fixed restriction predicate values from
the WHERE clause whenever possible.

Figure 5: Sample sales data warehouse schema modified
for supporting real-time data warehousing.

The modification for the instruction presented in
Figure 4 is illustrated in Figure 6, respecting our
methods.
SELECT S_StoreKey,
 Sum(S_Value) AS Last7DaysSaleVal
FROM (SELECT S_StoreKey,
 S_Value FROM Sales
 WHERE S_Date>=Date()-7)
 UNION ALL
 (SELECT STmp_StoreKey,
 STmp_Value FROM SalesTmp
 WHERE STmp_Date>=Date()-7)
GROUP BY S_StoreKey

Figure 6: OLAP query for calculating the total revenue per
store in last seven days.

It can be seen that the relevant rows from both
issue tables are joined for supplying OLAP query
answer, filtering the rows in the resulting dataset
according to its restrictions in the original
instruction.

3.4 Packing and Reoptimizing the DW

Since the data is integrated within tables without
access optimization of any kind that could speed up
querying, such as indexes, it is obvious that it
implies a decrease of performance. Due to the
volume of occupied physical space, after many
insertions the performance becomes too poor to be
considered acceptable. To regain performance
optimization it is necessary to execute a pack routine
for updating the original DW schema tables using
the records in the temporary tables, and recreate
those temporary tables empty of contents, along
with rebuilding original tables’ indexes and
materialized views, so maximum processing speed is
obtained once more.

Customer

C_CustKey
C_Name
C_Address
C_PostalCode
C_Phone
C_EMail

Sales

S_StoreKey
S_CustomerKey
S_Date
S_Value

Store

St_StoreKey
St_Description
St_Address
St_PostalCode
St_Phone
St_EMail
St_Manager

CustomerTmp

CTmp_CustKey
CTmp_Name
CTmp_Address
CTmp_PostalCode
CTmp_Phone
CTmp_EMail
CTmp_Counter

SalesTmp

STmp_StoreKey
STmp_CustomerKey
STmp_Date
STmp_Value
STmp_Counter

StoreTmp

StTmp_StoreKey
StTmp_Description
StTmp_Address
StTmp_PostalCode
StTmp_Phone
StTmp_EMail
StTmp_Manager
StTmp_Counter

Customer

C_CustKey
C_Name
C_Address
C_PostalCode
C_Phone
C_EMail

Sales

S_StoreKey
S_CustomerKey
S_Date
S_Value

Store

St_StoreKey
St_Description
St_Address
St_PostalCode
St_Phone
St_EMail
St_Manager

ICEIS 2007 - International Conference on Enterprise Information Systems

592

For updating the original DW tables, the rows in
the temporary tables should be aggregated according
to the original tables’ primary keys, maintaining the
rows with highest unique counter attribute value for
possible duplicate values, for they represent the
most recent records. The time needed for executing
these procedures represents the only period of time
in which the DW in unavailable to OLAP tools and
end users, for they need to be executed exclusively.
The appropriate moment for doing this may be
determined by the DW Administrator, or
automatically, considering parameters such as a
fixed number of records in temporary tables, the
amount of physically occupied space, or yet a
predefined period of time. The definition of this
moment is not object of discussion in this paper.

3.5 Final Remarks on Our
Methodology

Notice that only record insertions are used for
updating the DW for all related transactions in the
OLTP source systems. Since this operation does not
require record locking (except for the new appended
record itself) nor search operations for previously
stored data, the time required to do it is minimal.
The issue of record locking is strongly enforced by
the fact that the referred tables do not have any
indexes or primary keys, implying no record
locking, except for the appended record itself. Since
they do not have constraints of any sort, including
referential integrity and primary keys, there is no
need to execute time consuming tasks such as index
updating or referential integrity cross checks. This
allows us to state that the data update time window
is minimal for insertion of new data, maximizing its
availability, and contributing to increase the DW’s
global availability and minimize negative impact in
its performance.

The amount of “information buckets” which the
data passes through in the ETL Area is also
minimal, for temporary storage is almost not needed.
Instead of extracting a large amount of OLTP data,
what happens in “traditional” DW bulk loading, the
volume of extracted and transformed real-time data
is very reduced (few dozen bytes), since it consists
of only one transaction per execution cycle, so we
may assume that the extraction and transformation
phase will be cleaner and more time efficient.

