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Abstract: SparQL is a query language developed by the W3C, the purpose of which is to query a data set in RDF 
representing a directed graph. Many free available or commercial products already support SparQL 
processing. Current index-based optimizations integrated in these products typically construct indices on the 
subject, predicate and object of an RDF triple, which is a single datum of the RDF data, in order to speed up 
the execution time of SparQL queries. In order to query the directed graph of RDF data, SparQL queries 
typically contain many joins over a set of triples. We propose to construct and use an index of precomputed 
joins, where we take advantage of the homogenous structure of RDF data. Furthermore, we present 
experimental results, which demonstrate the achievable speed-up factors for SparQL processing. 

1 INTRODUCTION 

Semantic Web applications typically use the 
Resource Description Format (RDF) (Brickley and 
Guha, 2000) as data format. RDF data represents a 
directed graph, which consists of triples (s, p, o), 
where the subjects s and the objects o of the triples 
describe the nodes of the directed graph and the 
predicates p of the triples the arcs. 
 The World Wide Web Consortium (W3C) 
develops SparQL (see (W3Ca, 2006), (W3Cb, 2006) 
and (W3Cc, 2006)) as query language for RDF data, 
which currently got the status of a candidate 
recommendation. 
 The basic concept of SparQL queries are triple 
patterns, where variables are bound to the subjects, 
predicates or objects of triples of the RDF data, or 
literals at the place of the subject, predicate or object 
are constraints to the triples of the RDF data. 
Common variables over two triple patterns express a 
join and are the typical way to formulate a query in 
order to retrieve a subgraph of the directed graph of 
the RDF data.  

 In recent years, RDF storage systems, which 
support or plan to support SparQL, have occurred 
like Jena (Wilkinson et al., 2003), Sesame 
(Broekstra, Kampman and van Harmelen, 2002), 
rdfDB (Guha, 2006), Redland (Beckett, 2002), 
Kowari (Northrop Grumman Corporation, 2006), 
RDF Suite (Alexaki et al., 2001) and Allegro (Franz 
Inc., 2006). 
 Many of these systems use an index in order to 
faster access RDF data when executing SparQL 
queries and thus speed up SparQL processing. In 
comparison to the indices used in these systems, we 
propose an index of precomputed joins in order to 
speed up the execution of joins in SparQL queries. 
 We show by an experimental evaluation that 
indices of precomputed joins are practical and speed 
up SparQL processing. 
 We present our proposed approach in Section 2, 
and we describe a performance analysis comparing 
our approach with existing systems in Section 3. 
Section 4 deals with the Related Work. We end up 
with the summary and conclusions in Section 5.  
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2 INDEX OF PRECOMPUTED 
JOINS 

We present a short introduction to RDF and SparQL 
in Section 2.1. Section 2.2 describes how to use the 
proposed index structure to answer SparQL queries 
containing one join. Section 2.3 presents the 
algorithm to construct the index. Section 2.4 extends 
our approach to handle multiple joins over several 
triple patterns. 

2.1 Introduction to RDF and SparQL 

RDF data (Brickley and Guha, 2000) contains a set 
of triples (s, p, o), where s is called the subject of the 
triple, p the predicate of the triple, and o the object 
of the triple. The RDF data of Figure contains three 
triples, the first of which associates 
<http://example.org/book/book1> (the 
subject) with 
<http://purl.org/dc/elements/1.1/ti
tle> (the predicate) and "SPARQL Tutorial" 
(the object). 

SPARQL (see (W3Ca, 2006), (W3Cb, 2006) and 
(W3Cc, 2006)) is a query language for retrieving 
information from RDF graphs stored in semantic 
storage systems. SparQL will be increasingly 
important as query language for RDF as it has 
recently reached a candidate recommendation of the 
W3C. The outline query model is graph patterns 
expressed by simple triple patterns. It does not use 
rules and is not path based. 

