
USING AN INDEX OF PRECOMPUTED JOINS IN ORDER TO
SPEED UP SPARQL PROCESSING

Sven Groppe
 Institute of Information Systems, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany

Jinghua Groppe
Kahlhorststrasse 36a, D-23562 Lübeck, Germany

Volker Linnemann
Institute of Information Systems, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany

Keywords: SparQL, RDF, Optimization, Index, Joins.

Abstract: SparQL is a query language developed by the W3C, the purpose of which is to query a data set in RDF
representing a directed graph. Many free available or commercial products already support SparQL
processing. Current index-based optimizations integrated in these products typically construct indices on the
subject, predicate and object of an RDF triple, which is a single datum of the RDF data, in order to speed up
the execution time of SparQL queries. In order to query the directed graph of RDF data, SparQL queries
typically contain many joins over a set of triples. We propose to construct and use an index of precomputed
joins, where we take advantage of the homogenous structure of RDF data. Furthermore, we present
experimental results, which demonstrate the achievable speed-up factors for SparQL processing.

1 INTRODUCTION

Semantic Web applications typically use the
Resource Description Format (RDF) (Brickley and
Guha, 2000) as data format. RDF data represents a
directed graph, which consists of triples (s, p, o),
where the subjects s and the objects o of the triples
describe the nodes of the directed graph and the
predicates p of the triples the arcs.
 The World Wide Web Consortium (W3C)
develops SparQL (see (W3Ca, 2006), (W3Cb, 2006)
and (W3Cc, 2006)) as query language for RDF data,
which currently got the status of a candidate
recommendation.
 The basic concept of SparQL queries are triple
patterns, where variables are bound to the subjects,
predicates or objects of triples of the RDF data, or
literals at the place of the subject, predicate or object
are constraints to the triples of the RDF data.
Common variables over two triple patterns express a
join and are the typical way to formulate a query in
order to retrieve a subgraph of the directed graph of
the RDF data.

 In recent years, RDF storage systems, which
support or plan to support SparQL, have occurred
like Jena (Wilkinson et al., 2003), Sesame
(Broekstra, Kampman and van Harmelen, 2002),
rdfDB (Guha, 2006), Redland (Beckett, 2002),
Kowari (Northrop Grumman Corporation, 2006),
RDF Suite (Alexaki et al., 2001) and Allegro (Franz
Inc., 2006).
 Many of these systems use an index in order to
faster access RDF data when executing SparQL
queries and thus speed up SparQL processing. In
comparison to the indices used in these systems, we
propose an index of precomputed joins in order to
speed up the execution of joins in SparQL queries.
 We show by an experimental evaluation that
indices of precomputed joins are practical and speed
up SparQL processing.
 We present our proposed approach in Section 2,
and we describe a performance analysis comparing
our approach with existing systems in Section 3.
Section 4 deals with the Related Work. We end up
with the summary and conclusions in Section 5.

13
Groppe S., Groppe J. and Linnemann V. (2007).
USING AN INDEX OF PRECOMPUTED JOINS IN ORDER TO SPEED UP SPARQL PROCESSING.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 13-20
DOI: 10.5220/0002374900130020
Copyright c© SciTePress

2 INDEX OF PRECOMPUTED
JOINS

We present a short introduction to RDF and SparQL
in Section 2.1. Section 2.2 describes how to use the
proposed index structure to answer SparQL queries
containing one join. Section 2.3 presents the
algorithm to construct the index. Section 2.4 extends
our approach to handle multiple joins over several
triple patterns.

2.1 Introduction to RDF and SparQL

RDF data (Brickley and Guha, 2000) contains a set
of triples (s, p, o), where s is called the subject of the
triple, p the predicate of the triple, and o the object
of the triple. The RDF data of Figure contains three
triples, the first of which associates
<http://example.org/book/book1> (the
subject) with
<http://purl.org/dc/elements/1.1/ti
tle> (the predicate) and "SPARQL Tutorial"
(the object).