4 EXPERIMENT EVALUATION

Recurring to TPC-H decision support benchmark
(TPC-H) we tested our methodology creating 5GB,
10GB and 20GB size DWs in ORACLE 10g
RDBMS (Oracle, 2005). We also tested the system’s
response executing 1, 2, 4, 8 and 16 simultaneous
query workloads to see how it reacted according to
the number of simultaneous users executing those
workloads. We used an Intel Celeron 2.8GHz with
2GB of SDRAM and a 7200rpm 160GB hard disk.
The modified schema according to our methodology
can be seen in Figure 7. Tables Region and Nation
are not included as temporary tables because they
are fixed-size and therefore do not receive new data.

Figure 7: TPC-H schema modified for supporting RTDW.

The selected query workloads, TPC-H queries 1,
8, 12 and 20 (TPC-H), were executed in random
order for each simultaneous user. The time interval
between transactions (Transac. Interval) for each
scenario is illustrated in tables 1 to 3. Each new
transaction represents insertion of an average of four
records in LineItemTmp and one row in each of the
other temporary tables, continuously integrated for a
period of 8 hours. Supporting RTDW capability in
all scenarios is somewhat between 6.9% and 28.6%
of query workload execution time, as shown in
figures 8 to 10, reporting percentage of workloads
execution overtime using RTDW, relatively to
execution against standard workload without
continuous integration.

CustomerTmp

CT_CustKey
CT_Name
CT_NationKey
Other Attributes
CT_Counter

SupplierTmp

ST_SuppKey
ST_Name
ST_NationKey
Other Attributes
ST_Counter

PartTmp

PT_PartKey
PT_Name
Other Attributes
PT_Counter

PartSuppTmp

PST_PartKey
PST_SuppKey
Other Attributes
PST_Counter

OrdersTmp

OT_OrderKey
OT_CustKey
Other Attributes
OT_Counter

LineItemTmp

LT_OrderKey
LT_LineNumber
LT_PartKey
LT_SuppKey
Other Attributes
LT_Counter

Customer

C_CustKey
C_Name
C_NationKey
Other Attributes

Supplier

S_SuppKey
S_Name
S_NationKey
Other Attributes

Part

P_PartKey
P_Name
Other Attributes PartSupp

PS_PartKey
PS_SuppKey
Other Attributes

Nation

N_NationKey
N_Name
N_RegionKey
Other Attributes Region

R_RegionKey
R_Name
Other Attributes

Orders

O_OrderKey
O_CustKey
Other Attributes

LineItem

L_OrderKey
L_LineNumber
L_PartKey
L_SuppKey
Other Attributes

A CONTINUOUS DATA INTEGRATION METHODOLOGY FOR SUPPORTING REAL-TIME DATA
WAREHOUSING

593

Table 1: TPC-H 5GB data warehouse transaction real-time
integration characteristics.

 TPC-H 5GB Data Warehouse
 Scenario

A
Scenario

B
Scenario

C
Transactions 3.072 6.205 12.453
Transac. Interval 9,38 sec 4,64 sec 2,31 sec

Table 2: TPC-H 10GB data warehouse transaction real-
time integration characteristics.

 TPC-H 10GB Data Warehouse
 Scenario

A
Scenario

B
Scenario

C
Transactions 6.192 12.592 25.067
Transac. Interval 4,65 sec 2,29 sec 1,15 sec

Table 3: TPC-H 20GB data warehouse transaction real-
time integration characteristics.

 TPC-H 20GB Data Warehouse
 Scenario

A
Scenario

B
Scenario

C
Transactions 12.416 25.062 50.237
Transac. Interval 2,32 sec 1,15 sec 0,57 sec

TPC-H 10GB Data Warehouse

7,6 8,2 8,8 8,7 9,2
12,6 13,3 12,7 13,6 14,415,4 17,2 16,4

18,7 19,3

0

5

10

15

20

25

1 User 2 Users 4 Users 8 Users 16 Users

%
 R

TD
W

 O
ve

rt
im

Scenario A Scenario B Scenario C
Figure 8: TPC-H 5GB DW overtime percentages.

TPC-H 10GB Data Warehouse

9,2 9,7 9,9 9,7 10,1
14,2

16,1 15,2 15,4 15,9
18,7 17,4

21,3 20,6
22,7

0

5

10

15

20

25

1 User 2 Users 4 Users 8 Users 16 Users

%
 R

TD
W

 O
ve

rt
im

Scenario A Scenario B Scenario C
Figure 9: TPC-H 10GB DW overtime percentages.

TPC-H 5GB Data Warehouse

11,2 12,3
8,2 6,9 7

18,8 17,9 17,2 16,1 17,4

26,9 25,4
28,6

24,2 24,8

0
5

10
15
20
25
30
35

1 User 2 Users 4 Users 8 Users 16 Users

%
 R

TD
W

 O
ve

rt
im

Scenario A Scenario B Scenario C
Figure 10: TPC-H 20GB DW overtime percentages.