We briefly introduce SparQL by a simple 
example. Figure shows a SPARQL query containing 
one join to find those pairs of books and their titles, 
which have the same title, from the RDF data. The 
query consists of two parts, the SELECT  clause and 
the WHERE clause. The SELECT clause identifies 
the variables to appear in the query results (here ?x, 
?y and ?title). The result-bindings of the 
variables must be distinct if the SELECT clause 
contains the optional DISTINCT keyword as in the 
example of Figure. The WHERE clause has two 
triple patterns, “?x 
<http://purl.org/dc/elements/1.1/ti
tle> ?title.” and “?y 
<http://purl.org/dc/elements/1.1/ti
tle> ?title.”. The first position (?x and ?y 
respectively) in the triple pattern represents the 
constraints or bindings to variables for the subjects 
in the RDF data. The second position (here it is the 
literal 
<http://purl.org/dc/elements/1.1/ti
tle> in both cases) contains the constraints or 
bindings to variables for predicates of the triples of 
the RDF data, and the third (here ?title for both 
cases) contains the constraints or bindings to 

variables for the objects of the triples of the RDF 
data. The join of the query is expressed by using the 
same variable ?title in both triple patterns. 

This query is one of the simplest SparQL 
queries. There are further constructs to e.g. filter the 
results further by using comparison operators, use 
built-in functions, and set operations like the 
UNION operator. We refer the interested reader to 
(W3Cc, 2006) for a complete list and description of 
the SparQL features. 

 
<http://example.org/book/book1>  
  
<http://purl.org/dc/elements/1.1/title>  
  "SPARQL Tutorial" . 
<http://example.org/book/book2>  
  
<http://purl.org/dc/elements/1.1/title>  
  "SPARQL Tutorial" . 
<http://example.org/book/book3>  
  
<http://purl.org/dc/elements/1.1/title>  
  "Index" . 

Figure 1: RDF data. 

SELECT DISTINCT ?x,?y,?title 
WHERE 
{ 
 ?x  
   
<http://purl.org/dc/elements/1.1/title>  
   ?title . 
 ?y  
   
<http://purl.org/dc/elements/1.1/title>  
   ?title . 
} 

Figure 2: SparQl query containing one join. 

The query result (see Figure) is all the 
combinations of pairs (x, y) of books with the same 
title. 
In this paper, we focus on those queries, which 
contain one or more joins over different triple 
patterns, i.e. we directly support the subset of 
SparQL valid according to the following EBNF rule 
Start.  
Start ::= ”SELECT” “DISTINCT” var (“,” var)*  
     “WHERE” “{” triplePattern* 
“}”. 
triplePattern ::= (literal|var)  

(literal|var) 
(literal|var). 

var ::= ”?” QName. 
 

ICEIS 2007 - International Conference on Enterprise Information Systems

14



 

where literal represents a literal and QName 
represents names.  

 
X y title 

<http://example.

org/book/book1> 

<http://example.o

rg/book/book1> 

“SPARQL 
Tutoria
l” 

<http://example.

org/book/book1> 

<http://example.o

rg/book/book2> 

“SPARQL 
Tutoria
l” 

<http://example.

org/book/book2> 

<http://example.o

rg/book/book1> 

“SPARQL 
Tutoria
l” 

<http://example.

org/book/book2> 

<http://example.o

rg/book/book2> 

“SPARQL 
Tutoria
l” 

<http://example.

org/book/book3> 

<http://example.o

rg/book/book3> 

“Index” 

Figure 4: Result of the SparQL query of Figure with input 
of Figure 1. 

Note that our approach can be applied to more 
complex SparQL queries, by first retrieving the 
results of the joins by using our approach and then 
restricting the result set by applying the operations 
of the more complex SparQL constructs (e.g. 
FILTER expressions).  

2.2 Using the Index for Execution of a 
SparQL Query with One Join Over 
Two Triple Patterns 

We first deal with constructing and using the index 
of precomputed joins for one join over two triple 
patterns. We extend the approach for indices of 
precomputed joins for multi-joins over different 
triple patterns in later sections. 

  

SELECT DISTINCT ?x,?y,?title 
WHERE 
{ 
 ?y  
   
<http://purl.org/dc/elements/1.1/title>  
   ?title . 
 ?x  
   
<http://purl.org/dc/elements/1.1/title>  
   ?y . 
} 

Figure 5: Second SparQL query containing one join, 
which is equivalent to the third SparQL query in Figure 6. 