SPARQL (see (W3Ca, 2006), (W3Cb, 2006) and
(W3Cc, 2006)) is a query language for retrieving
information from RDF graphs stored in semantic
storage systems. SparQL will be increasingly
important as query language for RDF as it has
recently reached a candidate recommendation of the
W3C. The outline query model is graph patterns
expressed by simple triple patterns. It does not use
rules and is not path based.

We briefly introduce SparQL by a simple
example. Figure shows a SPARQL query containing
one join to find those pairs of books and their titles,
which have the same title, from the RDF data. The
query consists of two parts, the SELECT clause and
the WHERE clause. The SELECT clause identifies
the variables to appear in the query results (here ?x,
?y and ?title). The result-bindings of the
variables must be distinct if the SELECT clause
contains the optional DISTINCT keyword as in the
example of Figure. The WHERE clause has two
triple patterns, “?x
<http://purl.org/dc/elements/1.1/ti
tle> ?title.” and “?y
<http://purl.org/dc/elements/1.1/ti
tle> ?title.”. The first position (?x and ?y
respectively) in the triple pattern represents the
constraints or bindings to variables for the subjects
in the RDF data. The second position (here it is the
literal
<http://purl.org/dc/elements/1.1/ti
tle> in both cases) contains the constraints or
bindings to variables for predicates of the triples of
the RDF data, and the third (here ?title for both
cases) contains the constraints or bindings to

variables for the objects of the triples of the RDF
data. The join of the query is expressed by using the
same variable ?title in both triple patterns.

This query is one of the simplest SparQL
queries. There are further constructs to e.g. filter the
results further by using comparison operators, use
built-in functions, and set operations like the
UNION operator. We refer the interested reader to
(W3Cc, 2006) for a complete list and description of
the SparQL features.

<http://example.org/book/book1>

<http://purl.org/dc/elements/1.1/title>
 "SPARQL Tutorial" .
<http://example.org/book/book2>

<http://purl.org/dc/elements/1.1/title>
 "SPARQL Tutorial" .
<http://example.org/book/book3>

<http://purl.org/dc/elements/1.1/title>
 "Index" .

Figure 1: RDF data.

SELECT DISTINCT ?x,?y,?title
WHERE
{
 ?x

<http://purl.org/dc/elements/1.1/title>
 ?title .
 ?y

<http://purl.org/dc/elements/1.1/title>
 ?title .
}

Figure 2: SparQl query containing one join.

The query result (see Figure) is all the
combinations of pairs (x, y) of books with the same
title.
In this paper, we focus on those queries, which
contain one or more joins over different triple
patterns, i.e. we directly support the subset of
SparQL valid according to the following EBNF rule
Start.
Start ::= ”SELECT” “DISTINCT” var (“,” var)*
 “WHERE” “{” triplePattern*
“}”.
triplePattern ::= (literal|var)

(literal|var)
(literal|var).

var ::= ”?” QName.

ICEIS 2007 - International Conference on Enterprise Information Systems

14

where literal represents a literal and QName
represents names.

X y title

<http://example.

org/book/book1>

<http://example.o

rg/book/book1>

“SPARQL
Tutoria
l”

<http://example.

org/book/book1>

<http://example.o

rg/book/book2>

“SPARQL
Tutoria
l”

<http://example.

org/book/book2>

<http://example.o

rg/book/book1>

“SPARQL
Tutoria
l”

<http://example.

org/book/book2>

<http://example.o

rg/book/book2>

“SPARQL
Tutoria
l”

<http://example.

org/book/book3>

<http://example.o

rg/book/book3>

“Index”

Figure 4: Result of the SparQL query of Figure with input
of Figure 1.

Note that our approach can be applied to more
complex SparQL queries, by first retrieving the
results of the joins by using our approach and then
restricting the result set by applying the operations
of the more complex SparQL constructs (e.g.
FILTER expressions).

2.2 Using the Index for Execution of a
SparQL Query with One Join Over
Two Triple Patterns

We first deal with constructing and using the index
of precomputed joins for one join over two triple
patterns. We extend the approach for indices of
precomputed joins for multi-joins over different
triple patterns in later sections.

