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Abstract: A data warehouse provides information for analytical processing, decision making and data mining tools. 
As the concept of real-time enterprise evolves, the synchronism between transactional data and data 
warehouses, statically implemented, has been reviewed. Traditional data warehouse systems have static 
structures of their schemas and relationships between data, and therefore are not able to support any 
dynamics in their structure and content. Their data is only periodically updated because they are not 
prepared for continuous data integration. For these purposes, real-time data warehouses seem to be very 
promising. In this paper we present a methodology on how to adapt data warehouse schemas and user-end 
OLAP (On-Line Analytical Processing) queries for efficiently supporting real-time data integration. To 
accomplish this, we use techniques such as table structure replication and query predicate restrictions for 
selecting data, managing to enable continuous data integration in the data warehouse with minimum impact 
in query execution time. We demonstrate the functionality of the method by analyzing its impact in query 
performance using benchmark TPC-H executing query workloads while simultaneously performing 
continuous data integration at various insertion time rates. 

1 INTRODUCTION 

A data warehouse (DW) collects data from multiple 
heterogeneous operational source (OLTP – On-Line 
Transaction Processing) systems and stores 
integrated information in a central repository, used 
by analytical applications (OLAP – On-Line 
Analytical Processing) with different user 
requirements. The common form of getting decision 
making information is using OLAP tools 
(Chaudhuri, 1997). The data source for these tools is 
the DW data area, where records are updated 
periodically using ETL (Extraction, Transformation 
and Loading) tools. ETL processes identify and 
extract relevant data from OLTP source systems, 
cleaning and molding it into an adequate integrated 
format and finally, loading the final formatted data 
into the DW’s database (DB).  

Executing this update periodically implies that 
most recent OLTP source records are not included 
into the data area, being excluded from the results 
supplied by OLAP tools. It has been assumed that 
data in the DW can lag at least a day if not a week or 
a month behind the actual operational data in the 

OLTP systems (Zurek, 2001). This has been based 
on the notion that business decisions do not require 
up-to-date information, but only the (recent) history. 
This still holds for a wide range of traditional 
businesses such as traditional retailing. However, 
advents like e-business, online telecommunications 
and health systems, for instance, information should 
be delivered as fast as possible to knowledge 
workers and decision systems which rely on it to 
react in a near real-time manner, according to the 
most recent data captured by an organization’s 
information system (Inmon, 2001). In many health 
systems, all new data must be analyzed and coped 
with as a continuous data stream. It has to be 
immediately processed in order to trigger responses 
to knowledge workers and decision makers. In most 
cases, update delays greater than a few seconds may 
jeopardise the usefulness of the whole system. When 
using DWs in this kind of systems, supporting real-
time data warehousing (RTDW) is a vital issue. 
These scenarios suggest that the time between the 
moment operational data is recorded and the 
moment it is required for analytical purposes is 
dramatically reduced, making RTDW support a 
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critical issue. Additionally, the real-time enterprise 
requires data to be always up to date. 

DW refreshment (integration of new data) is 
traditionally performed in off-line fashion, implying 
that while processes for updating the data area are 
executed, OLAP users and applications cannot 
access any data. This set of activities takes place in a 
loading time window, usually during the night, in a 
daily, weekly or even monthly basis, to avoid 
overloading the operational OLTP source systems 
with the extra workload of this workflow. Active 
Data Warehousing refers a new trend where DWs 
are updated as frequently as possible, due to high 
demands of users for fresh data. Real-Time Data 
Warehousing (RTDW) is also referred for that 
reason in (White, 2002). The conclusions presented 
from a knowledge exchange network formed by 
major technological partners in Denmark (Pederson, 
2004) refer that all partners agree real-time 
enterprise and continuous data availability is 
considered a short term priority for all business and 
general data-based advents. 

In a nutshell, accomplishing near zero latency 
between OLTP and OLAP systems consists in 
insuring continuous data integration from the first 
type of systems to the other. To make this feasible, 
several issues need to be taken under consideration: 
(1) Operational OLTP systems are designed to meet 
well-specified (short) response time requirements, 
meaning that a RTDW scenario would have to cope 
with the overhead implied in those OLTP systems; 
(2) The DW tables directly related with transactional 
records (commonly named as fact tables) are usually 
huge in size, and therefore, addition of new data and 
consequent operations such as index updating would 
certainly have impact in OLAP systems’ 
performance and data availability. Our work focuses 
on the DW perspective, presenting an efficient 
methodology for continuous data integration ETL 
loading process and techniques on how to adapt the 
DW’s schemas for supporting continuous data 
integration and adapting OLAP queries for using all 
the integrated data. 