SELECT DISTINCT ?x,?y,?title 
WHERE 
{ 
 ?x  
   
<http://purl.org/dc/elements/1.1/title>  
   ?y . 
 ?y  
   
<http://purl.org/dc/elements/1.1/title>  
   ?title . 
} 

Figure 6: Third SparQL query containing one join, which 
is equivalent to the second SparQL query in Figure 5. 

Without considering symmetric cases, we have 
to consider 9 different cases of joins in two triple 
patterns (see Figure). See Figure and Figure for 
examples of SparQL queries of the case 3 and of the 
case 7 respectively. Note that at each place of the 
subjects, predicates and objects of the two triple 
patterns can be either a literal or a variable. Join-
partners are fixed by a common variable. The 
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(1) (2) (3)

s p o1.st Triple
Pattern

s p o2.nd Triple
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Pattern
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Figure 3: Different join cases for one join over two triple patterns. 
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common variable of the two triple patterns 
determines the different cases in Figure. 

Note that the executions of the queries presented 
in Figure and in Figure retrieve the same results for 
the bindings of the variables. They are equivalent 
queries except of the order of their triple patterns. 
Thus, case 3 and case 7 (and analogously case 2 and 
case 4, and case 6 and case 8) of Figure are 
symmetric cases, where only the order of the triple 
patterns are exchanged, which does not influence the 
final result. Therefore, we only have to consider the 
cases 1, 2, 3 5, 6 and 9, when we exchange the order 
of triple patterns for the cases 4, 7 and 8. 

Keys are unambiguous objects to identify the 
entries in indices. Indices are data structures and 
methods to administer pairs of keys and their 
corresponding entries, which are here the results of 
the joins. Especially the access to the entry by using 
the key should be fast. 

Variables in the triple patterns specify which of 
the subjects, predicates and objects of two 
considered triples of the RDF data are bound to the 
variables. Literals in triple patterns are fixed 
constraints in the triple patterns. Thus, the sequence 
of literals of the two triple patterns is the key for the 
triples of the RDF data. If we do not consider the 
position of the literals in the triple patterns, we can 
only ambiguously retrieve the relevant triples of the 
RDF data, as we can retrieve in general the same key 
for different constraints. For example, consider two 
queries Q1 and Q2.  Let us assume that Q1 has the 
literals L1 and L2 at the subject and object position 
of the first triple pattern, and Q2 has the literals L1 
and L2 at the predicate and object position of the 
second triple pattern. It is obvious that we should 
retrieve different results for both queries, but we 
determine the same key <L1, L2> from both queries 
Q1 and Q2 and we are thus not able to distinguish 
these results by the “key”. We propose to use 
different indices for all possible situations of 
positions of literals by determining the current index 
from the positions of literals in the currently 
considered query. 

As we consider queries containing one join 
expressed by a common variable, we only have to 
consider four relevant positions in the two triple 
patterns together. Figure contains the relevant 
positions for the different join cases of Figure 
(except the eliminated symmetric join cases 4, 7 and 
8). Thus, we have to construct and use 24=16 
different indices for each join case of Figure except 
the eliminated symmetric join cases 4, 7 and 8. 
Therefore, we have to administer 6*24=96 different 
indices, which is practical as shown in the 
experimental evaluation. We can determine the 
index for a specific query by computing Σi=0

3 Bi*2i, 
where Bi=1 if there is a literal at the position i (see 

Figure) in the considered triple patterns without the 
join partners as declared in Figure, otherwise Bi is 0.  

   
 Position 0 Position 1 Position 2 Position 

3 
Case 1 p1 o1 p2 o2 
Case 2 p1 o1 s2 o2 
Case 3 p1 o1 s2 p2 
Case 5 s1 o1 s2 o2 
Case 6 s1 o1 s2 p2 
Case 9 s1 p1 s2 p2 

Figure 7: The relevant positions 0 to 3 for the join cases of 
Figure 3 except the eliminated symmetric cases, where sx 
represents the subject position, px the predicate position 
and ox the object position in triple pattern x∈{1, 2}. 