SELECT DISTINCT ?x,?y,?title
WHERE
{
 ?y

<http://purl.org/dc/elements/1.1/title>
 ?title .
 ?x

<http://purl.org/dc/elements/1.1/title>
 ?y .
}

Figure 5: Second SparQL query containing one join,
which is equivalent to the third SparQL query in Figure 6.

SELECT DISTINCT ?x,?y,?title
WHERE
{
 ?x

<http://purl.org/dc/elements/1.1/title>
 ?y .
 ?y

<http://purl.org/dc/elements/1.1/title>
 ?title .
}

Figure 6: Third SparQL query containing one join, which
is equivalent to the second SparQL query in Figure 5.

Without considering symmetric cases, we have
to consider 9 different cases of joins in two triple
patterns (see Figure). See Figure and Figure for
examples of SparQL queries of the case 3 and of the
case 7 respectively. Note that at each place of the
subjects, predicates and objects of the two triple
patterns can be either a literal or a variable. Join-
partners are fixed by a common variable. The

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

(1) (2) (3)

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

(4) (5) (6)

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

(7) (8) (9)

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p os p o1.st Triple
Pattern

s p os p o2.nd Triple
Pattern

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p os p o1.st Triple
Pattern

s p os p o2.nd Triple
Pattern

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p os p o1.st Triple
Pattern

s p os p o2.nd Triple
Pattern

(1) (2) (3)

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p os p o1.st Triple
Pattern

s p os p o2.nd Triple
Pattern

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p os p o1.st Triple
Pattern

s p os p o2.nd Triple
Pattern

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p os p o1.st Triple
Pattern

s p os p o2.nd Triple
Pattern

(4) (5) (6)

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p os p o1.st Triple
Pattern

s p os p o2.nd Triple
Pattern

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p os p o1.st Triple
Pattern

s p os p o2.nd Triple
Pattern

s p o1.st Triple
Pattern

s p o2.nd Triple
Pattern

s p os p o1.st Triple
Pattern

s p os p o2.nd Triple
Pattern

(7) (8) (9)

Figure 3: Different join cases for one join over two triple patterns.

USING AN INDEX OF PRECOMPUTED JOINS IN ORDER TO SPEED UP SPARQL PROCESSING

15

common variable of the two triple patterns
determines the different cases in Figure.

Note that the executions of the queries presented
in Figure and in Figure retrieve the same results for
the bindings of the variables. They are equivalent
queries except of the order of their triple patterns.
Thus, case 3 and case 7 (and analogously case 2 and
case 4, and case 6 and case 8) of Figure are
symmetric cases, where only the order of the triple
patterns are exchanged, which does not influence the
final result. Therefore, we only have to consider the
cases 1, 2, 3 5, 6 and 9, when we exchange the order
of triple patterns for the cases 4, 7 and 8.

Keys are unambiguous objects to identify the
entries in indices. Indices are data structures and
methods to administer pairs of keys and their
corresponding entries, which are here the results of
the joins. Especially the access to the entry by using
the key should be fast.

Variables in the triple patterns specify which of
the subjects, predicates and objects of two
considered triples of the RDF data are bound to the
variables. Literals in triple patterns are fixed
constraints in the triple patterns. Thus, the sequence
of literals of the two triple patterns is the key for the
triples of the RDF data. If we do not consider the
position of the literals in the triple patterns, we can
only ambiguously retrieve the relevant triples of the
RDF data, as we can retrieve in general the same key
for different constraints. For example, consider two
queries Q1 and Q2. Let us assume that Q1 has the
literals L1 and L2 at the subject and object position
of the first triple pattern, and Q2 has the literals L1
and L2 at the predicate and object position of the
second triple pattern. It is obvious that we should
retrieve different results for both queries, but we
determine the same key <L1, L2> from both queries
Q1 and Q2 and we are thus not able to distinguish
these results by the “key”. We propose to use
different indices for all possible situations of
positions of literals by determining the current index
from the positions of literals in the currently
considered query.