The remainder of this paper is as follows. In 
section 2, we refer background and related work in 
real-time data warehousing. Section 3 explains our 
methodology, and in section 4 we present an 
experimental evaluation and demonstrate its 
functionality. The final section contains concluding 
remarks and future work. 

2 RELATED WORK 

The DW needs to be updated continuously to reflect 
source data updates. DW users are often not only 
interested in monitoring current information, but 
also in analyzing the history to predict future trends. 
Therefore, real-world DWs are often temporal, but 
their temporal support is implemented in an ad doc 
manner that is difficult to automate. In practice, 
many operational source systems are nontemporal, 
i.e., they store only the current state of their data, not 
the complete history. So far, research has mostly 
focused on the problem of maintaining the 
warehouse in its traditional periodically update setup 
(Yang, 2001B) (Labio, 2000). In a different line of 
research, data streams (Abadi, 2003) (Babu, 2001) 
(Lomet, 2003) (Srivastava, 2004) appear as a 
potential solution. Nevertheless, research in data 
streams has focused on topics concerning the front-
end, such as on-the-fly computation of queries 
without a systematic treatment of the issues raised at 
the back-end of a DW (Karakasidis, 2005). Much of 
the recent work dedicated to RTDW is focused on 
conceptual ETL modelling (Vassiliadis, 2001) 
(Bruckner, 2002A) (Bouzeghoub, 1999) (Simitsis, 
2005), lacking the presentation of specific 
extraction, transformation and loading algorithms 
along with their consequent OLTP and OLAP 
performance issues. Our contribution is the 
presentation of a methodology which efficiently 
enables continuous data integration in the DW and 
aims to minimize its negative impact in OLAP end 
user query workload executions. The issues focused 
in this paper concern the DW end of the system, 
referring how to perform the loading processes of 
ETL procedures and the DW’s data area usage for 
efficiently supporting continuous data integration. 
Extracting and transforming of operational (OLTP) 
source systems data are not the focus of this paper. 

In (Bouzeghoub, 1999) the authors describe an 
approach which clearly separates the DW 
refreshment process from its traditional handling as 
a view maintenance or bulk loading process. They 
provide a conceptual model of the process, treated as 
a composite workflow, but they do not describe how 
to efficiently propagate the date. In (Vassiliadis, 
2001), authors describe ARKTOS ETL tool, capable 
of modeling and executing practical ETL scenarios 
by providing explicit primitives for capturing 
common tasks (such as data cleaning, scheduling 
and data transformations). ARKTOS uses a 
declarative language, offering graphical and 
declarative features for defining DW 
transformations optimizes execution of complex 
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sequences for transformation and cleansing tasks. 
Recently, (Kuhn, 2003) presents a zero-delay DW 
with Gong, which assists in providing confidence in 
the data available to every branch of the 
organization. Gong, a Tecco product (Binder, 2003), 
offers data uni/bi-directional replication between 
homogeneous and heterogeneous distributed DBs. 
Gong enables zero-delay business, assisting in daily 
running and decision making in the organization. 

3 OUR METHODOLOGY 

The main problems in maximizing functionality of a 
RTDW are related with ETL processes needed for 
integrating new data. These processes lead to two 
major problems: (1) a significant amount of 
processing time is necessary for extracting and 
transforming OLTP data, that affects the processing 
speed and availability of the OLTP source systems; 
(2) DW updating operations are complex and time 
consuming, lowering its availability to OLAP 
applications and end users. The major issue is how 
to enable continuous data integration, assuring that it 
minimizes negative impact in main characteristics of 
the system, such as: 

• OLAP analytical most recent data availability; 
• OLAP analytical environments’ response time; 
• OLTP operational systems’ response time. 
Therefore, we are motivated by the following 

requirements in real-time data warehousing: 
• Maximizing the freshness of DW data by 

efficiently and rapidly integrating most recent 
OLTP data, preferably with continuous data 
integration; 

• Minimizing OLAP instructions response time 
while simultaneously performing continuous 
data integration; 