After the determination of the correct index, we 
can access the correct triple set for the two triple 
patterns in the index by using the key oi=0

3 Li, where 
o is the concatenation operator for keys and Li is the 
literal at the position i (see Figure) in the considered 
triple patterns if there is a literal, otherwise Li is the 
empty key. For example, we compute the key 
“<http://purl.org/dc/elements/1.1/title>|<ht
tp://purl.org/dc/elements/1.1/title>” from 
the query of Figure. 

When using a hash map as index, we can retrieve 
the results of a join over two triple patterns in 
constant time. 

If there are two or three joins in two triple 
patterns, then we can use the index for one join and 
additionally compare the constraints of the second or 
third on the retrieved triple set, or construct and use 
also indices for these (more seldom) cases. 

If there are two or more joins over more than 
two different triple patterns, one approach is to split 
the joins into several (part) joins over two triple 
patterns, access their results separately by using our 
approach, each access saves the processing time of 
one join, and then joining the results.   

Another approach is to extend our approach for 
multi-joins over different triple patterns, which we 
present in Section 2.4.      

2.3 Constructing the Index 

In order to construct the index from the input RDF 
data, we first construct three indices to access the 
triples of common subjects, predicates and objects. 
For this purpose, we iterate one time through all 
triples of the input RDF data set and add the current 
triple into three hash maps, where we use the subject 
as key for the first hash map, the predicate as key for 
the second hash map, and the object as key for the 
third hash map. Note that these hash maps not only 
store one triple for one key, but a list of triples with 
these keys. The construction of each of these three 
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hash maps can be done in O(n), where n is the 
number of triples in the input RDF data set. 
Furthermore, note that these three indices could be 
also used to retrieve the corresponding triples of one 
triple pattern of a query, where the key is one literal 
at the subject, predicate or object position of the 
triple.  
  

Hash-
entry 
for 

First Triple Second Triple 

<http://example.o

rg/book/book1> 

<http://purl.org/

dc/elements/1.1/t

itle> 

“SparQL Tutorial” 

<http://example.o

rg/book/book1> 

<http://purl.org/

dc/elements/1.1/t

itle> 

“SparQL Tutorial” 

<http:/

/exampl

e.org/b

ook/boo

k1> 

<http://example.o

rg/book/book1> 

<http://purl.org/

dc/elements/1.1/t

itle> 

“SparQL Tutorial” 

<http://example.o

rg/book/book2> 

<http://purl.org/

dc/elements/1.1/t

itle> 

“SparQL Tutorial” 

<http://example.o

rg/book/book2> 

<http://purl.org/

dc/elements/1.1/t

itle> 

“SparQL Tutorial” 

<http://example.o

rg/book/book1> 

<http://purl.org/

dc/elements/1.1/t

itle> 

“SparQL Tutorial” 

<http:/

/exampl

e.org/b

ook/boo

k2> 

<http://example.o

rg/book/book2> 

<http://purl.org/

dc/elements/1.1/t

itle> 

“SparQL Tutorial” 

<http://example.o

rg/book/book2> 

<http://purl.org/

dc/elements/1.1/t

itle> 

“SparQL Tutorial” 

<http:/

/exampl

e.org/b

ook/boo

k3> 

<http://example.o

rg/book/book3> 

<http://purl.org/

dc/elements/1.1/t

itle> 

“Index” 

<http://example.o

rg/book/book3> 

<http://purl.org/

dc/elements/1.1/t

itle> 

“Index” 

Figure 8: Example for the constructed hash map for the 
case of join case 9 (see Figure 3) and for the position of 
one literal at the subject position of the first triple pattern, 
where the input RDF data is presented in Figure 1. 

Afterwards, we construct the 6*24=96 different 
indices by initializing one hash map containing lists 
of pairs of triples as entries for each different index 
representing one case of join partners and positions 
of literals in the considered two triple patterns. 
 We iterate again through all triples of the input 
RDF data set. We consider recursively all cases of 
join partners and positions of literals and determine 
the possible second triples in constant time by using 
the hash maps, where the key is either the subject, 
predicate or object of the triple.  