As we consider queries containing one join
expressed by a common variable, we only have to
consider four relevant positions in the two triple
patterns together. Figure contains the relevant
positions for the different join cases of Figure
(except the eliminated symmetric join cases 4, 7 and
8). Thus, we have to construct and use 24=16
different indices for each join case of Figure except
the eliminated symmetric join cases 4, 7 and 8.
Therefore, we have to administer 6*24=96 different
indices, which is practical as shown in the
experimental evaluation. We can determine the
index for a specific query by computing Σi=0

3 Bi*2i,
where Bi=1 if there is a literal at the position i (see

Figure) in the considered triple patterns without the
join partners as declared in Figure, otherwise Bi is 0.

 Position 0 Position 1 Position 2 Position

3
Case 1 p1 o1 p2 o2
Case 2 p1 o1 s2 o2
Case 3 p1 o1 s2 p2
Case 5 s1 o1 s2 o2
Case 6 s1 o1 s2 p2
Case 9 s1 p1 s2 p2

Figure 7: The relevant positions 0 to 3 for the join cases of
Figure 3 except the eliminated symmetric cases, where sx
represents the subject position, px the predicate position
and ox the object position in triple pattern x∈{1, 2}.

After the determination of the correct index, we
can access the correct triple set for the two triple
patterns in the index by using the key oi=0

3 Li, where
o is the concatenation operator for keys and Li is the
literal at the position i (see Figure) in the considered
triple patterns if there is a literal, otherwise Li is the
empty key. For example, we compute the key
“<http://purl.org/dc/elements/1.1/title>|<ht
tp://purl.org/dc/elements/1.1/title>” from
the query of Figure.

When using a hash map as index, we can retrieve
the results of a join over two triple patterns in
constant time.

If there are two or three joins in two triple
patterns, then we can use the index for one join and
additionally compare the constraints of the second or
third on the retrieved triple set, or construct and use
also indices for these (more seldom) cases.

If there are two or more joins over more than
two different triple patterns, one approach is to split
the joins into several (part) joins over two triple
patterns, access their results separately by using our
approach, each access saves the processing time of
one join, and then joining the results.

Another approach is to extend our approach for
multi-joins over different triple patterns, which we
present in Section 2.4.

2.3 Constructing the Index

In order to construct the index from the input RDF
data, we first construct three indices to access the
triples of common subjects, predicates and objects.
For this purpose, we iterate one time through all
triples of the input RDF data set and add the current
triple into three hash maps, where we use the subject
as key for the first hash map, the predicate as key for
the second hash map, and the object as key for the
third hash map. Note that these hash maps not only
store one triple for one key, but a list of triples with
these keys. The construction of each of these three

ICEIS 2007 - International Conference on Enterprise Information Systems

16

hash maps can be done in O(n), where n is the
number of triples in the input RDF data set.
Furthermore, note that these three indices could be
also used to retrieve the corresponding triples of one
triple pattern of a query, where the key is one literal
at the subject, predicate or object position of the
triple.

Hash-
entry
for

First Triple Second Triple

<http://example.o

rg/book/book1>

<http://purl.org/

dc/elements/1.1/t

itle>

“SparQL Tutorial”

<http://example.o

rg/book/book1>

<http://purl.org/

dc/elements/1.1/t

itle>

“SparQL Tutorial”

<http:/

/exampl

e.org/b

ook/boo

k1>

<http://example.o

rg/book/book1>

<http://purl.org/

dc/elements/1.1/t

itle>

“SparQL Tutorial”

<http://example.o

rg/book/book2>

<http://purl.org/

dc/elements/1.1/t

itle>

“SparQL Tutorial”

<http://example.o

rg/book/book2>

<http://purl.org/

dc/elements/1.1/t

itle>

“SparQL Tutorial”

<http://example.o

rg/book/book1>

<http://purl.org/

dc/elements/1.1/t

itle>

“SparQL Tutorial”

<http:/

/exampl

e.org/b

ook/boo

k2>

<http://example.o

rg/book/book2>

<http://purl.org/

dc/elements/1.1/t

itle>

“SparQL Tutorial”

<http://example.o

rg/book/book2>

<http://purl.org/

dc/elements/1.1/t

itle>

“SparQL Tutorial”

<http:/

/exampl

e.org/b

ook/boo

k3>

<http://example.o

rg/book/book3>

<http://purl.org/

dc/elements/1.1/t

itle>

“Index”

<http://example.o

rg/book/book3>

<http://purl.org/

dc/elements/1.1/t

itle>

“Index”

Figure 8: Example for the constructed hash map for the
case of join case 9 (see Figure 3) and for the position of
one literal at the subject position of the first triple pattern,
where the input RDF data is presented in Figure 1.