From the DW side, updating huge tables and 
related structures (such as indexes, materialized 
views and other integrated components) makes 
executing OLAP query workloads simultaneously 
with continuous data integration a very difficult 
task. Our methodology shows how to minimize the 
processing time and workload required for update 
processes. We also present how to adapt those 
OLAP workloads in order to take advantage of all 
the most recent data and minimize the impact caused 
by its integration in its execution time. Finally, our 
methodology allows to facilitate the DW off-line 
update time window, because the extraction and 
transformation issues are no longer present at that 
moment, for the data already lies within the DW and 

all ETL data extraction and/or transformation 
routines have been executed during the continuous 
data integration. Furthermore, the data structure of 
the replicated tables is exactly the same as the 
original DW schema. This minimizes the time 
window for packing the data area, since its update 
represents a one step process by resuming itself as a 
cut-and-paste operation from the temporary tables to 
the original ones, as we shall demonstrate further on. 

Our methodology is focused on four major areas: 
(1) data warehouse schema adaptation; (2) ETL 
loading procedures; (3) OLAP query adaptation; and 
(4) DW database packing and reoptimization. 

3.1 Adapting the DW Schema 

For the area concerning DW schema adaptation, we 
adopt the method presented in Figure 1. By 
supplying empty or small sized tables without any 
kind of constraint or attached physical file related to 
it for supporting the record insertion operations 
inherent to continuous data integration, we 
guarantee the simplest and fastest logical and 
physical support for achieving our goals (Kimball, 
2005). Transactional OLTP records should be 
loaded into the DW sequentially. The unique 
sequential identifier attribute present in each 
temporary table will allow discarding the rows 
which have been replaced for the identified OLTP 
transaction, as we shall demonstrate further on. 

Data warehouse schema adaptation method for 
supporting real-time data warehousing: Creation of 
an exact structural replica of all the tables of the data 
warehouse that could eventually receive new data. 
These tables (referred from now on as temporary 
tables) are to be created empty of contents, with no 
defined indexes, primary key, or constraints of any 
kind, including referential integrity. For each table, an 
extra attribute must be created, for storing a unique 
sequential identifier related to the insertion of each row 
within the temporary tables. 

Figure 1: Method for adapting the data warehouse’s 
schema for supporting our real-time methodology. 

3.2 ETL Loading Procedures 

To refresh the DW, once the ETL application has 
extracted and transformed the OLTP data into the 
correct format for loading the data area, it shall 
proceed immediately in inserting that record as a 
new row in the correspondent temporary table, 
filling the unique sequential identifier attribute with 
the autoincremented number. This number starts at 1 
for the first record to insert in the DW after 
executing the packing and reoptimizing technique 
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(explained in section 3.4), and then autoincremented 
by one unit for each record insertion. The algorithm 
for continuous data integration by the ETL tool is 
similar to Figure 2. 

Trigger for each new record in OLTP system 
   Extract new record from OLTP system 
   Clean and transform the OLTP data, shaping it into 

the data warehouse destination table’s format 
   Increment record insertion unique counter 
   Create a new record in the data warehouse 

temporary destination table 
   Insert the data in the temporary destination table’s 

new record, along with the value of the record 
insertion unique counter 

End_Trigger 

Figure 2: Continuous data integration algo in ETL tool. 

3.3 OLAP Query Adaptation 

Suppose a sales data warehouse has the schema 
illustrated in Figure 3, with two dimensional tables 
(Store and Customer, representing business 
descriptor entities) and one fact table (Sales, storing 
business measures aggregated from transactions). 
This DW stores sales value per store, per customer, 
per day.  

 

 

 

 

Figure 3: Sample sales data warehouse schema. 

Consider the OLAP query presented in Figure 4, 
used for calculating the total revenue per store in the 
last seven days. 
SELECT S_StoreKey,  
       Sum(S_Value) AS Last7DaysSaleVal 
FROM Sales 
WHERE S_Date>=Date()-7  
GROUP BY S_StoreKey 

Figure 4: OLAP query for calculating the total revenue per 
store in last seven days. 

The modified schema for supporting RTDW 
based on our methodology is illustrated in Figure 5. 

To take advantage of our schema modification 
method and include most recent data in the OLAP 
query response, the queries should be rewritten 
taking under consideration the following rule: the 
FROM clause should join all rows from the required 
original and temporary tables with relevant data, 

excluding all fixed restriction predicate values from 
the WHERE clause whenever possible. 

Figure 5: Sample sales data warehouse schema modified 
for supporting real-time data warehousing. 