 Figure contains an example for the constructed 
hash map for the case of join case 9 (see Figure) and 
for the position of one literal at the subject of the 
first triple pattern, where the input RDF data is 
presented in Figure. 
 The construction of each of these 96 different 
indices can be done in O(n2), where n is the number 
of triples in the input RDF data set, as we iterate one 
time through all triples in the input RDF data set and 
for each triple, we add at most n different triples to 
the considered index. 
 Note that the construction of the index is done 
only once after reading the input RDF data set and 
does not need to be repeatedly done for each query. 
Then a join over two triple patterns of a query can be 
determined within constant time.  

2.4 Extending the Approach for Multi-
Joins over Multiple Different Triple 
Patterns 

We extend now our approach for multi-joins over 
multiple different triple patterns. 
 We consider now n-1 joins between n triple 
patterns (see Figure). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We can express these n-1 joins by a sequence 
<x1, …, x2*(n-1)>, where x2*(i-1)∈{1,2,3} indicates the 
join partner (1=subject, 2=predicate and 3=object) of 
the i-th triple pattern of the join with the previous 
triple pattern i-1, and x2*(i-1)+1∈{1,2,3} indicates the 
join partner of the i-th triple pattern of the join with 
the following triple pattern i+1. Thus, we have  
32*(n-1) different cases for joins between these n triple 
patterns including those cases, which are equivalent 
except of the order of their triple patterns. The 
symmetric cases are those cases, where for all i∈{1, 
…, n-1}:xi=x2*(n-1)+1-i. Therefore, the number of 
symmetric cases is 3n-1. Altogether, the number of 
joins without those cases, which are equivalent 
except of the order of their triple patterns, is half of 

Figure 9: n-1 joins over n different triple patterns. 
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all cases without the symmetric cases plus the 
symmetric cases, i.e. (32*(n-1)-3n-1)/2 + 3n-1 = 
3n-1*(1/2)*(3n-1+1). 

The number of literal and variable positions 
without those positions of the join partners is at most 
2 for every triple pattern. Thus, we have at most 2n*2 
positions, which are bounded or unbounded and 
which have to be considered in a separate index 
each. 

Altogether, we have to administer  
2n*2*(3n-1*(1/2)*(3n-1+1)) indices for n-1 joins 
between n triple patterns, which is not practical for 
n≥3. Future work will cover approaches to reduce 
the number of indices used for multi-joins over 
different triple patterns. Furthermore, future work 
will cover to develop disk-based indices, where we 
can access the entry of a hash index with one disk-
access. Also incremental indices, where we 
incrementally extend the index whenever we 
compute a new join, such that we avoid the time-
consuming initialization of the indices and where 
only those joins are computed, which are really 
needed, is on the agenda of future work.  

3 PERFORMANCE EVALUATION 

We present the experimental evaluation in this 
section. We describe the experimental environment 
in Section 3.1 and present the experimental results in 
Section 3.2. 

3.1 Experimental Environment  

The test system for all experiments is a 2 Gigahertz 
Intel Pentium M processor with 1 Gigabytes main 
memory, where we use Windows XP as operation 
system and Java version 1.5. Furthermore, we use 
Jena (Wilkinson et al., 2003) and Allegro (Franz 
Inc., 2006) as RDF storage systems to compare the 
results of our approach with those of existing 
systems.   

3.2 Experimental Results  

We have generated RDF data in XML representation 
with 1, 200, 400, 600, 800 and 1000 triples. We have 
generated RDF data, where (a) no predicates of the 
triples are the same, and (b) 25% of the predicates 
are the same. For an example, see Figure for 10 
triples with 25% same predicates. The used SparQL 
query is represented in Figure, which is a query of 
join case 5, where we do not have any literals in the 
query. 
 
<http://groppe.org/elem1> 
<http://groppe.org/elem0> 

<http://groppe.org/elem1>.  
<http://groppe.org/elem2> 
<http://groppe.org/elem0> 
<http://groppe.org/elem2>.  

<http://groppe.org/elem3> 
<http://groppe.org/elem3> 
<http://groppe.org/elem3>.  

<http://groppe.org/elem4> 
<http://groppe.org/elem4> 
<http://groppe.org/elem4>.  