Afterwards, we construct the 6*24=96 different
indices by initializing one hash map containing lists
of pairs of triples as entries for each different index
representing one case of join partners and positions
of literals in the considered two triple patterns.
 We iterate again through all triples of the input
RDF data set. We consider recursively all cases of
join partners and positions of literals and determine
the possible second triples in constant time by using
the hash maps, where the key is either the subject,
predicate or object of the triple.

 Figure contains an example for the constructed
hash map for the case of join case 9 (see Figure) and
for the position of one literal at the subject of the
first triple pattern, where the input RDF data is
presented in Figure.
 The construction of each of these 96 different
indices can be done in O(n2), where n is the number
of triples in the input RDF data set, as we iterate one
time through all triples in the input RDF data set and
for each triple, we add at most n different triples to
the considered index.
 Note that the construction of the index is done
only once after reading the input RDF data set and
does not need to be repeatedly done for each query.
Then a join over two triple patterns of a query can be
determined within constant time.

2.4 Extending the Approach for Multi-
Joins over Multiple Different Triple
Patterns

We extend now our approach for multi-joins over
multiple different triple patterns.
 We consider now n-1 joins between n triple
patterns (see Figure).

We can express these n-1 joins by a sequence
<x1, …, x2*(n-1)>, where x2*(i-1)∈{1,2,3} indicates the
join partner (1=subject, 2=predicate and 3=object) of
the i-th triple pattern of the join with the previous
triple pattern i-1, and x2*(i-1)+1∈{1,2,3} indicates the
join partner of the i-th triple pattern of the join with
the following triple pattern i+1. Thus, we have
32*(n-1) different cases for joins between these n triple
patterns including those cases, which are equivalent
except of the order of their triple patterns. The
symmetric cases are those cases, where for all i∈{1,
…, n-1}:xi=x2*(n-1)+1-i. Therefore, the number of
symmetric cases is 3n-1. Altogether, the number of
joins without those cases, which are equivalent
except of the order of their triple patterns, is half of

Figure 9: n-1 joins over n different triple patterns.

USING AN INDEX OF PRECOMPUTED JOINS IN ORDER TO SPEED UP SPARQL PROCESSING

17

all cases without the symmetric cases plus the
symmetric cases, i.e. (32*(n-1)-3n-1)/2 + 3n-1 =
3n-1*(1/2)*(3n-1+1).

The number of literal and variable positions
without those positions of the join partners is at most
2 for every triple pattern. Thus, we have at most 2n*2
positions, which are bounded or unbounded and
which have to be considered in a separate index
each.

Altogether, we have to administer
2n*2*(3n-1*(1/2)*(3n-1+1)) indices for n-1 joins
between n triple patterns, which is not practical for
n≥3. Future work will cover approaches to reduce
the number of indices used for multi-joins over
different triple patterns. Furthermore, future work
will cover to develop disk-based indices, where we
can access the entry of a hash index with one disk-
access. Also incremental indices, where we
incrementally extend the index whenever we
compute a new join, such that we avoid the time-
consuming initialization of the indices and where
only those joins are computed, which are really
needed, is on the agenda of future work.

3 PERFORMANCE EVALUATION

We present the experimental evaluation in this
section. We describe the experimental environment
in Section 3.1 and present the experimental results in
Section 3.2.

3.1 Experimental Environment

The test system for all experiments is a 2 Gigahertz
Intel Pentium M processor with 1 Gigabytes main
memory, where we use Windows XP as operation
system and Java version 1.5. Furthermore, we use
Jena (Wilkinson et al., 2003) and Allegro (Franz
Inc., 2006) as RDF storage systems to compare the
results of our approach with those of existing
systems.