5 CONCLUSIONS

This paper refers the requirements for RTDW and
presents a methodology for supporting it by
enabling continuous data integration while
minimizing impact in query execution on the DW
end. This is done by data structure replication and
adapting query instructions to take advantage of the
new real-time data warehousing schemas.

We have shown its functionality, recurring to a
simulation using the TPC-H benchmark, performing
continuous data integration at various time rates
against the execution of various simultaneous query
workloads, for DWs with different scale sizes. All
scenarios show that it is possible to achieve real-
time data warehousing performance in exchange for
an average increase of ten to thirty percent in query
execution time. This should be considered the price
to pay for real-time capability within the DW.

As future work we intend to develop an ETL tool
integrating this methodology. There is also a huge
space of research for optimizing query instructions
used.

REREFENCES

Abadi, D. J., Carney, D., et al., 2003. “Aurora: A New
Model and Architecture for Data Stream
Management”, The VLDB Journal, 12(2), pp. 120-
139.

Babu, S., Widom, J., 2001. “Continuous Queries Over
Data Streams”, SIGMOD Record 30(3), pp. 109-120.

Binder, T., 2003. Gong User Manual, Tecco Software
Entwicklung AG.

Bouzeghoub, M., Fabret, F., Matulovic, M., 1999.
“Modeling Data Warehouse Refreshment Process as a
Workflow Application”, Intern. Workshop on Design
and Management of Data Warehouses (DMDW).

Bruckner, R. M., List, B., Schiefer, J., 2002 A. “Striving
Towards Near Real-Time Data Integration for Data
Warehouses”, International Conference on Data
Warehousing and Knowledge Discovery (DAWAK).

Chaudhuri, S., Dayal, U., 1997. “An Overview of Data
Warehousing and OLAP Technology”, SIGMOD
Record, Volume 26, Number 1, pp. 65-74.

Inmon, W. H., Terdeman, R. H., Norris-Montanari, J.,
Meers, D., 2001. Data Warehousing for E-Business, J.
Wiley & Sons.

Karakasidis, A., Vassiliadis, P., Pitoura, E., 2005. “ETL
Queues for Active Data Warehousing”, IQIS’05.

Kuhn, E., 2003. “The Zero-Delay Data Warehouse:
Mobilizing Heterogeneous Databases”, International
Conference on Very Large Data Bases (VLDB).

ICEIS 2007 - International Conference on Enterprise Information Systems

594

Labio, W., Yang, J., Cui, Y., Garcia-Molina, H., Widom,
J., 2000. “Performance Issues in Incremental
Warehouse Maintenance”, (VLDB).

Lomet, D., Gehrke, J., 2003. Special Issue on Data Stream
Processing, IEEE Data Eng. Bulletin, 26(1).

Oracle Corporation, 2005. www.oracle.com
Pedersen, T. N., 2004. “How is BI Used in Industry?”,

Int. Conf. on Data W. and Knowledge Discov.
(DAWAK).

Simitsis, A., Vassiliadis, P., Sellis, T., 2005. “Optimizing
ETL Processes in Data Warehouses”, International
Conference on Data Engineering (ICDE).

Srivastava, U., Widom, J., 2004. “Flexible Time
Management in Data Stream Systems”, PODS.

TPC-H decision support benchmark, Transaction
Processing Council, www.tpc.com.

Vassiliadis, P., Vagena, Z., Skiadopoulos, S.,
Karayannidis, N., Sellis, T., 2001. “ARKTOS:
Towards the Modelling, Design, Control and
Execution of ETL Processes”, Information Systems,
Vol. 26(8).

White, C., 2002. “Intelligent Business Strategies: Real-
Time Data Warehousing Heats Up”, DM Preview,
www.dmreview.com/article_sub_cfm?articleId=5570.

Yang, J., 2001. “Temporal Data Warehousing”, Ph.D.
Thesis, Dpt. Computer Science, Stanford University.

Yang, J., and Widom, J., 2001B. “Temporal View Self-
Maintenance”, 7th International Conference on
Extending Database Technology (EDBT).

Zurek, T., Kreplin, K., 2001. “SAP Business Information
Warehouse – From Data Warehousing to an E-
Business Platform”, (ICDE).

A CONTINUOUS DATA INTEGRATION METHODOLOGY FOR SUPPORTING REAL-TIME DATA
WAREHOUSING

595