<http://groppe.org/elem5> 
<http://groppe.org/elem5> 
<http://groppe.org/elem5>.  

<http://groppe.org/elem6> 
<http://groppe.org/elem6> 
<http://groppe.org/elem6>.  

<http://groppe.org/elem7> 
<http://groppe.org/elem7> 
<http://groppe.org/elem7>.  

<http://groppe.org/elem8> 
<http://groppe.org/elem8> 
<http://groppe.org/elem8>.  

<http://groppe.org/elem9> 
<http://groppe.org/elem9> 
<http://groppe.org/elem9>.  

<http://groppe.org/elem10> 
<http://groppe.org/elem10> 
<http://groppe.org/elem10>.  

<http://groppe.org/elem1> 
<http://groppe.org/elem0> 

<http://groppe.org/elem1>.   

Figure 10: Generated RDF data for number of elements 10 
and 25% elements with the same predicate. 

Figure represents the time used to load the 
RDF/XML input files into the Jena and Allegro 
system, and Figure 13 represents the time used by 
our approach to construct the index. Figure 14 
contains the number of elements of the result set of 
the query of Figure 11. Figure 15, Figure 16 and 
Figure 17 represent the execution times of the Jena 
evaluator, the Allegro system and our approach for 
the SparQL query of Figure. Our approach is the 
fastest and needs less than 1 millisecond for the 
query for all different input RDF/XML files. The 
Allegro system needs most time and already 
generates out-of-memory errors for input files with 
400 triples. Note that the Allegro system provides a 
client server system, where the data has to be 
transferred from the server to the client even in the 
case that the client and the server run on the same 
computer. Thus, in comparison to the Jena evaluator 
and our approach, using the Allegro system needs to 
iterate at least one time through the whole result set, 
which we neglect when using the Jena evaluator and 
our approach.  
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Select DISTINCT * where 
{  
  ?x ?y ?z.  
?a ?y ?b. 

} 

Figure 11: Used SparQL query in the experiments. 
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Figure 12: Time used to load RDF/XML input file. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Time used to construct the index for 0% and 
25% same predicates in the input RDF data. 

4 RELATED WORK 

(Matono et al., 2003) presents an indexing scheme 
for RDF and RDF Schema based on Suffix Arrays of 
determined path expressions, which represent the 
data (and schema). Whereas the search for the 
optimized execution of SparQL queries in the suffix 
arrays require runtime O(log2(n+1)), our approach 
accesses the results of joins in constant time O(1).  
(Barton, 2004) generates a forest of trees annotated 
with additional information at those nodes of the 
original RDF data, which do not fulfil the forest 
requirement (and lead to a graph). However, the 
approach is used to find possible paths between two 
given nodes and thus is not directly usable for 
SparQL processing in the form it has been proposed. 
 (Becket, 2002), (Stuckenschmidt et al., 2004) 
and (Harth and Decker, 2005) present the used 
indices for different RDF storage systems. However, 
they only consider indices over triples and not over 
two or more triples containing a join. 
 In comparison to all other approaches, we focus 
on the optimized execution of SparQL queries with 
one or more joins. 
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Figure 17: Execution times of the Allegro system for 
0% and 25% same predicates in the input RDF data. 
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Figure 16: Execution times of Jena in comparison to 
our approach for input data with 25% same predicates. 
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Figure 14: Number of elements in the result set for 0% and 
25% same predicates in the input RDF data. 
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5 SUMMARY AND 
CONCLUSIONS 

SparQL seems to be the upcoming query language 
for RDF data. Queried subgraphs of the input RDF 
data are formulated by using joins over single triple 
patterns. In this paper, we focus on the optimization 
of the execution of joins in SparQL queries by using 
indices. After the construction of the indices, we can 
access the result for one join over two triple patterns 
of the query in constant time, when using hash maps 
for the indices. 
 In the performance evaluation, we compare the 
results of the execution times of our prototype with 
the execution time of existing systems. 
 Future work covers to use a disk-based index, 
approaches to reduce the number of indices, 
incremental indices and advanced techniques for 
indices of precomputed multi-joins over several 
triple patterns.   
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