3.2 Experimental Results

We have generated RDF data in XML representation
with 1, 200, 400, 600, 800 and 1000 triples. We have
generated RDF data, where (a) no predicates of the
triples are the same, and (b) 25% of the predicates
are the same. For an example, see Figure for 10
triples with 25% same predicates. The used SparQL
query is represented in Figure, which is a query of
join case 5, where we do not have any literals in the
query.

<http://groppe.org/elem1>
<http://groppe.org/elem0>

<http://groppe.org/elem1>.
<http://groppe.org/elem2>
<http://groppe.org/elem0>
<http://groppe.org/elem2>.

<http://groppe.org/elem3>
<http://groppe.org/elem3>
<http://groppe.org/elem3>.

<http://groppe.org/elem4>
<http://groppe.org/elem4>
<http://groppe.org/elem4>.

<http://groppe.org/elem5>
<http://groppe.org/elem5>
<http://groppe.org/elem5>.

<http://groppe.org/elem6>
<http://groppe.org/elem6>
<http://groppe.org/elem6>.

<http://groppe.org/elem7>
<http://groppe.org/elem7>
<http://groppe.org/elem7>.

<http://groppe.org/elem8>
<http://groppe.org/elem8>
<http://groppe.org/elem8>.

<http://groppe.org/elem9>
<http://groppe.org/elem9>
<http://groppe.org/elem9>.

<http://groppe.org/elem10>
<http://groppe.org/elem10>
<http://groppe.org/elem10>.

<http://groppe.org/elem1>
<http://groppe.org/elem0>

<http://groppe.org/elem1>.

Figure 10: Generated RDF data for number of elements 10
and 25% elements with the same predicate.

Figure represents the time used to load the
RDF/XML input files into the Jena and Allegro
system, and Figure 13 represents the time used by
our approach to construct the index. Figure 14
contains the number of elements of the result set of
the query of Figure 11. Figure 15, Figure 16 and
Figure 17 represent the execution times of the Jena
evaluator, the Allegro system and our approach for
the SparQL query of Figure. Our approach is the
fastest and needs less than 1 millisecond for the
query for all different input RDF/XML files. The
Allegro system needs most time and already
generates out-of-memory errors for input files with
400 triples. Note that the Allegro system provides a
client server system, where the data has to be
transferred from the server to the client even in the
case that the client and the server run on the same
computer. Thus, in comparison to the Jena evaluator
and our approach, using the Allegro system needs to
iterate at least one time through the whole result set,
which we neglect when using the Jena evaluator and
our approach.

ICEIS 2007 - International Conference on Enterprise Information Systems

18

Select DISTINCT * where
{
 ?x ?y ?z.
?a ?y ?b.

}

Figure 11: Used SparQL query in the experiments.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Time in
seconds

1 200 400 600 800 1000

Number of Elements

Jena
Allegro

Figure 12: Time used to load RDF/XML input file.

Figure 13: Time used to construct the index for 0% and
25% same predicates in the input RDF data.

4 RELATED WORK

(Matono et al., 2003) presents an indexing scheme
for RDF and RDF Schema based on Suffix Arrays of
determined path expressions, which represent the
data (and schema). Whereas the search for the
optimized execution of SparQL queries in the suffix
arrays require runtime O(log2(n+1)), our approach
accesses the results of joins in constant time O(1).
(Barton, 2004) generates a forest of trees annotated
with additional information at those nodes of the
original RDF data, which do not fulfil the forest
requirement (and lead to a graph). However, the
approach is used to find possible paths between two
given nodes and thus is not directly usable for
SparQL processing in the form it has been proposed.
 (Becket, 2002), (Stuckenschmidt et al., 2004)
and (Harth and Decker, 2005) present the used
indices for different RDF storage systems. However,
they only consider indices over triples and not over
two or more triples containing a join.
 In comparison to all other approaches, we focus
on the optimized execution of SparQL queries with
one or more joins.