The modification for the instruction presented in 
Figure 4 is illustrated in Figure 6, respecting our 
methods. 
SELECT S_StoreKey, 
       Sum(S_Value) AS Last7DaysSaleVal 
FROM (SELECT S_StoreKey, 
             S_Value FROM Sales 
      WHERE S_Date>=Date()-7)  
      UNION ALL 
     (SELECT STmp_StoreKey, 
             STmp_Value FROM SalesTmp 
             WHERE STmp_Date>=Date()-7) 
GROUP BY S_StoreKey 

Figure 6: OLAP query for calculating the total revenue per 
store in last seven days. 

It can be seen that the relevant rows from both 
issue tables are joined for supplying OLAP query 
answer, filtering the rows in the resulting dataset 
according to its restrictions in the original 
instruction. 

3.4 Packing and Reoptimizing the DW 

Since the data is integrated within tables without 
access optimization of any kind that could speed up 
querying, such as indexes, it is obvious that it 
implies a decrease of performance. Due to the 
volume of occupied physical space, after many 
insertions the performance becomes too poor to be 
considered acceptable. To regain performance 
optimization it is necessary to execute a pack routine 
for updating the original DW schema tables using 
the records in the temporary tables, and recreate 
those temporary tables empty of contents, along 
with rebuilding original tables’ indexes and 
materialized views, so maximum processing speed is 
obtained once more.  

Customer

C_CustKey
C_Name
C_Address
C_PostalCode
C_Phone
C_EMail

Sales

S_StoreKey
S_CustomerKey
S_Date
S_Value

Store

St_StoreKey
St_Description
St_Address
St_PostalCode
St_Phone
St_EMail
St_Manager

CustomerTmp

CTmp_CustKey
CTmp_Name
CTmp_Address
CTmp_PostalCode
CTmp_Phone
CTmp_EMail
CTmp_Counter

SalesTmp

STmp_StoreKey
STmp_CustomerKey
STmp_Date
STmp_Value
STmp_Counter

StoreTmp

StTmp_StoreKey
StTmp_Description
StTmp_Address
StTmp_PostalCode
StTmp_Phone
StTmp_EMail
StTmp_Manager
StTmp_Counter

Customer

C_CustKey
C_Name
C_Address
C_PostalCode
C_Phone
C_EMail

Sales

S_StoreKey
S_CustomerKey
S_Date
S_Value

Store

St_StoreKey
St_Description
St_Address
St_PostalCode
St_Phone
St_EMail
St_Manager
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For updating the original DW tables, the rows in 
the temporary tables should be aggregated according 
to the original tables’ primary keys, maintaining the 
rows with highest unique counter attribute value for 
possible duplicate values, for they represent the 
most recent records. The time needed for executing 
these procedures represents the only period of time 
in which the DW in unavailable to OLAP tools and 
end users, for they need to be executed exclusively. 
The appropriate moment for doing this may be 
determined by the DW Administrator, or 
automatically, considering parameters such as a 
fixed number of records in temporary tables, the 
amount of physically occupied space, or yet a 
predefined period of time. The definition of this 
moment is not object of discussion in this paper. 

3.5 Final Remarks on Our 
Methodology 

Notice that only record insertions are used for 
updating the DW for all related transactions in the 
OLTP source systems. Since this operation does not 
require record locking (except for the new appended 
record itself) nor search operations for previously 
stored data, the time required to do it is minimal. 
The issue of record locking is strongly enforced by 
the fact that the referred tables do not have any 
indexes or primary keys, implying no record 
locking, except for the appended record itself. Since 
they do not have constraints of any sort, including 
referential integrity and primary keys, there is no 
need to execute time consuming tasks such as index 
updating or referential integrity cross checks. This 
allows us to state that the data update time window 
is minimal for insertion of new data, maximizing its 
availability, and contributing to increase the DW’s 
global availability and minimize negative impact in 
its performance. 

The amount of “information buckets” which the 
data passes through in the ETL Area is also 
minimal, for temporary storage is almost not needed. 
Instead of extracting a large amount of OLTP data, 
what happens in “traditional” DW bulk loading, the 
volume of extracted and transformed real-time data 
is very reduced (few dozen bytes), since it consists 
of only one transaction per execution cycle, so we 
may assume that the extraction and transformation 
phase will be cleaner and more time efficient. 

4 EXPERIMENT EVALUATION 

Recurring to TPC-H decision support benchmark 
(TPC-H) we tested our methodology creating 5GB, 
10GB and 20GB size DWs in ORACLE 10g 
RDBMS (Oracle, 2005). We also tested the system’s 
response executing 1, 2, 4, 8 and 16 simultaneous 
query workloads to see how it reacted according to 
the number of simultaneous users executing those 
workloads. We used an Intel Celeron 2.8GHz with 
2GB of SDRAM and a 7200rpm 160GB hard disk. 
The modified schema according to our methodology 
can be seen in Figure 7. Tables Region and Nation 
are not included as temporary tables because they 
are fixed-size and therefore do not receive new data. 

 

 

 

 

 

 

 

 

 

 

Figure 7: TPC-H schema modified for supporting RTDW. 

The selected query workloads, TPC-H queries 1, 
8, 12 and 20 (TPC-H), were executed in random 
order for each simultaneous user. The time interval 
between transactions (Transac. Interval) for each 
scenario is illustrated in tables 1 to 3. Each new 
transaction represents insertion of an average of four 
records in LineItemTmp and one row in each of the 
other temporary tables, continuously integrated for a 
period of 8 hours. Supporting RTDW capability in 
all scenarios is somewhat between 6.9% and 28.6% 
of query workload execution time, as shown in 
figures 8 to 10, reporting percentage of workloads 
execution overtime using RTDW, relatively to 
execution against standard workload without 
continuous integration.  

CustomerTmp

CT_CustKey
CT_Name
CT_NationKey
Other Attributes
CT_Counter

SupplierTmp

ST_SuppKey
ST_Name
ST_NationKey
Other Attributes
ST_Counter

PartTmp

PT_PartKey
PT_Name
Other Attributes
PT_Counter

PartSuppTmp

PST_PartKey
PST_SuppKey
Other Attributes
PST_Counter

OrdersTmp

OT_OrderKey
OT_CustKey
Other Attributes
OT_Counter

LineItemTmp

LT_OrderKey
LT_LineNumber
LT_PartKey
LT_SuppKey
Other Attributes
LT_Counter

Customer

C_CustKey
C_Name
C_NationKey
Other Attributes

Supplier

S_SuppKey
S_Name
S_NationKey
Other Attributes

Part

P_PartKey
P_Name
Other Attributes PartSupp

PS_PartKey
PS_SuppKey
Other Attributes

Nation

N_NationKey
N_Name
N_RegionKey
Other Attributes Region

R_RegionKey
R_Name
Other Attributes

Orders

O_OrderKey
O_CustKey
Other Attributes

LineItem

L_OrderKey
L_LineNumber
L_PartKey
L_SuppKey
Other Attributes
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Table 1: TPC-H 5GB data warehouse transaction real-time 
integration characteristics. 

 TPC-H 5GB Data Warehouse 
 Scenario 

A 
Scenario 

B 
Scenario 

C 
# Transactions 3.072 6.205 12.453 
Transac. Interval 9,38 sec 4,64 sec 2,31 sec 

Table 2: TPC-H 10GB data warehouse transaction real-
time integration characteristics. 

 TPC-H 10GB Data Warehouse 
 Scenario 

A 
Scenario 

B 
Scenario 

C 
# Transactions 6.192 12.592 25.067 
Transac. Interval 4,65 sec 2,29 sec 1,15 sec 

Table 3: TPC-H 20GB data warehouse transaction real-
time integration characteristics. 

 TPC-H 20GB Data Warehouse 
 Scenario 

A 
Scenario 

B 
Scenario 

C 
# Transactions 12.416 25.062 50.237 
Transac. Interval 2,32 sec 1,15 sec 0,57 sec 
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Figure 8: TPC-H 5GB DW overtime percentages. 
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Figure 9: TPC-H 10GB DW overtime percentages. 
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Figure 10: TPC-H 20GB DW overtime percentages.

5 CONCLUSIONS 

This paper refers the requirements for RTDW and 
presents a methodology for supporting it by 
enabling continuous data integration while 
minimizing impact in query execution on the DW 
end. This is done by data structure replication and 
adapting query instructions to take advantage of the 
new real-time data warehousing schemas.  

We have shown its functionality, recurring to a 
simulation using the TPC-H benchmark, performing 
continuous data integration at various time rates 
against the execution of various simultaneous query 
workloads, for DWs with different scale sizes. All 
scenarios show that it is possible to achieve real-
time data warehousing performance in exchange for 
an average increase of ten to thirty percent in query 
execution time. This should be considered the price 
to pay for real-time capability within the DW.  

As future work we intend to develop an ETL tool 
integrating this methodology. There is also a huge 
space of research for optimizing query instructions 
used. 
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