0

2

4

6

8

10

12

Time in
seconds

1 200 400 600 800 1000

Number of Elements

0%
25%

0

500

1000

1500

2000

2500

Time in
seconds

1 200

Number of Elements

0%
25%

Figure 17: Execution times of the Allegro system for
0% and 25% same predicates in the input RDF data.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

Time in
seconds

1 200 400 600 800 1000

Number of Elements

Jena
Our Approach

Figure 16: Execution times of Jena in comparison to
our approach for input data with 25% same predicates.

0

100000

200000

300000

400000

500000

600000

700000

Size of Result
in Number of
Triple Pairs

1 200 400 600 800 1000

Number of Elements

0%
25%

Figure 14: Number of elements in the result set for 0% and
25% same predicates in the input RDF data.

USING AN INDEX OF PRECOMPUTED JOINS IN ORDER TO SPEED UP SPARQL PROCESSING

19

5 SUMMARY AND
CONCLUSIONS

SparQL seems to be the upcoming query language
for RDF data. Queried subgraphs of the input RDF
data are formulated by using joins over single triple
patterns. In this paper, we focus on the optimization
of the execution of joins in SparQL queries by using
indices. After the construction of the indices, we can
access the result for one join over two triple patterns
of the query in constant time, when using hash maps
for the indices.
 In the performance evaluation, we compare the
results of the execution times of our prototype with
the execution time of existing systems.
 Future work covers to use a disk-based index,
approaches to reduce the number of indices,
incremental indices and advanced techniques for
indices of precomputed multi-joins over several
triple patterns.

REFERENCES

Alexaki, S., Christophides, V., Karvounarakis, G.,
Plexousakis, D., and Tolle, K., 2001. The rdfsuite:
Managing voluminous rdf description bases. In
Proceedings of the 2nd International Workshop on the
Semantic Web (SemWeb’01) in conjunction with
WWW, Hongkong.

Barton, S., 2004. Designing Indexing Structure for
Discovering Relationships in RDF Graphs, Dateso
2004.

Beckett, D., 2002. The design and implementation of the
Redland RDF application framework. Computer
Networks, 39(5):577-588.

Bertino, E., 1991. An Indexing Technique for Object-
Oriented Languages. In Proceedings of the 7th
International Conference on Data Engineering, IEEE
Computer Society, Kobe, pages 160-170.

Brickley, D., Guha, R. V., 2000. Resource description
framework specification.

Broekstra, J., Kampman, A., van Harmelen, 2002.
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. In Proceedings of
the 2nd International Semantic Web Conference,
Springer, Sardinia.

Franz Inc., 2006. AllegroGraph 64-bit RDFStore,
http://www.franz.com/products/allegrograph.

Guha, R., 2006. rdfDB: An RDF Database,
http://www.guha.com/rdfdb.

Harth, A., Decker, S., 2005. Optimized Index Structure for
Querying the Web. In Third Latin American Web
Congress (LA-WEB 2005), Buenos Aires, Argentina.

Matono, A., Amagasa, T., Yoshikawa, Uemura, S., 2003.
An Indexing Scheme for RDF and RDF Schema based
on Suffix Arrays. In Proceedings of the 1st
International Workshop on Semantic Web and

Databases (SWDB’03) co-located with VLDB 2003,
Berlin.

Northrop Grumman Corporation, 2006. Kowari,
http://www.kowari.org.

Stuckenschmidt, R., Vdovjak, R., Houben, G.-J.,
Broekstra, J., 2004. Index Structures and Algorithms
for Querying Distributed RDF Repositories. In
Proceedings of 13th InternationalWorld Wide Web
Conference, New York.

Wilkinson, K., Sayers, C., Kuno, H. A., Reynolds, D.,
2003. Efficient RDF Storage and Retrieval in Jena2. In
Proceedings of the 1st International Workshop on
Semantic Web and Databases (SWDB’03) co-located
with VLDB 2003, Berlin.

W3Ca, 2006. SPARQL Query Language for RDF, W3C
Candidate Recommendation, 6 April 2006.

W3Cb, 2006. SPARQL Query Results XML Format, W3C
Candidate Recommendation, 6 April 2006.

W3Cc, 2006. SPARQL Protocol for RDF, W3C Candidate
Recommendation, 6 April 2006.

ICEIS 2007 - International Conference on Enterprise Information Systems

20

